| /* ****************************************************************** |
| FSE : Finite State Entropy codec |
| Public Prototypes declaration |
| Copyright (C) 2013-2016, Yann Collet. |
| |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions are |
| met: |
| |
| * Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the following disclaimer |
| in the documentation and/or other materials provided with the |
| distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| You can contact the author at : |
| - Source repository : https://github.com/Cyan4973/FiniteStateEntropy |
| ****************************************************************** */ |
| #ifndef FSE_H |
| #define FSE_H |
| |
| #if defined (__cplusplus) |
| extern "C" { |
| #endif |
| |
| |
| /*-***************************************** |
| * Dependencies |
| ******************************************/ |
| #include <stddef.h> /* size_t, ptrdiff_t */ |
| |
| |
| /*-**************************************** |
| * FSE simple functions |
| ******************************************/ |
| /*! FSE_compress() : |
| Compress content of buffer 'src', of size 'srcSize', into destination buffer 'dst'. |
| 'dst' buffer must be already allocated. Compression runs faster is dstCapacity >= FSE_compressBound(srcSize). |
| @return : size of compressed data (<= dstCapacity). |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within dst !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression instead. |
| if FSE_isError(return), compression failed (more details using FSE_getErrorName()) |
| */ |
| size_t FSE_compress(void* dst, size_t dstCapacity, |
| const void* src, size_t srcSize); |
| |
| /*! FSE_decompress(): |
| Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', |
| into already allocated destination buffer 'dst', of size 'dstCapacity'. |
| @return : size of regenerated data (<= maxDstSize), |
| or an error code, which can be tested using FSE_isError() . |
| |
| ** Important ** : FSE_decompress() does not decompress non-compressible nor RLE data !!! |
| Why ? : making this distinction requires a header. |
| Header management is intentionally delegated to the user layer, which can better manage special cases. |
| */ |
| size_t FSE_decompress(void* dst, size_t dstCapacity, |
| const void* cSrc, size_t cSrcSize); |
| |
| |
| /*-***************************************** |
| * Tool functions |
| ******************************************/ |
| size_t FSE_compressBound(size_t size); /* maximum compressed size */ |
| |
| /* Error Management */ |
| unsigned FSE_isError(size_t code); /* tells if a return value is an error code */ |
| const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */ |
| |
| |
| /*-***************************************** |
| * FSE advanced functions |
| ******************************************/ |
| /*! FSE_compress2() : |
| Same as FSE_compress(), but allows the selection of 'maxSymbolValue' and 'tableLog' |
| Both parameters can be defined as '0' to mean : use default value |
| @return : size of compressed data |
| Special values : if return == 0, srcData is not compressible => Nothing is stored within cSrc !!! |
| if return == 1, srcData is a single byte symbol * srcSize times. Use RLE compression. |
| if FSE_isError(return), it's an error code. |
| */ |
| size_t FSE_compress2 (void* dst, size_t dstSize, const void* src, size_t srcSize, unsigned maxSymbolValue, unsigned tableLog); |
| |
| |
| /*-***************************************** |
| * FSE detailed API |
| ******************************************/ |
| /*! |
| FSE_compress() does the following: |
| 1. count symbol occurrence from source[] into table count[] |
| 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog) |
| 3. save normalized counters to memory buffer using writeNCount() |
| 4. build encoding table 'CTable' from normalized counters |
| 5. encode the data stream using encoding table 'CTable' |
| |
| FSE_decompress() does the following: |
| 1. read normalized counters with readNCount() |
| 2. build decoding table 'DTable' from normalized counters |
| 3. decode the data stream using decoding table 'DTable' |
| |
| The following API allows targeting specific sub-functions for advanced tasks. |
| For example, it's possible to compress several blocks using the same 'CTable', |
| or to save and provide normalized distribution using external method. |
| */ |
| |
| /* *** COMPRESSION *** */ |
| |
| /*! FSE_count(): |
| Provides the precise count of each byte within a table 'count'. |
| 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1). |
| *maxSymbolValuePtr will be updated if detected smaller than initial value. |
| @return : the count of the most frequent symbol (which is not identified). |
| if return == srcSize, there is only one symbol. |
| Can also return an error code, which can be tested with FSE_isError(). */ |
| size_t FSE_count(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize); |
| |
| /*! FSE_optimalTableLog(): |
| dynamically downsize 'tableLog' when conditions are met. |
| It saves CPU time, by using smaller tables, while preserving or even improving compression ratio. |
| @return : recommended tableLog (necessarily <= initial 'tableLog') */ |
| unsigned FSE_optimalTableLog(unsigned tableLog, size_t srcSize, unsigned maxSymbolValue); |
| |
| /*! FSE_normalizeCount(): |
| normalize counts so that sum(count[]) == Power_of_2 (2^tableLog) |
| 'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1). |
| @return : tableLog, |
| or an errorCode, which can be tested using FSE_isError() */ |
| size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog, const unsigned* count, size_t srcSize, unsigned maxSymbolValue); |
| |
| /*! FSE_NCountWriteBound(): |
| Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'. |
| Typically useful for allocation purpose. */ |
| size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_writeNCount(): |
