blob: f4a6bde127e575096906d3cfd5dc9608e67d49eb [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/rel32_utils.h"
#include <stdint.h>
#include <deque>
#include <memory>
#include <utility>
#include <vector>
#include "base/test/gtest_util.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/arm_utils.h"
#include "components/zucchini/image_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace zucchini {
namespace {
// A trivial AddressTranslator that applies constant shift.
class TestAddressTranslator : public AddressTranslator {
public:
TestAddressTranslator(offset_t image_size, rva_t rva_begin) {
DCHECK_GE(rva_begin, 0U);
CHECK_EQ(AddressTranslator::kSuccess,
Initialize({{0, image_size, rva_begin, image_size}}));
}
};
// Checks that |reader| emits and only emits |expected_refs|, in order.
void CheckReader(const std::vector<Reference>& expected_refs,
std::unique_ptr<ReferenceReader> reader) {
for (Reference expected_ref : expected_refs) {
auto ref = reader->GetNext();
EXPECT_TRUE(ref.has_value());
EXPECT_EQ(expected_ref, ref.value());
}
EXPECT_EQ(absl::nullopt, reader->GetNext()); // Nothing should be left.
}
// Copies displacements from |bytes1| to |bytes2| and checks results against
// |bytes_exp_1_to_2|. Then repeats for |*bytes2| , |*byte1|, and
// |bytes_exp_2_to_1|. Empty expected bytes mean failure is expected. The copy
// function is specified by |copier|.
void CheckCopy(const std::vector<uint8_t>& bytes_exp_1_to_2,
const std::vector<uint8_t>& bytes_exp_2_to_1,
const std::vector<uint8_t>& bytes1,
const std::vector<uint8_t>& bytes2,
ArmCopyDispFun copier) {
auto run_test = [&copier](const std::vector<uint8_t>& bytes_exp,
const std::vector<uint8_t>& bytes_in,
std::vector<uint8_t> bytes_out) {
ConstBufferView buffer_in(&bytes_in[0], bytes_in.size());
MutableBufferView buffer_out(&bytes_out[0], bytes_out.size());
if (bytes_exp.empty()) {
EXPECT_FALSE(copier(buffer_in, 0U, buffer_out, 0U));
} else {
EXPECT_TRUE(copier(buffer_in, 0U, buffer_out, 0U));
EXPECT_EQ(bytes_exp, bytes_out);
}
};
run_test(bytes_exp_1_to_2, bytes1, bytes2);
run_test(bytes_exp_2_to_1, bytes2, bytes1);
}
} // namespace
TEST(Rel32UtilsTest, Rel32ReaderX86) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
// For simplicity, test data is not real X86 machine code. We are only
// including rel32 targets, without the full instructions.
std::vector<uint8_t> bytes = {
0xFF, 0xFF, 0xFF, 0xFF, // 00030000: (Filler)
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0x04, 0x00, 0x00, 0x00, // 00030008: 00030010
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0x00, 0x00, 0x00, 0x00, // 00030010: 00030014
0xFF, 0xFF, 0xFF, 0xFF, // 00030014: (Filler)
0xF4, 0xFF, 0xFF, 0xFF, // 00030018: 00030010
0xE4, 0xFF, 0xFF, 0xFF, // 0003001C: 00030004
};
ConstBufferView buffer(bytes.data(), bytes.size());
// Specify rel32 locations directly, instead of parsing.
std::deque<offset_t> rel32_locations = {0x0008U, 0x0010U, 0x0018U, 0x001CU};
// Generate everything.
auto reader1 = std::make_unique<Rel32ReaderX86>(buffer, 0x0000U, 0x0020U,
&rel32_locations, translator);
CheckReader({{0x0008U, 0x0010U},
{0x0010U, 0x0014U},
{0x0018U, 0x0010U},
{0x001CU, 0x0004U}},
std::move(reader1));
// Exclude last.
auto reader2 = std::make_unique<Rel32ReaderX86>(buffer, 0x0000U, 0x001CU,
&rel32_locations, translator);
CheckReader({{0x0008U, 0x0010U}, {0x0010U, 0x0014U}, {0x0018U, 0x0010U}},
std::move(reader2));
// Only find one.
