blob: baf4c5319074bcbafd443073f3e985b2885a50a1 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_RS_BUILD_FOR_HOST
#include "rsContext.h"
#include <GLES/gl.h>
#include <GLES2/gl2.h>
#include <GLES/glext.h>
#else
#include "rsContextHostStub.h"
#include <OpenGL/gl.h>
#include <OpenGl/glext.h>
#endif
using namespace android;
using namespace android::renderscript;
Mesh::Mesh(Context *rsc) : ObjectBase(rsc) {
mPrimitives = NULL;
mPrimitivesCount = 0;
mVertexBuffers = NULL;
mVertexBufferCount = 0;
mAttribs = NULL;
mAttribAllocationIndex = NULL;
mAttribCount = 0;
}
Mesh::~Mesh() {
if (mVertexBuffers) {
delete[] mVertexBuffers;
}
if (mPrimitives) {
for (uint32_t i = 0; i < mPrimitivesCount; i ++) {
delete mPrimitives[i];
}
delete[] mPrimitives;
}
if (mAttribs) {
delete[] mAttribs;
delete[] mAttribAllocationIndex;
}
}
bool Mesh::isValidGLComponent(const Element *elem, uint32_t fieldIdx) {
// Do not create attribs for padding
if (elem->getFieldName(fieldIdx)[0] == '#') {
return false;
}
// Only GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED, GL_FLOAT are accepted.
// Filter rs types accordingly
RsDataType dt = elem->getField(fieldIdx)->getComponent().getType();
if (dt != RS_TYPE_FLOAT_32 && dt != RS_TYPE_UNSIGNED_8 &&
dt != RS_TYPE_UNSIGNED_16 && dt != RS_TYPE_SIGNED_8 &&
dt != RS_TYPE_SIGNED_16) {
return false;
}
// Now make sure they are not arrays
uint32_t arraySize = elem->getFieldArraySize(fieldIdx);
if (arraySize != 1) {
return false;
}
return true;
}
void Mesh::initVertexAttribs() {
// Count the number of gl attrs to initialize
mAttribCount = 0;
for (uint32_t ct=0; ct < mVertexBufferCount; ct++) {
const Element *elem = mVertexBuffers[ct]->getType()->getElement();
for (uint32_t ct=0; ct < elem->getFieldCount(); ct++) {
if (isValidGLComponent(elem, ct)) {
mAttribCount ++;
}
}
}
if (mAttribs) {
delete [] mAttribs;
delete [] mAttribAllocationIndex;
mAttribs = NULL;
mAttribAllocationIndex = NULL;
}
if (!mAttribCount) {
return;
}
mAttribs = new VertexArray::Attrib[mAttribCount];
mAttribAllocationIndex = new uint32_t[mAttribCount];
uint32_t userNum = 0;
for (uint32_t ct=0; ct < mVertexBufferCount; ct++) {
const Element *elem = mVertexBuffers[ct]->getType()->getElement();
uint32_t stride = elem->getSizeBytes();
for (uint32_t fieldI=0; fieldI < elem->getFieldCount(); fieldI++) {
const Component &c = elem->getField(fieldI)->getComponent();
if (!isValidGLComponent(elem, fieldI)) {
continue;
}
mAttribs[userNum].size = c.getVectorSize();
mAttribs[userNum].offset = elem->getFieldOffsetBytes(fieldI);
mAttribs[userNum].type = c.getGLType();
mAttribs[userNum].normalized = c.getType() != RS_TYPE_FLOAT_32;//c.getIsNormalized();
mAttribs[userNum].stride = stride;
String8 tmp(RS_SHADER_ATTR);
tmp.append(elem->getFieldName(fieldI));
mAttribs[userNum].name.setTo(tmp.string());
