| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define ATRACE_TAG ATRACE_TAG_VIEW |
| |
| #include "RenderNode.h" |
| |
| #include <algorithm> |
| |
| #include <SkCanvas.h> |
| #include <algorithm> |
| |
| #include <utils/Trace.h> |
| |
| #include "DamageAccumulator.h" |
| #include "Debug.h" |
| #include "DisplayListOp.h" |
| #include "DisplayListLogBuffer.h" |
| #include "utils/MathUtils.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| void RenderNode::outputLogBuffer(int fd) { |
| DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); |
| if (logBuffer.isEmpty()) { |
| return; |
| } |
| |
| FILE *file = fdopen(fd, "a"); |
| |
| fprintf(file, "\nRecent DisplayList operations\n"); |
| logBuffer.outputCommands(file); |
| |
| String8 cachesLog; |
| Caches::getInstance().dumpMemoryUsage(cachesLog); |
| fprintf(file, "\nCaches:\n%s", cachesLog.string()); |
| fprintf(file, "\n"); |
| |
| fflush(file); |
| } |
| |
| RenderNode::RenderNode() |
| : mDirtyPropertyFields(0) |
| , mNeedsDisplayListDataSync(false) |
| , mDisplayListData(0) |
| , mStagingDisplayListData(0) |
| , mNeedsAnimatorsSync(false) { |
| } |
| |
| RenderNode::~RenderNode() { |
| delete mDisplayListData; |
| delete mStagingDisplayListData; |
| } |
| |
| void RenderNode::setStagingDisplayList(DisplayListData* data) { |
| mNeedsDisplayListDataSync = true; |
| delete mStagingDisplayListData; |
| mStagingDisplayListData = data; |
| if (mStagingDisplayListData) { |
| Caches::getInstance().registerFunctors(mStagingDisplayListData->functorCount); |
| } |
| } |
| |
| /** |
| * This function is a simplified version of replay(), where we simply retrieve and log the |
| * display list. This function should remain in sync with the replay() function. |
| */ |
| void RenderNode::output(uint32_t level) { |
| ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this, |
| getName(), isRenderable()); |
| ALOGD("%*s%s %d", level * 2, "", "Save", |
| SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); |
| |
| properties().debugOutputProperties(level); |
| int flags = DisplayListOp::kOpLogFlag_Recurse; |
| for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { |
| mDisplayListData->displayListOps[i]->output(level, flags); |
| } |
| |
| ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName()); |
| } |
| |
| int RenderNode::getDebugSize() { |
| int size = sizeof(RenderNode); |
| if (mStagingDisplayListData) { |
| size += mStagingDisplayListData->allocator.usedSize(); |
| } |
| if (mDisplayListData && mDisplayListData != mStagingDisplayListData) { |
| size += mDisplayListData->allocator.usedSize(); |
| } |
| return size; |
| } |
| |
| void RenderNode::prepareTree(TreeInfo& info) { |
| ATRACE_CALL(); |
| |
| prepareTreeImpl(info); |
| } |
| |
| static inline void pushNode(RenderNode* self, TreeInfo& info) { |
| if (info.damageAccumulator) { |
| info.damageAccumulator->pushNode(self); |
| } |
| } |
| |
| static inline void popNode(TreeInfo& info) { |
| if (info.damageAccumulator) { |
| info.damageAccumulator->popNode(); |
| } |
| } |
| |
| void RenderNode::damageSelf(TreeInfo& info) { |
| if (info.damageAccumulator && isRenderable() && properties().getAlpha() > 0) { |
| info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight()); |
| } |
| } |
| |
| void RenderNode::prepareTreeImpl(TreeInfo& info) { |
| pushNode(this, info); |
| if (info.mode == TreeInfo::MODE_FULL) { |
| pushStagingChanges(info); |
| evaluateAnimations(info); |
| } else if (info.mode == TreeInfo::MODE_MAYBE_DETACHING) { |
| pushStagingChanges(info); |
| } else if (info.mode == TreeInfo::MODE_RT_ONLY) { |
| evaluateAnimations(info); |
| } |
| prepareSubTree(info, mDisplayListData); |
| popNode(info); |
| } |
| |
| class PushAnimatorsFunctor { |
| public: |
| PushAnimatorsFunctor(RenderNode* target, TreeInfo& info) |
| : mTarget(target), mInfo(info) {} |
| |