auto reader3 = std::make_unique<Rel32ReaderX86>(buffer, 0x000CU, 0x0018U,
&rel32_locations, translator);
CheckReader({{0x0010U, 0x0014U}}, std::move(reader3));
}
TEST(Rel32UtilsTest, Rel32WriterX86) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes(32, 0xFF);
MutableBufferView buffer(bytes.data(), bytes.size());
Rel32WriterX86 writer(buffer, translator);
writer.PutNext({0x0008U, 0x0010U});
EXPECT_EQ(0x00000004U, buffer.read<uint32_t>(0x08)); // 00030008: 00030010
writer.PutNext({0x0010U, 0x0014U});
EXPECT_EQ(0x00000000U, buffer.read<uint32_t>(0x10)); // 00030010: 00030014
writer.PutNext({0x0018U, 0x0010U});
EXPECT_EQ(0xFFFFFFF4U, buffer.read<uint32_t>(0x18)); // 00030018: 00030010
writer.PutNext({0x001CU, 0x0004U});
EXPECT_EQ(0xFFFFFFE4U, buffer.read<uint32_t>(0x1C)); // 0003001C: 00030004
EXPECT_EQ(std::vector<uint8_t>({
0xFF, 0xFF, 0xFF, 0xFF, // 00030000: (Filler)
0xFF, 0xFF, 0xFF, 0xFF, // 00030004: (Filler)
0x04, 0x00, 0x00, 0x00, // 00030008: 00030010
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0x00, 0x00, 0x00, 0x00, // 00030010: 00030014
0xFF, 0xFF, 0xFF, 0xFF, // 00030014: (Filler)
0xF4, 0xFF, 0xFF, 0xFF, // 00030018: 00030010
0xE4, 0xFF, 0xFF, 0xFF, // 0003001C: 00030004
}),
bytes);
}
TEST(Rel32UtilsTest, Rel32ReaderArm_AArch32) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
// A24.
std::vector<uint8_t> bytes = {
0xFF, 0xFF, 0xFF, 0xFF, // 00030000: (Filler)
0xFF, 0xFF, 0xFF, 0xFF, // 00030004: (Filler)
0x00, 0x00, 0x00, 0xEA, // 00030008: B 00030010 ; A24
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0xFF, 0xFF, 0xFF, 0xEB, // 00030010: BL 00030014 ; A24
0xFF, 0xFF, 0xFF, 0xFF, // 00030014: (Filler)
0xFC, 0xFF, 0xFF, 0xEB, // 00030018: BL 00030010 ; A24
0xF8, 0xFF, 0xFF, 0xEA, // 0003001C: B 00030004 ; A24
};
ConstBufferView region(&bytes[0], bytes.size());
// Specify rel32 locations directly, instead of parsing.
std::deque<offset_t> rel32_locations_A24 = {0x0008U, 0x0010U, 0x0018U,
0x001CU};
// Generate everything.
auto reader1 =
std::make_unique<Rel32ReaderArm<AArch32Rel32Translator::AddrTraits_A24>>(
translator, region, rel32_locations_A24, 0x0000U, 0x0020U);
CheckReader({{0x0008U, 0x0010U},
{0x0010U, 0x0014U},
{0x0018U, 0x0010U},
{0x001CU, 0x0004U}},
std::move(reader1));
// Exclude last.
auto reader2 =
std::make_unique<Rel32ReaderArm<AArch32Rel32Translator::AddrTraits_A24>>(
translator, region, rel32_locations_A24, 0x0000U, 0x001CU);
CheckReader({{0x0008U, 0x0010U}, {0x0010U, 0x0014U}, {0x0018U, 0x0010U}},
std::move(reader2));
// Only find one.