// Remember which allocation this attribute came from
mAttribAllocationIndex[userNum] = ct;
userNum ++;
}
}
}
void Mesh::render(Context *rsc) const {
for (uint32_t ct = 0; ct < mPrimitivesCount; ct ++) {
renderPrimitive(rsc, ct);
}
}
void Mesh::renderPrimitive(Context *rsc, uint32_t primIndex) const {
if (primIndex >= mPrimitivesCount) {
LOGE("Invalid primitive index");
return;
}
Primitive_t *prim = mPrimitives[primIndex];
if (prim->mIndexBuffer.get()) {
renderPrimitiveRange(rsc, primIndex, 0, prim->mIndexBuffer->getType()->getDimX());
return;
}
renderPrimitiveRange(rsc, primIndex, 0, mVertexBuffers[0]->getType()->getDimX());
}
void Mesh::renderPrimitiveRange(Context *rsc, uint32_t primIndex, uint32_t start, uint32_t len) const {
if (len < 1 || primIndex >= mPrimitivesCount || mAttribCount == 0) {
LOGE("Invalid mesh or parameters");
return;
}
rsc->checkError("Mesh::renderPrimitiveRange 1");
for (uint32_t ct=0; ct < mVertexBufferCount; ct++) {
mVertexBuffers[ct]->uploadCheck(rsc);
}
// update attributes with either buffer information or data ptr based on their current state
for (uint32_t ct=0; ct < mAttribCount; ct++) {
uint32_t allocIndex = mAttribAllocationIndex[ct];
Allocation *alloc = mVertexBuffers[allocIndex].get();
if (alloc->getIsBufferObject()) {
mAttribs[ct].buffer = alloc->getBufferObjectID();
mAttribs[ct].ptr = NULL;
} else {
mAttribs[ct].buffer = 0;
mAttribs[ct].ptr = (const uint8_t*)alloc->getPtr();
}
}
VertexArray va(mAttribs, mAttribCount);
va.setupGL2(rsc, &rsc->mStateVertexArray, &rsc->mShaderCache);
rsc->checkError("Mesh::renderPrimitiveRange 2");
Primitive_t *prim = mPrimitives[primIndex];
if (prim->mIndexBuffer.get()) {
prim->mIndexBuffer->uploadCheck(rsc);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, prim->mIndexBuffer->getBufferObjectID());
glDrawElements(prim->mGLPrimitive, len, GL_UNSIGNED_SHORT, (uint16_t *)(start * 2));
} else {
glDrawArrays(prim->mGLPrimitive, start, len);
}
rsc->checkError("Mesh::renderPrimitiveRange");
}
void Mesh::uploadAll(Context *rsc) {
for (uint32_t ct = 0; ct < mVertexBufferCount; ct ++) {
if (mVertexBuffers[ct].get()) {
mVertexBuffers[ct]->deferedUploadToBufferObject(rsc);
}
}
for (uint32_t ct = 0; ct < mPrimitivesCount; ct ++) {
if (mPrimitives[ct]->mIndexBuffer.get()) {
mPrimitives[ct]->mIndexBuffer->deferedUploadToBufferObject(rsc);
}
}
}
void Mesh::updateGLPrimitives() {
for (uint32_t i = 0; i < mPrimitivesCount; i ++) {
switch (mPrimitives[i]->mPrimitive) {
case RS_PRIMITIVE_POINT: mPrimitives[i]->mGLPrimitive = GL_POINTS; break;
case RS_PRIMITIVE_LINE: mPrimitives[i]->mGLPrimitive = GL_LINES; break;
case RS_PRIMITIVE_LINE_STRIP: mPrimitives[i]->mGLPrimitive = GL_LINE_STRIP; break;
case RS_PRIMITIVE_TRIANGLE: mPrimitives[i]->mGLPrimitive = GL_TRIANGLES; break;
case RS_PRIMITIVE_TRIANGLE_STRIP: mPrimitives[i]->mGLPrimitive = GL_TRIANGLE_STRIP; break;
