blob: ff3fad6055e13c1f141de5a563288ebb1f7a7255 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "libprotoutil"
#include <cinttypes>
#include <type_traits>
#include <android-base/file.h>
#include <android/util/protobuf.h>
#include <android/util/ProtoOutputStream.h>
#include <cutils/log.h>
namespace android {
namespace util {
ProtoOutputStream::ProtoOutputStream()
:mBuffer(),
mCopyBegin(0),
mCompact(false),
mDepth(0),
mObjectId(0),
mExpectedObjectToken(UINT64_C(-1))
{
}
ProtoOutputStream::~ProtoOutputStream()
{
}
void
ProtoOutputStream::clear()
{
mBuffer.clear();
mCopyBegin = 0;
mCompact = false;
mDepth = 0;
mObjectId = 0;
mExpectedObjectToken = UINT64_C(-1);
}
template<typename T>
bool
ProtoOutputStream::internalWrite(uint64_t fieldId, T val, const char* typeName)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case FIELD_TYPE_DOUBLE: writeDoubleImpl(id, (double)val); break;
case FIELD_TYPE_FLOAT: writeFloatImpl(id, (float)val); break;
case FIELD_TYPE_INT64: writeInt64Impl(id, (int64_t)val); break;
case FIELD_TYPE_UINT64: writeUint64Impl(id, (uint64_t)val); break;
case FIELD_TYPE_INT32: writeInt32Impl(id, (int32_t)val); break;
case FIELD_TYPE_FIXED64: writeFixed64Impl(id, (uint64_t)val); break;
case FIELD_TYPE_FIXED32: writeFixed32Impl(id, (uint32_t)val); break;
case FIELD_TYPE_UINT32: writeUint32Impl(id, (uint32_t)val); break;
case FIELD_TYPE_SFIXED32: writeSFixed32Impl(id, (int32_t)val); break;
case FIELD_TYPE_SFIXED64: writeSFixed64Impl(id, (int64_t)val); break;
case FIELD_TYPE_SINT32: writeZigzagInt32Impl(id, (int32_t)val); break;
case FIELD_TYPE_SINT64: writeZigzagInt64Impl(id, (int64_t)val); break;
case FIELD_TYPE_ENUM:
if (std::is_integral<T>::value) {
writeEnumImpl(id, (int)val);
} else {
goto unsupported;
}
break;
case FIELD_TYPE_BOOL:
if (std::is_integral<T>::value) {
writeBoolImpl(id, val != 0);
} else {
goto unsupported;
}
break;
default:
goto unsupported;
}
return true;
unsupported:
ALOGW("Field type %" PRIu64 " is not supported when writing %s val.",
(fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT, typeName);
return false;
}
bool
ProtoOutputStream::write(uint64_t fieldId, double val)
{
return internalWrite(fieldId, val, "double");
}
bool
ProtoOutputStream::write(uint64_t fieldId, float val)
{
return internalWrite(fieldId, val, "float");
}
bool
ProtoOutputStream::write(uint64_t fieldId, int val)
{
return internalWrite(fieldId, val, "int");
}
bool
ProtoOutputStream::write(uint64_t fieldId, long long val)
{
return internalWrite(fieldId, val, "long long");
}
bool
ProtoOutputStream::write(uint64_t fieldId, bool val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case FIELD_TYPE_BOOL:
writeBoolImpl(id, val);
return true;
default:
ALOGW("Field type %" PRIu64 " is not supported when writing bool val.",
(fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT);
return false;
}
}
bool
ProtoOutputStream::write(uint64_t fieldId, std::string val)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case FIELD_TYPE_STRING:
writeUtf8StringImpl(id, val.c_str(), val.size());
return true;
default:
ALOGW("Field type %" PRIu64 " is not supported when writing string val.",
(fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT);
return false;
}
}
bool
ProtoOutputStream::write(uint64_t fieldId, const char* val, size_t size)
{
if (mCompact) return false;
const uint32_t id = (uint32_t)fieldId;
switch (fieldId & FIELD_TYPE_MASK) {
case FIELD_TYPE_STRING:
case FIELD_TYPE_BYTES:
writeUtf8StringImpl(id, val, size);
return true;
case FIELD_TYPE_MESSAGE:
// can directly write valid format of message bytes into ProtoOutputStream without calling start/end
writeMessageBytesImpl(id, val, size);
return true;
default:
ALOGW("Field type %" PRIu64 " is not supported when writing char[] val.",
(fieldId & FIELD_TYPE_MASK) >> FIELD_TYPE_SHIFT);
return false;
}
}
/**
* Make a token.