auto reader3 =
std::make_unique<Rel32ReaderArm<AArch32Rel32Translator::AddrTraits_A24>>(
translator, region, rel32_locations_A24, 0x000CU, 0x0018U);
CheckReader({{0x0010U, 0x0014U}}, std::move(reader3));
}
TEST(Rel32UtilsTest, Rel32WriterArm_AArch32_Easy) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes = {
0xFF, 0xFF, // 00030000: (Filler)
0x01, 0xDE, // 00030002: B 00030008 ; T8
0xFF, 0xFF, 0xFF, 0xFF, // 00030004: (Filler)
0x01, 0xE0, // 00030008: B 0003000E ; T11
0xFF, 0xFF, // 0003000A: (Filler)
0x80, 0xF3, 0x00, 0x80, // 0003000C: B 00030010 ; T20
};
MutableBufferView region(&bytes[0], bytes.size());
auto writer1 =
std::make_unique<Rel32WriterArm<AArch32Rel32Translator::AddrTraits_T8>>(
translator, region);
writer1->PutNext({0x0002U, 0x0004U});
EXPECT_EQ(0xFF, bytes[0x02]); // 00030002: B 00030004 ; T8
EXPECT_EQ(0xDE, bytes[0x03]);
writer1->PutNext({0x0002U, 0x000AU});
EXPECT_EQ(0x02, bytes[0x02]); // 00030002: B 0003000A ; T8
EXPECT_EQ(0xDE, bytes[0x03]);
auto writer2 =
std::make_unique<Rel32WriterArm<AArch32Rel32Translator::AddrTraits_T11>>(
translator, region);
writer2->PutNext({0x0008U, 0x0008U});
EXPECT_EQ(0xFE, bytes[0x08]); // 00030008: B 00030008 ; T11
EXPECT_EQ(0xE7, bytes[0x09]);
writer2->PutNext({0x0008U, 0x0010U});
EXPECT_EQ(0x02, bytes[0x08]); // 00030008: B 00030010 ; T11
EXPECT_EQ(0xE0, bytes[0x09]);
auto writer3 =
std::make_unique<Rel32WriterArm<AArch32Rel32Translator::AddrTraits_T20>>(
translator, region);
writer3->PutNext({0x000CU, 0x000AU});
EXPECT_EQ(0xBF, bytes[0x0C]); // 0003000C: B 0003000A ; T20
EXPECT_EQ(0xF7, bytes[0x0D]);
EXPECT_EQ(0xFD, bytes[0x0E]);
EXPECT_EQ(0xAF, bytes[0x0F]);
writer3->PutNext({0x000CU, 0x0010U});
EXPECT_EQ(0x80, bytes[0x0C]); // 0003000C: B 00030010 ; T20
EXPECT_EQ(0xF3, bytes[0x0D]);
EXPECT_EQ(0x00, bytes[0x0E]);
EXPECT_EQ(0x80, bytes[0x0F]);
}
TEST(Rel32UtilsTest, Rel32WriterArm_AArch32_Hard) {
constexpr offset_t kTestImageSize = 0x10000000U;
constexpr rva_t kRvaBegin = 0x0C030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes = {
0xFF, 0xFF, // 0C030000: (Filler)
0x00, 0xF0, 0x00, 0xB8, // 0C030002: B 0C030006 ; T24
0xFF, 0xFF, 0xFF, 0xFF, // 0C030006: (Filler)
0x00, 0xF0, 0x7A, 0xE8, // 0C03000A: BLX 0C030100 ; T24
0xFF, 0xFF, // 0C03000E: (Filler)
0x00, 0xF0, 0x7A, 0xE8, // 0C030010: BLX 0C030108 ; T24
};
MutableBufferView region(&bytes[0], bytes.size());
auto writer =
std::make_unique<Rel32WriterArm<AArch32Rel32Translator::AddrTraits_T24>>(
translator, region);
writer->PutNext({0x0002U, 0x0000U});
EXPECT_EQ(0xFF, bytes[0x02]); // 0C030002: B 0C030000 ; T24
EXPECT_EQ(0xF7, bytes[0x03]);
EXPECT_EQ(0xFD, bytes[0x04]);
EXPECT_EQ(0xBF, bytes[0x05]);
writer->PutNext({0x0002U, 0x0008U});
EXPECT_EQ(0x00, bytes[0x02]); // 0C030002: B 0C030008 ; T24
EXPECT_EQ(0xF0, bytes[0x03]);
EXPECT_EQ(0x01, bytes[0x04]);
EXPECT_EQ(0xB8, bytes[0x05]);
// BLX complication, with location that's not 4-byte aligned.