case RS_PRIMITIVE_TRIANGLE_FAN: mPrimitives[i]->mGLPrimitive = GL_TRIANGLE_FAN; break;
}
}
}
void Mesh::serialize(OStream *stream) const {
// Need to identify ourselves
stream->addU32((uint32_t)getClassId());
String8 name(getName());
stream->addString(&name);
// Store number of vertex streams
stream->addU32(mVertexBufferCount);
for (uint32_t vCount = 0; vCount < mVertexBufferCount; vCount ++) {
mVertexBuffers[vCount]->serialize(stream);
}
stream->addU32(mPrimitivesCount);
// Store the primitives
for (uint32_t pCount = 0; pCount < mPrimitivesCount; pCount ++) {
Primitive_t * prim = mPrimitives[pCount];
stream->addU8((uint8_t)prim->mPrimitive);
if (prim->mIndexBuffer.get()) {
stream->addU32(1);
prim->mIndexBuffer->serialize(stream);
} else {
stream->addU32(0);
}
}
}
Mesh *Mesh::createFromStream(Context *rsc, IStream *stream) {
// First make sure we are reading the correct object
RsA3DClassID classID = (RsA3DClassID)stream->loadU32();
if (classID != RS_A3D_CLASS_ID_MESH) {
LOGE("mesh loading skipped due to invalid class id");
return NULL;
}
Mesh * mesh = new Mesh(rsc);
String8 name;
stream->loadString(&name);
mesh->setName(name.string(), name.size());
mesh->mVertexBufferCount = stream->loadU32();
if (mesh->mVertexBufferCount) {
mesh->mVertexBuffers = new ObjectBaseRef<Allocation>[mesh->mVertexBufferCount];
for (uint32_t vCount = 0; vCount < mesh->mVertexBufferCount; vCount ++) {
Allocation *vertexAlloc = Allocation::createFromStream(rsc, stream);
mesh->mVertexBuffers[vCount].set(vertexAlloc);
}
}
mesh->mPrimitivesCount = stream->loadU32();
if (mesh->mPrimitivesCount) {
mesh->mPrimitives = new Primitive_t *[mesh->mPrimitivesCount];
// load all primitives
for (uint32_t pCount = 0; pCount < mesh->mPrimitivesCount; pCount ++) {
Primitive_t * prim = new Primitive_t;
mesh->mPrimitives[pCount] = prim;
prim->mPrimitive = (RsPrimitive)stream->loadU8();
// Check to see if the index buffer was stored
uint32_t isIndexPresent = stream->loadU32();
if (isIndexPresent) {
Allocation *indexAlloc = Allocation::createFromStream(rsc, stream);
prim->mIndexBuffer.set(indexAlloc);
}
}
}
mesh->updateGLPrimitives();
mesh->initVertexAttribs();
mesh->uploadAll(rsc);
return mesh;
}
void Mesh::computeBBox() {
float *posPtr = NULL;
uint32_t vectorSize = 0;
uint32_t stride = 0;
uint32_t numVerts = 0;
// First we need to find the position ptr and stride
for (uint32_t ct=0; ct < mVertexBufferCount; ct++) {
const Type *bufferType = mVertexBuffers[ct]->getType();
const Element *bufferElem = bufferType->getElement();
for (uint32_t ct=0; ct < bufferElem->getFieldCount(); ct++) {
if (strcmp(bufferElem->getFieldName(ct), "position") == 0) {
vectorSize = bufferElem->getField(ct)->getComponent().getVectorSize();
stride = bufferElem->getSizeBytes() / sizeof(float);
uint32_t offset = bufferElem->getFieldOffsetBytes(ct);