| bool operator() (const sp<BaseRenderNodeAnimator>& animator) { |
| animator->setupStartValueIfNecessary(mTarget, mInfo); |
| return animator->isFinished(); |
| } |
| private: |
| RenderNode* mTarget; |
| TreeInfo& mInfo; |
| }; |
| |
| void RenderNode::pushStagingChanges(TreeInfo& info) { |
| // Push the animators first so that setupStartValueIfNecessary() is called |
| // before properties() is trampled by stagingProperties(), as they are |
| // required by some animators. |
| if (mNeedsAnimatorsSync) { |
| mAnimators.resize(mStagingAnimators.size()); |
| std::vector< sp<BaseRenderNodeAnimator> >::iterator it; |
| PushAnimatorsFunctor functor(this, info); |
| // hint: this means copy_if_not() |
| it = std::remove_copy_if(mStagingAnimators.begin(), mStagingAnimators.end(), |
| mAnimators.begin(), functor); |
| mAnimators.resize(std::distance(mAnimators.begin(), it)); |
| } |
| if (mDirtyPropertyFields) { |
| mDirtyPropertyFields = 0; |
| damageSelf(info); |
| popNode(info); |
| mProperties = mStagingProperties; |
| pushNode(this, info); |
| // We could try to be clever and only re-damage if the matrix changed. |
| // However, we don't need to worry about that. The cost of over-damaging |
| // here is only going to be a single additional map rect of this node |
| // plus a rect join(). The parent's transform (and up) will only be |
| // performed once. |
| damageSelf(info); |
| } |
| if (mNeedsDisplayListDataSync) { |
| mNeedsDisplayListDataSync = false; |
| // Do a push pass on the old tree to handle freeing DisplayListData |
| // that are no longer used |
| TreeInfo oldTreeInfo(TreeInfo::MODE_MAYBE_DETACHING); |
| oldTreeInfo.damageAccumulator = info.damageAccumulator; |
| prepareSubTree(oldTreeInfo, mDisplayListData); |
| delete mDisplayListData; |
| mDisplayListData = mStagingDisplayListData; |
| mStagingDisplayListData = 0; |
| damageSelf(info); |
| } |
| } |
| |
| class AnimateFunctor { |
| public: |
| AnimateFunctor(RenderNode* target, TreeInfo& info) |
| : mTarget(target), mInfo(info) {} |
| |
| bool operator() (const sp<BaseRenderNodeAnimator>& animator) { |
| return animator->animate(mTarget, mInfo); |
| } |
| private: |
| RenderNode* mTarget; |
| TreeInfo& mInfo; |
| }; |
| |
| void RenderNode::evaluateAnimations(TreeInfo& info) { |
| if (!mAnimators.size()) return; |
| |
| // TODO: Can we target this better? For now treat it like any other staging |
| // property push and just damage self before and after animators are run |
| |
| damageSelf(info); |
| popNode(info); |
| |
| AnimateFunctor functor(this, info); |
| std::vector< sp<BaseRenderNodeAnimator> >::iterator newEnd; |
| newEnd = std::remove_if(mAnimators.begin(), mAnimators.end(), functor); |
| mAnimators.erase(newEnd, mAnimators.end()); |
| mProperties.updateMatrix(); |
| info.out.hasAnimations |= mAnimators.size(); |
| |
| pushNode(this, info); |
| damageSelf(info); |
| } |
| |
| void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) { |
| if (subtree) { |
| TextureCache& cache = Caches::getInstance().textureCache; |
| info.out.hasFunctors |= subtree->functorCount; |
| // TODO: Fix ownedBitmapResources to not require disabling prepareTextures |
| // and thus falling out of async drawing path. |
| if (subtree->ownedBitmapResources.size()) { |
| info.prepareTextures = false; |
| } |
| for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) { |
| info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]); |
| } |
| for (size_t i = 0; i < subtree->children().size(); i++) { |
| RenderNode* childNode = subtree->children()[i]->mDisplayList; |
| childNode->prepareTreeImpl(info); |
| } |
| } |
| } |
| |
| /* |
| * For property operations, we pass a savecount of 0, since the operations aren't part of the |
| * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in |
| * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount()) |
| */ |
| #define PROPERTY_SAVECOUNT 0 |