* Bits 61-63 - tag size (So we can go backwards later if the object had not data)
* - 3 bits, max value 7, max value needed 5
* Bit 60 - true if the object is repeated
* Bits 59-51 - depth (For error checking)
* - 9 bits, max value 511, when checking, value is masked (if we really
* are more than 511 levels deep)
* Bits 32-50 - objectId (For error checking)
* - 19 bits, max value 524,287. that's a lot of objects. IDs will wrap
* because of the overflow, and only the tokens are compared.
* Bits 0-31 - offset of the first size field in the buffer.
*/
static uint64_t
makeToken(uint32_t tagSize, bool repeated, uint32_t depth, uint32_t objectId, size_t sizePos) {
return ((UINT64_C(0x07) & (uint64_t)tagSize) << 61)
| (repeated ? (UINT64_C(1) << 60) : 0)
| (UINT64_C(0x01ff) & (uint64_t)depth) << 51
| (UINT64_C(0x07ffff) & (uint64_t)objectId) << 32
| (UINT64_C(0x0ffffffff) & (uint64_t)sizePos);
}
/**
* Get the encoded tag size from the token.
*/
static uint32_t getTagSizeFromToken(uint64_t token) {
return 0x7 & (token >> 61);
}
/**
* Get the nesting depth of startObject calls from the token.
*/
static uint32_t getDepthFromToken(uint64_t token) {
return 0x01ff & (token >> 51);
}
/**
* Get the location of the childRawSize (the first 32 bit size field) in this object.
*/
static uint32_t getSizePosFromToken(uint64_t token) {
return (uint32_t)token;
}
uint64_t
ProtoOutputStream::start(uint64_t fieldId)
{
if ((fieldId & FIELD_TYPE_MASK) != FIELD_TYPE_MESSAGE) {
ALOGE("Can't call start for non-message type field: 0x%" PRIx64, fieldId);
return 0;
}
uint32_t id = (uint32_t)fieldId;
size_t prevPos = mBuffer.wp()->pos();
mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED);
size_t sizePos = mBuffer.wp()->pos();
mDepth++;
mObjectId++;
mBuffer.writeRawFixed64(mExpectedObjectToken); // push previous token into stack.
mExpectedObjectToken = makeToken(sizePos - prevPos,
(bool)(fieldId & FIELD_COUNT_REPEATED), mDepth, mObjectId, sizePos);
return mExpectedObjectToken;
}
void
ProtoOutputStream::end(uint64_t token)
{
if (token != mExpectedObjectToken) {
ALOGE("Unexpected token: 0x%" PRIx64 ", should be 0x%" PRIx64, token, mExpectedObjectToken);
mDepth = UINT32_C(-1); // make depth invalid
return;
}
uint32_t depth = getDepthFromToken(token);
if (depth != (mDepth & 0x01ff)) {
ALOGE("Unexpected depth: %" PRIu32 ", should be %" PRIu32, depth, mDepth);
mDepth = UINT32_C(-1); // make depth invalid
return;
}
mDepth--;
uint32_t sizePos = getSizePosFromToken(token);
// number of bytes written in this start-end session.
int childRawSize = mBuffer.wp()->pos() - sizePos - 8;
// retrieve the old token from stack.
mBuffer.ep()->rewind()->move(sizePos);
mExpectedObjectToken = mBuffer.readRawFixed64();
// If raw size is larger than 0, write the negative value here to indicate a compact is needed.
if (childRawSize > 0) {
mBuffer.editRawFixed32(sizePos, -childRawSize);
mBuffer.editRawFixed32(sizePos+4, -1);
} else {
// reset wp which erase the header tag of the message when its size is 0.
mBuffer.wp()->rewind()->move(sizePos - getTagSizeFromToken(token));
}
}
size_t
ProtoOutputStream::bytesWritten()
{
return mBuffer.size();
}
bool
ProtoOutputStream::compact() {
if (mCompact) return true;
if (mDepth != 0) {
ALOGE("Can't compact when depth(%" PRIu32 ") is not zero. Missing or extra calls to end.", mDepth);
return false;
}
// record the size of the original buffer.