writer->PutNext({0x000AU, 0x0010U});
EXPECT_EQ(0x00, bytes[0x0A]); // 0C03000A: BLX 0C030010 ; T24
EXPECT_EQ(0xF0, bytes[0x0B]);
EXPECT_EQ(0x02, bytes[0x0C]);
EXPECT_EQ(0xE8, bytes[0x0D]);
writer->PutNext({0x000AU, 0x0100U});
EXPECT_EQ(0x00, bytes[0x0A]); // 0C03000A: BLX 0C030100 ; T24
EXPECT_EQ(0xF0, bytes[0x0B]);
EXPECT_EQ(0x7A, bytes[0x0C]);
EXPECT_EQ(0xE8, bytes[0x0D]);
writer->PutNext({0x000AU, 0x0000U});
EXPECT_EQ(0xFF, bytes[0x0A]); // 0C03000A: BLX 0C030000 ; T24
EXPECT_EQ(0xF7, bytes[0x0B]);
EXPECT_EQ(0xFA, bytes[0x0C]);
EXPECT_EQ(0xEF, bytes[0x0D]);
// BLX complication, with location that's 4-byte aligned.
writer->PutNext({0x0010U, 0x0010U});
EXPECT_EQ(0xFF, bytes[0x10]); // 0C030010: BLX 0C030010 ; T24
EXPECT_EQ(0xF7, bytes[0x11]);
EXPECT_EQ(0xFE, bytes[0x12]);
EXPECT_EQ(0xEF, bytes[0x13]);
writer->PutNext({0x0010U, 0x0108U});
EXPECT_EQ(0x00, bytes[0x10]); // 0C030010: BLX 0C030108 ; T24
EXPECT_EQ(0xF0, bytes[0x11]);
EXPECT_EQ(0x7A, bytes[0x12]);
EXPECT_EQ(0xE8, bytes[0x13]);
}
// Test BLX encoding A2, which is an ARM instruction that switches to THUMB2,
// and therefore should have 2-byte alignment.
TEST(Rel32UtilsTest, AArch32SwitchToThumb2) {
constexpr offset_t kTestImageSize = 0x10000000U;
constexpr rva_t kRvaBegin = 0x08030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes = {
0xFF, 0xFF, 0x00, 0x00, // 08030000: (Filler)
0x00, 0x00, 0x00, 0xFA, // 08030004: BLX 0803000C ; A24
};
MutableBufferView region(&bytes[0], bytes.size());
auto writer =
std::make_unique<Rel32WriterArm<AArch32Rel32Translator::AddrTraits_A24>>(
translator, region);
// To location that's 4-byte aligned.
writer->PutNext({0x0004U, 0x0100U});
EXPECT_EQ(0x3D, bytes[0x04]); // 08030004: BLX 08030100 ; A24
EXPECT_EQ(0x00, bytes[0x05]);
EXPECT_EQ(0x00, bytes[0x06]);
EXPECT_EQ(0xFA, bytes[0x07]);
// To location that's 2-byte aligned but not 4-byte aligned.
writer->PutNext({0x0004U, 0x0052U});
EXPECT_EQ(0x11, bytes[0x04]); // 08030004: BLX 08030052 ; A24
EXPECT_EQ(0x00, bytes[0x05]);
EXPECT_EQ(0x00, bytes[0x06]);
EXPECT_EQ(0xFB, bytes[0x07]);
// Clean slate code.
writer->PutNext({0x0004U, 0x000CU});
EXPECT_EQ(0x00, bytes[0x04]); // 08030004: BLX 0803000C ; A24
EXPECT_EQ(0x00, bytes[0x05]);
EXPECT_EQ(0x00, bytes[0x06]);
EXPECT_EQ(0xFA, bytes[0x07]);
}
TEST(Rel32UtilsTest, ArmCopyDisp_AArch32) {
std::vector<uint8_t> expect_fail;
// Successful A24.