| |
| template <class T> |
| void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) { |
| #if DEBUG_DISPLAY_LIST |
| properties().debugOutputProperties(handler.level() + 1); |
| #endif |
| if (properties().getLeft() != 0 || properties().getTop() != 0) { |
| renderer.translate(properties().getLeft(), properties().getTop()); |
| } |
| if (properties().getStaticMatrix()) { |
| renderer.concatMatrix(*properties().getStaticMatrix()); |
| } else if (properties().getAnimationMatrix()) { |
| renderer.concatMatrix(*properties().getAnimationMatrix()); |
| } |
| if (properties().hasTransformMatrix()) { |
| if (properties().isTransformTranslateOnly()) { |
| renderer.translate(properties().getTranslationX(), properties().getTranslationY()); |
| } else { |
| renderer.concatMatrix(*properties().getTransformMatrix()); |
| } |
| } |
| bool clipToBoundsNeeded = properties().getCaching() ? false : properties().getClipToBounds(); |
| if (properties().getAlpha() < 1) { |
| if (properties().getCaching()) { |
| renderer.setOverrideLayerAlpha(properties().getAlpha()); |
| } else if (!properties().getHasOverlappingRendering()) { |
| renderer.scaleAlpha(properties().getAlpha()); |
| } else { |
| // TODO: should be able to store the size of a DL at record time and not |
| // have to pass it into this call. In fact, this information might be in the |
| // location/size info that we store with the new native transform data. |
| int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag; |
| if (clipToBoundsNeeded) { |
| saveFlags |= SkCanvas::kClipToLayer_SaveFlag; |
| clipToBoundsNeeded = false; // clipping done by saveLayer |
| } |
| |
| SaveLayerOp* op = new (handler.allocator()) SaveLayerOp( |
| 0, 0, properties().getWidth(), properties().getHeight(), |
| properties().getAlpha() * 255, saveFlags); |
| handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } |
| } |
| if (clipToBoundsNeeded) { |
| ClipRectOp* op = new (handler.allocator()) ClipRectOp( |
| 0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op); |
| handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } |
| |
| if (CC_UNLIKELY(properties().hasClippingPath())) { |
| ClipPathOp* op = new (handler.allocator()) ClipPathOp( |
| properties().getClippingPath(), properties().getClippingPathOp()); |
| handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } |
| } |
| |
| /** |
| * Apply property-based transformations to input matrix |
| * |
| * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4 |
| * matrix computation instead of the Skia 3x3 matrix + camera hackery. |
| */ |
| void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) { |
| if (properties().getLeft() != 0 || properties().getTop() != 0) { |
| matrix.translate(properties().getLeft(), properties().getTop()); |
| } |
| if (properties().getStaticMatrix()) { |
| mat4 stat(*properties().getStaticMatrix()); |
| matrix.multiply(stat); |
| } else if (properties().getAnimationMatrix()) { |
| mat4 anim(*properties().getAnimationMatrix()); |
| matrix.multiply(anim); |
| } |
| |
| bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ()); |
| if (properties().hasTransformMatrix() || applyTranslationZ) { |
| if (properties().isTransformTranslateOnly()) { |
| matrix.translate(properties().getTranslationX(), properties().getTranslationY(), |
| true3dTransform ? properties().getZ() : 0.0f); |
| } else { |
| if (!true3dTransform) { |
| matrix.multiply(*properties().getTransformMatrix()); |
| } else { |
| mat4 true3dMat; |
| true3dMat.loadTranslate( |
| properties().getPivotX() + properties().getTranslationX(), |
| properties().getPivotY() + properties().getTranslationY(), |
| properties().getZ()); |
| true3dMat.rotate(properties().getRotationX(), 1, 0, 0); |
| true3dMat.rotate(properties().getRotationY(), 0, 1, 0); |
| true3dMat.rotate(properties().getRotation(), 0, 0, 1); |