size_t rawBufferSize = mBuffer.size();
if (rawBufferSize == 0) return true; // nothing to do if the buffer is empty;
// reset edit pointer and recursively compute encoded size of messages.
mBuffer.ep()->rewind();
if (editEncodedSize(rawBufferSize) == 0) {
ALOGE("Failed to editEncodedSize.");
return false;
}
// reset both edit pointer and write pointer, and compact recursively.
mBuffer.ep()->rewind();
mBuffer.wp()->rewind();
if (!compactSize(rawBufferSize)) {
ALOGE("Failed to compactSize.");
return false;
}
// copy the reset to the buffer.
if (mCopyBegin < rawBufferSize) {
mBuffer.copy(mCopyBegin, rawBufferSize - mCopyBegin);
}
// mark true means it is not legal to write to this ProtoOutputStream anymore
mCompact = true;
return true;
}
/**
* First compaction pass. Iterate through the data, and fill in the
* nested object sizes so the next pass can compact them.
*/
size_t
ProtoOutputStream::editEncodedSize(size_t rawSize)
{
size_t objectStart = mBuffer.ep()->pos();
size_t objectEnd = objectStart + rawSize;
size_t encodedSize = 0;
int childRawSize, childEncodedSize;
size_t childEncodedSizePos;
while (mBuffer.ep()->pos() < objectEnd) {
uint32_t tag = (uint32_t)mBuffer.readRawVarint();
encodedSize += get_varint_size(tag);
switch (read_wire_type(tag)) {
case WIRE_TYPE_VARINT:
do {
encodedSize++;
} while ((mBuffer.readRawByte() & 0x80) != 0);
break;
case WIRE_TYPE_FIXED64:
encodedSize += 8;
mBuffer.ep()->move(8);
break;
case WIRE_TYPE_LENGTH_DELIMITED:
childRawSize = (int)mBuffer.readRawFixed32();
childEncodedSizePos = mBuffer.ep()->pos();
childEncodedSize = (int)mBuffer.readRawFixed32();
if (childRawSize >= 0 && childRawSize == childEncodedSize) {
mBuffer.ep()->move(childRawSize);
} else if (childRawSize < 0 && childEncodedSize == -1){
childEncodedSize = editEncodedSize(-childRawSize);
mBuffer.editRawFixed32(childEncodedSizePos, childEncodedSize);
} else {
ALOGE("Bad raw or encoded values: raw=%d, encoded=%d at %zu",
childRawSize, childEncodedSize, childEncodedSizePos);
return 0;
}
encodedSize += get_varint_size(childEncodedSize) + childEncodedSize;
break;
case WIRE_TYPE_FIXED32:
encodedSize += 4;
mBuffer.ep()->move(4);
break;
default:
ALOGE("Unexpected wire type %d in editEncodedSize at [%zu, %zu]",
read_wire_type(tag), objectStart, objectEnd);
return 0;
}
}
return encodedSize;
}
/**
* Second compaction pass. Iterate through the data, and copy the data
* forward in the buffer, converting the pairs of uint32s into a single
* unsigned varint of the size.
*/
bool
ProtoOutputStream::compactSize(size_t rawSize)
{
size_t objectStart = mBuffer.ep()->pos();
size_t objectEnd = objectStart + rawSize;
int childRawSize, childEncodedSize;
while (mBuffer.ep()->pos() < objectEnd) {
uint32_t tag = (uint32_t)mBuffer.readRawVarint();
switch (read_wire_type(tag)) {
case WIRE_TYPE_VARINT:
while ((mBuffer.readRawByte() & 0x80) != 0) {}
break;
case WIRE_TYPE_FIXED64:
mBuffer.ep()->move(8);
break;
case WIRE_TYPE_LENGTH_DELIMITED:
mBuffer.copy(mCopyBegin, mBuffer.ep()->pos() - mCopyBegin);
childRawSize = (int)mBuffer.readRawFixed32();
childEncodedSize = (int)mBuffer.readRawFixed32();
mCopyBegin = mBuffer.ep()->pos();
// write encoded size to buffer.