posPtr = (float*)((uint8_t*)mVertexBuffers[ct]->getPtr() + offset);
numVerts = bufferType->getDimX();
break;
}
}
if (posPtr) {
break;
}
}
mBBoxMin[0] = mBBoxMin[1] = mBBoxMin[2] = 1e6;
mBBoxMax[0] = mBBoxMax[1] = mBBoxMax[2] = -1e6;
if (!posPtr) {
LOGE("Unable to compute bounding box");
mBBoxMin[0] = mBBoxMin[1] = mBBoxMin[2] = 0.0f;
mBBoxMax[0] = mBBoxMax[1] = mBBoxMax[2] = 0.0f;
return;
}
for (uint32_t i = 0; i < numVerts; i ++) {
for (uint32_t v = 0; v < vectorSize; v ++) {
mBBoxMin[v] = rsMin(mBBoxMin[v], posPtr[v]);
mBBoxMax[v] = rsMax(mBBoxMax[v], posPtr[v]);
}
posPtr += stride;
}
}
MeshContext::MeshContext() {
}
MeshContext::~MeshContext() {
}
namespace android {
namespace renderscript {
RsMesh rsi_MeshCreate(Context *rsc, uint32_t vtxCount, uint32_t idxCount) {
Mesh *sm = new Mesh(rsc);
sm->incUserRef();
sm->mPrimitivesCount = idxCount;
sm->mPrimitives = new Mesh::Primitive_t *[sm->mPrimitivesCount];
for (uint32_t ct = 0; ct < idxCount; ct ++) {
sm->mPrimitives[ct] = new Mesh::Primitive_t;
}
sm->mVertexBufferCount = vtxCount;
sm->mVertexBuffers = new ObjectBaseRef<Allocation>[vtxCount];
return sm;
}
void rsi_MeshBindVertex(Context *rsc, RsMesh mv, RsAllocation va, uint32_t slot) {
Mesh *sm = static_cast<Mesh *>(mv);
rsAssert(slot < sm->mVertexBufferCount);
sm->mVertexBuffers[slot].set((Allocation *)va);
}
void rsi_MeshBindIndex(Context *rsc, RsMesh mv, RsAllocation va, uint32_t primType, uint32_t slot) {
Mesh *sm = static_cast<Mesh *>(mv);
rsAssert(slot < sm->mPrimitivesCount);
sm->mPrimitives[slot]->mIndexBuffer.set((Allocation *)va);
sm->mPrimitives[slot]->mPrimitive = (RsPrimitive)primType;
sm->updateGLPrimitives();
}
void rsi_MeshInitVertexAttribs(Context *rsc, RsMesh mv) {
Mesh *sm = static_cast<Mesh *>(mv);
sm->initVertexAttribs();
}
}}
void rsaMeshGetVertexBufferCount(RsContext con, RsMesh mv, int32_t *numVtx) {
Mesh *sm = static_cast<Mesh *>(mv);
*numVtx = sm->mVertexBufferCount;
}
void rsaMeshGetIndexCount(RsContext con, RsMesh mv, int32_t *numIdx) {
Mesh *sm = static_cast<Mesh *>(mv);
*numIdx = sm->mPrimitivesCount;
}
void rsaMeshGetVertices(RsContext con, RsMesh mv, RsAllocation *vtxData, uint32_t vtxDataCount) {
Mesh *sm = static_cast<Mesh *>(mv);
rsAssert(vtxDataCount == sm->mVertexBufferCount);
for (uint32_t ct = 0; ct < vtxDataCount; ct ++) {
vtxData[ct] = sm->mVertexBuffers[ct].get();
sm->mVertexBuffers[ct]->incUserRef();
}
}
void rsaMeshGetIndices(RsContext con, RsMesh mv, RsAllocation *va, uint32_t *primType, uint32_t idxDataCount) {
Mesh *sm = static_cast<Mesh *>(mv);
rsAssert(idxDataCount == sm->mPrimitivesCount);
for (uint32_t ct = 0; ct < idxDataCount; ct ++) {
va[ct] = sm->mPrimitives[ct]->mIndexBuffer.get();
primType[ct] = sm->mPrimitives[ct]->mPrimitive;
if (sm->mPrimitives[ct]->mIndexBuffer.get()) {
sm->mPrimitives[ct]->mIndexBuffer->incUserRef();
}
}
}