ArmCopyDispFun copier_A24 =
ArmCopyDisp<AArch32Rel32Translator::AddrTraits_A24>;
CheckCopy({0x12, 0x34, 0x56, 0xEB}, // 00000100: BL 0158D150
{0xA0, 0xC0, 0x0E, 0x2A}, // 00000100: BCS 003B0388
{0x12, 0x34, 0x56, 0x2A}, // 00000100: BCS 0158D150
{0xA0, 0xC0, 0x0E, 0xEB}, // 00000100: BL 003B0388
copier_A24);
// Successful T8.
ArmCopyDispFun copier_T8 = ArmCopyDisp<AArch32Rel32Translator::AddrTraits_T8>;
CheckCopy({0x12, 0xD5}, // 00000100: BPL 00000128
{0xAB, 0xD8}, // 00000100: BHI 0000005A
{0x12, 0xD8}, // 00000100: BHI 00000128
{0xAB, 0xD5}, // 00000100: BPL 0000005A
copier_T8);
// Successful T11.
ArmCopyDispFun copier_T11 =
ArmCopyDisp<AArch32Rel32Translator::AddrTraits_T11>;
CheckCopy({0xF5, 0xE0}, // 00000100: B 000002EE
{0x12, 0xE7}, // 00000100: B FFFFFF28
{0xF5, 0xE0}, // 00000100: B 000002EE
{0x12, 0xE7}, // 00000100: B FFFFFF28
copier_T11);
// Failure if wrong copier is used.
CheckCopy(expect_fail, expect_fail, {0xF5, 0xE0}, {0x12, 0xE7}, copier_T8);
// Successful T20.
ArmCopyDispFun copier_T20 =
ArmCopyDisp<AArch32Rel32Translator::AddrTraits_T20>;
CheckCopy({0x41, 0xF2, 0xA5, 0x88}, // 00000100: BLS.W 0008124E
{0x04, 0xF3, 0x3C, 0xA2}, // 00000100: BGT.W 0004457C
{0x01, 0xF3, 0xA5, 0x88}, // 00000100: BGT.W 0008124E
{0x44, 0xF2, 0x3C, 0xA2}, // 00000100: BLS.W 0004457C
copier_T20);
CheckCopy({0x7F, 0xF6, 0xFF, 0xAF}, // 00000100: BLS.W 00000102
{0x00, 0xF3, 0x00, 0x80}, // 00000100: BGT.W 00000104
{0x3F, 0xF7, 0xFF, 0xAF}, // 00000100: BGT.W 00000102
{0x40, 0xF2, 0x00, 0x80}, // 00000100: BLS.W 00000104
copier_T20);
// Failure if wrong copier is used.
CheckCopy(expect_fail, expect_fail, {0x41, 0xF2, 0xA5, 0x88},
{0x84, 0xF3, 0x3C, 0xA2}, copier_A24);
// T24: Mix B encoding T4 and BL encoding T1.
ArmCopyDispFun copier_T24 =
ArmCopyDisp<AArch32Rel32Translator::AddrTraits_T24>;
CheckCopy({0xFF, 0xF7, 0xFF, 0xFF}, // 00000100: BL 00000102
{0x00, 0xF0, 0x00, 0x90}, // 00000100: B.W 00C00104
{0xFF, 0xF7, 0xFF, 0xBF}, // 00000100: B.W 00000102
{0x00, 0xF0, 0x00, 0xD0}, // 00000100: BL 00C00104
copier_T24);
// Mix B encoding T4 and BLX encoding T2. Note that the forward direction
// fails because B's target is invalid for BLX! It's possible to do "best
// effort" copying to reduce diff -- but right now we're not doing this.