| Compactly save 'normalizedCounter' into 'buffer'. |
| @return : size of the compressed table, |
| or an errorCode, which can be tested using FSE_isError(). */ |
| size_t FSE_writeNCount (void* buffer, size_t bufferSize, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| |
| /*! Constructor and Destructor of FSE_CTable. |
| Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */ |
| typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */ |
| FSE_CTable* FSE_createCTable (unsigned tableLog, unsigned maxSymbolValue); |
| void FSE_freeCTable (FSE_CTable* ct); |
| |
| /*! FSE_buildCTable(): |
| Builds `ct`, which must be already allocated, using FSE_createCTable(). |
| @return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_compress_usingCTable(): |
| Compress `src` using `ct` into `dst` which must be already allocated. |
| @return : size of compressed data (<= `dstCapacity`), |
| or 0 if compressed data could not fit into `dst`, |
| or an errorCode, which can be tested using FSE_isError() */ |
| size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct); |
| |
| /*! |
| Tutorial : |
| ---------- |
| The first step is to count all symbols. FSE_count() does this job very fast. |
| Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells. |
| 'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0] |
| maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value) |
| FSE_count() will return the number of occurrence of the most frequent symbol. |
| This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| The next step is to normalize the frequencies. |
| FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'. |
| It also guarantees a minimum of 1 to any Symbol with frequency >= 1. |
| You can use 'tableLog'==0 to mean "use default tableLog value". |
| If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(), |
| which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default"). |
| |
| The result of FSE_normalizeCount() will be saved into a table, |
| called 'normalizedCounter', which is a table of signed short. |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells. |
| The return value is tableLog if everything proceeded as expected. |
| It is 0 if there is a single symbol within distribution. |
| If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount(). |
| 'buffer' must be already allocated. |
| For guaranteed success, buffer size must be at least FSE_headerBound(). |
| The result of the function is the number of bytes written into 'buffer'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small). |
| |
| 'normalizedCounter' can then be used to create the compression table 'CTable'. |
| The space required by 'CTable' must be already allocated, using FSE_createCTable(). |
| You can then use FSE_buildCTable() to fill 'CTable'. |
| If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()). |
| |
| 'CTable' can then be used to compress 'src', with FSE_compress_usingCTable(). |
| Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize' |
| The function returns the size of compressed data (without header), necessarily <= `dstCapacity`. |
| If it returns '0', compressed data could not fit into 'dst'. |
| If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()). |
| */ |
| |
| |
| /* *** DECOMPRESSION *** */ |
| |
| /*! FSE_readNCount(): |
| Read compactly saved 'normalizedCounter' from 'rBuffer'. |
| @return : size read from 'rBuffer', |
| or an errorCode, which can be tested using FSE_isError(). |
| maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ |
| size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize); |
| |
| /*! Constructor and Destructor of FSE_DTable. |
| Note that its size depends on 'tableLog' */ |
| typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ |
| FSE_DTable* FSE_createDTable(unsigned tableLog); |
| void FSE_freeDTable(FSE_DTable* dt); |
| |
| /*! FSE_buildDTable(): |
| Builds 'dt', which must be already allocated, using FSE_createDTable(). |
| return : 0, or an errorCode, which can be tested using FSE_isError() */ |
| size_t FSE_buildDTable (FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); |
| |
| /*! FSE_decompress_usingDTable(): |
| Decompress compressed source `cSrc` of size `cSrcSize` using `dt` |
| into `dst` which must be already allocated. |
| @return : size of regenerated data (necessarily <= `dstCapacity`), |
| or an errorCode, which can be tested using FSE_isError() */ |
| size_t FSE_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt); |
| |
| /*! |
| Tutorial : |
| ---------- |
| (Note : these functions only decompress FSE-compressed blocks. |
| If block is uncompressed, use memcpy() instead |
| If block is a single repeated byte, use memset() instead ) |
| |
| The first step is to obtain the normalized frequencies of symbols. |
| This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount(). |
| 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. |
| In practice, that means it's necessary to know 'maxSymbolValue' beforehand, |
| or size the table to handle worst case situations (typically 256). |
| FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'. |
| The result of FSE_readNCount() is the number of bytes read from 'rBuffer'. |
| Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'. |
| This is performed by the function FSE_buildDTable(). |
| The space required by 'FSE_DTable' must be already allocated using FSE_createDTable(). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). |
| |
| `FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable(). |
| `cSrcSize` must be strictly correct, otherwise decompression will fail. |
| FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). |
| If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small) |
| */ |
| |
| |
| #if defined (__cplusplus) |
| } |
| #endif |
| |
| #endif /* FSE_H */ |