mBuffer.writeRawVarint32(childEncodedSize);
if (childRawSize >= 0 && childRawSize == childEncodedSize) {
mBuffer.ep()->move(childEncodedSize);
} else if (childRawSize < 0){
if (!compactSize(-childRawSize)) return false;
} else {
ALOGE("Bad raw or encoded values: raw=%d, encoded=%d",
childRawSize, childEncodedSize);
return false;
}
break;
case WIRE_TYPE_FIXED32:
mBuffer.ep()->move(4);
break;
default:
ALOGE("Unexpected wire type %d in compactSize at [%zu, %zu]",
read_wire_type(tag), objectStart, objectEnd);
return false;
}
}
return true;
}
size_t
ProtoOutputStream::size()
{
if (!compact()) {
ALOGE("compact failed, the ProtoOutputStream data is corrupted!");
return 0;
}
return mBuffer.size();
}
bool
ProtoOutputStream::flush(int fd)
{
if (fd < 0) return false;
if (!compact()) return false;
EncodedBuffer::iterator it = mBuffer.begin();
while (it.readBuffer() != NULL) {
if (!android::base::WriteFully(fd, it.readBuffer(), it.currentToRead())) return false;
it.rp()->move(it.currentToRead());
}
return true;
}
EncodedBuffer::iterator
ProtoOutputStream::data()
{
if (!compact()) {
ALOGE("compact failed, the ProtoOutputStream data is corrupted!");
mBuffer.clear();
}
return mBuffer.begin();
}
void
ProtoOutputStream::writeRawVarint(uint64_t varint)
{
mBuffer.writeRawVarint64(varint);
}
void
ProtoOutputStream::writeLengthDelimitedHeader(uint32_t id, size_t size)
{
mBuffer.writeHeader(id, WIRE_TYPE_LENGTH_DELIMITED);
// reserves 64 bits for length delimited fields, if first field is negative, compact it.
mBuffer.writeRawFixed32(size);
mBuffer.writeRawFixed32(size);
}
void
ProtoOutputStream::writeRawByte(uint8_t byte)
{
mBuffer.writeRawByte(byte);
}
// =========================================================================
// Private functions
/**
* bit_cast
*/
template <class From, class To>
inline To bit_cast(From const &from) {
To to;
memcpy(&to, &from, sizeof(to));
return to;
}
inline void
ProtoOutputStream::writeDoubleImpl(uint32_t id, double val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64(bit_cast<double, uint64_t>(val));
}
inline void
ProtoOutputStream::writeFloatImpl(uint32_t id, float val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32(bit_cast<float, uint32_t>(val));
}
inline void
ProtoOutputStream::writeInt64Impl(uint32_t id, int64_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64(val);
}
inline void
ProtoOutputStream::writeInt32Impl(uint32_t id, int32_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32(val);
}
inline void
ProtoOutputStream::writeUint64Impl(uint32_t id, uint64_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64(val);
}
inline void
ProtoOutputStream::writeUint32Impl(uint32_t id, uint32_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32(val);
}
inline void
ProtoOutputStream::writeFixed64Impl(uint32_t id, uint64_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64(val);
}
inline void
ProtoOutputStream::writeFixed32Impl(uint32_t id, uint32_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32(val);
}
inline void
ProtoOutputStream::writeSFixed64Impl(uint32_t id, int64_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED64);
mBuffer.writeRawFixed64(val);
}
inline void
ProtoOutputStream::writeSFixed32Impl(uint32_t id, int32_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_FIXED32);
mBuffer.writeRawFixed32(val);
}
inline void
ProtoOutputStream::writeZigzagInt64Impl(uint32_t id, int64_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint64((val << 1) ^ (val >> 63));
}
inline void
ProtoOutputStream::writeZigzagInt32Impl(uint32_t id, int32_t val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32((val << 1) ^ (val >> 31));
}
inline void
ProtoOutputStream::writeEnumImpl(uint32_t id, int val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32((uint32_t) val);
}
inline void
ProtoOutputStream::writeBoolImpl(uint32_t id, bool val)
{
mBuffer.writeHeader(id, WIRE_TYPE_VARINT);
mBuffer.writeRawVarint32(val ? 1 : 0);
}
inline void
ProtoOutputStream::writeUtf8StringImpl(uint32_t id, const char* val, size_t size)
{
if (val == NULL) return;
writeLengthDelimitedHeader(id, size);
for (size_t i=0; i<size; i++) {
mBuffer.writeRawByte((uint8_t)val[i]);
}
}
inline void
ProtoOutputStream::writeMessageBytesImpl(uint32_t id, const char* val, size_t size)
{
if (val == NULL) return;
writeLengthDelimitedHeader(id, size);
for (size_t i=0; i<size; i++) {
mBuffer.writeRawByte(val[i]);
}
}
} // util
} // android