CheckCopy(expect_fail, {0x00, 0xF0, 0x00, 0x90}, // 00000100: B.W 00C00104
{0xFF, 0xF7, 0xFF, 0xBF}, // 00000100: B.W 00000102
{0x00, 0xF0, 0x00, 0xC0}, // 00000100: BLX 00C00104
copier_T24);
// Success if ow B's target is valid for BLX.
CheckCopy({0xFF, 0xF7, 0xFE, 0xEF}, // 00000100: BLX 00000100
{0x00, 0xF0, 0x00, 0x90}, // 00000100: B.W 00C00104
{0xFF, 0xF7, 0xFE, 0xBF}, // 00000100: B.W 00000100
{0x00, 0xF0, 0x00, 0xC0}, // 00000100: BLX 00C00104
copier_T24);
}
TEST(Rel32UtilsTest, Rel32ReaderArm_AArch64) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes = {
0xFF, 0xFF, 0xFF, 0xFF, // 00030000: (Filler)
0xFF, 0xFF, 0xFF, 0xFF, // 00030004: (Filler)
0x02, 0x00, 0x00, 0x14, // 00030008: B 00030010 ; Immd26
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0x25, 0x00, 0x00, 0x35, // 00030010: CBNZ R5,00030014 ; Immd19
0xFF, 0xFF, 0xFF, 0xFF, // 00030014: (Filler)
0xCA, 0xFF, 0xFF, 0x54, // 00030018: BGE 00030010 ; Immd19
0x4C, 0xFF, 0x8F, 0x36, // 0003001C: TBZ X12,#17,00030004 ; Immd14
};
MutableBufferView region(&bytes[0], bytes.size());
// Generate Immd26. We specify rel32 locations directly.
std::deque<offset_t> rel32_locations_Immd26 = {0x0008U};
auto reader1 = std::make_unique<
Rel32ReaderArm<AArch64Rel32Translator::AddrTraits_Immd26>>(
translator, region, rel32_locations_Immd26, 0x0000U, 0x0020U);
CheckReader({{0x0008U, 0x0010U}}, std::move(reader1));
// Generate Immd19.
std::deque<offset_t> rel32_locations_Immd19 = {0x0010U, 0x0018U};
auto reader2 = std::make_unique<
Rel32ReaderArm<AArch64Rel32Translator::AddrTraits_Immd19>>(
translator, region, rel32_locations_Immd19, 0x0000U, 0x0020U);
CheckReader({{0x0010U, 0x0014U}, {0x0018U, 0x0010U}}, std::move(reader2));
// Generate Immd14.
std::deque<offset_t> rel32_locations_Immd14 = {0x001CU};
auto reader3 = std::make_unique<
Rel32ReaderArm<AArch64Rel32Translator::AddrTraits_Immd14>>(
translator, region, rel32_locations_Immd14, 0x0000U, 0x0020U);
CheckReader({{0x001CU, 0x0004U}}, std::move(reader3));
}
TEST(Rel32UtilsTest, Rel32WriterArm_AArch64) {
constexpr offset_t kTestImageSize = 0x00100000U;
constexpr rva_t kRvaBegin = 0x00030000U;
TestAddressTranslator translator(kTestImageSize, kRvaBegin);
std::vector<uint8_t> bytes = {
0xFF, 0xFF, 0xFF, 0xFF, // 00030000: (Filler)
0xFF, 0xFF, 0xFF, 0xFF, // 00030004: (Filler)
0x02, 0x00, 0x00, 0x14, // 00030008: B 00030010 ; Immd26
0xFF, 0xFF, 0xFF, 0xFF, // 0003000C: (Filler)
0x25, 0x00, 0x00, 0x35, // 00030010: CBNZ R5,00030014 ; Immd19
0xFF, 0xFF, 0xFF, 0xFF, // 00030014: (Filler)
0xCA, 0xFF, 0xFF, 0x54, // 00030018: BGE 00030010 ; Immd19
0x4C, 0xFF, 0x8F, 0x36, // 0003001C: TBZ X12,#17,00030004 ; Immd14
};
MutableBufferView region(&bytes[0], bytes.size());
auto writer1 = std::make_unique<
Rel32WriterArm<AArch64Rel32Translator::AddrTraits_Immd26>>(translator,
region);
writer1->PutNext({0x0008U, 0x0000U});
EXPECT_EQ(0xFE, bytes[0x08]); // 00030008: B 00030000 ; Immd26
EXPECT_EQ(0xFF, bytes[0x09]);
EXPECT_EQ(0xFF, bytes[0x0A]);
EXPECT_EQ(0x17, bytes[0x0B]);
auto writer2 = std::make_unique<
Rel32WriterArm<AArch64Rel32Translator::AddrTraits_Immd19>>(translator,
region);
writer2->PutNext({0x0010U, 0x0000U});
EXPECT_EQ(0x85, bytes[0x10]); // 00030010: CBNZ R5,00030000 ; Immd19
EXPECT_EQ(0xFF, bytes[0x11]);
EXPECT_EQ(0xFF, bytes[0x12]);
EXPECT_EQ(0x35, bytes[0x13]);
writer2->PutNext({0x0018U, 0x001CU});
EXPECT_EQ(0x2A, bytes[0x18]); // 00030018: BGE 0003001C ; Immd19
EXPECT_EQ(0x00, bytes[0x19]);
EXPECT_EQ(0x00, bytes[0x1A]);
EXPECT_EQ(0x54, bytes[0x1B]);
auto writer3 = std::make_unique<
Rel32WriterArm<AArch64Rel32Translator::AddrTraits_Immd14>>(translator,
region);
writer3->PutNext({0x001CU, 0x0010U});
EXPECT_EQ(0xAC, bytes[0x1C]); // 0003001C: TBZ X12,#17,00030010 ; Immd14
EXPECT_EQ(0xFF, bytes[0x1D]);
EXPECT_EQ(0x8F, bytes[0x1E]);
EXPECT_EQ(0x36, bytes[0x1F]);
}
TEST(Rel32UtilsTest, ArmCopyDisp_AArch64) {
std::vector<uint8_t> expect_fail;
// Successful Imm26.
ArmCopyDispFun copier_Immd26 =
ArmCopyDisp<AArch64Rel32Translator::AddrTraits_Immd26>;
CheckCopy({0x12, 0x34, 0x56, 0x94}, // 00000100: BL 0158D148
{0xA1, 0xC0, 0x0E, 0x17}, // 00000100: B FC3B0384
{0x12, 0x34, 0x56, 0x14}, // 00000100: B 0158D148
{0xA1, 0xC0, 0x0E, 0x97}, // 00000100: BL FC3B0384
copier_Immd26);
// Successful Imm19.
ArmCopyDispFun copier_Immd19 =
ArmCopyDisp<AArch64Rel32Translator::AddrTraits_Immd19>;
CheckCopy({0x24, 0x12, 0x34, 0x54}, // 00000100: BMI 00068344
{0xD7, 0xA5, 0xFC, 0xB4}, // 00000100: CBZ X23,FFFF95B8
{0x37, 0x12, 0x34, 0xB4}, // 00000100: CBZ X23,00068344
{0xC4, 0xA5, 0xFC, 0x54}, // 00000100: BMI FFFF95B8
copier_Immd19);
// Successful Imm14.
ArmCopyDispFun copier_Immd14 =
ArmCopyDisp<AArch64Rel32Translator::AddrTraits_Immd14>;
CheckCopy({0x00, 0x00, 0x00, 0x36}, // 00000100: TBZ X0,#0,00000100
{0xFF, 0xFF, 0xFF, 0xB7}, // 00000100: TBNZ ZR,#63,000000FC
{0x1F, 0x00, 0xF8, 0xB7}, // 00000100: TBNZ ZR,#63,00000100
{0xE0, 0xFF, 0x07, 0x36}, // 00000100: TBZ X0,#0,000000FC
copier_Immd14);
// Failure if wrong copier is used.
CheckCopy(expect_fail, expect_fail, {0x1F, 0x00, 0xF8, 0xB7},
{0xE0, 0xFF, 0x07, 0x36}, copier_Immd26);
}
} // namespace zucchini