| true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1); |
| true3dMat.translate(-properties().getPivotX(), -properties().getPivotY()); |
| |
| matrix.multiply(true3dMat); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Organizes the DisplayList hierarchy to prepare for background projection reordering. |
| * |
| * This should be called before a call to defer() or drawDisplayList() |
| * |
| * Each DisplayList that serves as a 3d root builds its list of composited children, |
| * which are flagged to not draw in the standard draw loop. |
| */ |
| void RenderNode::computeOrdering() { |
| ATRACE_CALL(); |
| mProjectedNodes.clear(); |
| |
| // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that |
| // transform properties are applied correctly to top level children |
| if (mDisplayListData == NULL) return; |
| for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { |
| DrawDisplayListOp* childOp = mDisplayListData->children()[i]; |
| childOp->mDisplayList->computeOrderingImpl(childOp, |
| properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity()); |
| } |
| } |
| |
| void RenderNode::computeOrderingImpl( |
| DrawDisplayListOp* opState, |
| const SkPath* outlineOfProjectionSurface, |
| Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface, |
| const mat4* transformFromProjectionSurface) { |
| mProjectedNodes.clear(); |
| if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return; |
| |
| // TODO: should avoid this calculation in most cases |
| // TODO: just calculate single matrix, down to all leaf composited elements |
| Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface); |
| localTransformFromProjectionSurface.multiply(opState->mTransformFromParent); |
| |
| if (properties().getProjectBackwards()) { |
| // composited projectee, flag for out of order draw, save matrix, and store in proj surface |
| opState->mSkipInOrderDraw = true; |
| opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface); |
| compositedChildrenOfProjectionSurface->add(opState); |
| } else { |
| // standard in order draw |
| opState->mSkipInOrderDraw = false; |
| } |
| |
| if (mDisplayListData->children().size() > 0) { |
| const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0; |
| bool haveAppliedPropertiesToProjection = false; |
| for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { |
| DrawDisplayListOp* childOp = mDisplayListData->children()[i]; |
| RenderNode* child = childOp->mDisplayList; |
| |
| const SkPath* projectionOutline = NULL; |
| Vector<DrawDisplayListOp*>* projectionChildren = NULL; |
| const mat4* projectionTransform = NULL; |
| if (isProjectionReceiver && !child->properties().getProjectBackwards()) { |
| // if receiving projections, collect projecting descendent |
| |
| // Note that if a direct descendent is projecting backwards, we pass it's |
| // grandparent projection collection, since it shouldn't project onto it's |
| // parent, where it will already be drawing. |
| projectionOutline = properties().getOutline().getPath(); |
| projectionChildren = &mProjectedNodes; |
| projectionTransform = &mat4::identity(); |
| } else { |
| if (!haveAppliedPropertiesToProjection) { |
| applyViewPropertyTransforms(localTransformFromProjectionSurface); |
| haveAppliedPropertiesToProjection = true; |
| } |
| projectionOutline = outlineOfProjectionSurface; |
| projectionChildren = compositedChildrenOfProjectionSurface; |
| projectionTransform = &localTransformFromProjectionSurface; |
| } |
| child->computeOrderingImpl(childOp, |
| projectionOutline, projectionChildren, projectionTransform); |
| } |
| } |
| } |
| |
| class DeferOperationHandler { |
| public: |
| DeferOperationHandler(DeferStateStruct& deferStruct, int level) |
| : mDeferStruct(deferStruct), mLevel(level) {} |
| inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { |
| operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds); |
| } |
| inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); } |
| inline void startMark(const char* name) {} // do nothing |
| inline void endMark() {} |
| inline int level() { return mLevel; } |
| inline int replayFlags() { return mDeferStruct.mReplayFlags; } |
| |
| private: |
| DeferStateStruct& mDeferStruct; |
| const int mLevel; |
| }; |
| |
| void RenderNode::deferNodeTree(DeferStateStruct& deferStruct) { |
| DeferOperationHandler handler(deferStruct, 0); |
| if (MathUtils::isPositive(properties().getZ())) { |
| issueDrawShadowOperation(Matrix4::identity(), handler); |
| } |
| issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler); |
| } |
| |
| void RenderNode::deferNodeInParent(DeferStateStruct& deferStruct, const int level) { |
| DeferOperationHandler handler(deferStruct, level); |
| issueOperations<DeferOperationHandler>(deferStruct.mRenderer, handler); |
| } |
| |
| class ReplayOperationHandler { |
| public: |
| ReplayOperationHandler(ReplayStateStruct& replayStruct, int level) |
| : mReplayStruct(replayStruct), mLevel(level) {} |
| inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { |
| #if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS |
| mReplayStruct.mRenderer.eventMark(operation->name()); |
| #endif |
| operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds); |
| } |
| inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); } |
| inline void startMark(const char* name) { |
| mReplayStruct.mRenderer.startMark(name); |
| } |
| inline void endMark() { |
| mReplayStruct.mRenderer.endMark(); |
| } |
| inline int level() { return mLevel; } |
| inline int replayFlags() { return mReplayStruct.mReplayFlags; } |
| |
| private: |
| ReplayStateStruct& mReplayStruct; |
| const int mLevel; |
| }; |
| |
| void RenderNode::replayNodeTree(ReplayStateStruct& replayStruct) { |
| ReplayOperationHandler handler(replayStruct, 0); |
| if (MathUtils::isPositive(properties().getZ())) { |
| issueDrawShadowOperation(Matrix4::identity(), handler); |
| } |
| issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler); |
| } |
| |
| void RenderNode::replayNodeInParent(ReplayStateStruct& replayStruct, const int level) { |
| ReplayOperationHandler handler(replayStruct, level); |
| issueOperations<ReplayOperationHandler>(replayStruct.mRenderer, handler); |
| } |
| |
| void RenderNode::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) { |
| if (mDisplayListData == NULL || mDisplayListData->children().size() == 0) return; |
| |
| for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { |
| DrawDisplayListOp* childOp = mDisplayListData->children()[i]; |
| RenderNode* child = childOp->mDisplayList; |
| float childZ = child->properties().getZ(); |
| |
| if (!MathUtils::isZero(childZ)) { |
| zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp)); |
| childOp->mSkipInOrderDraw = true; |
| } else if (!child->properties().getProjectBackwards()) { |
| // regular, in order drawing DisplayList |
| childOp->mSkipInOrderDraw = false; |
| } |
| } |
| |
| // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order) |
| std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end()); |
| } |
| |
| template <class T> |
| void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) { |
| if (properties().getAlpha() <= 0.0f || properties().getOutline().isEmpty()) return; |
| |
| mat4 shadowMatrixXY(transformFromParent); |
| applyViewPropertyTransforms(shadowMatrixXY); |
| |
| // Z matrix needs actual 3d transformation, so mapped z values will be correct |
| mat4 shadowMatrixZ(transformFromParent); |
| applyViewPropertyTransforms(shadowMatrixZ, true); |
| |
| const SkPath* outlinePath = properties().getOutline().getPath(); |
| const RevealClip& revealClip = properties().getRevealClip(); |
| const SkPath* revealClipPath = revealClip.hasConvexClip() |
| ? revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex |
| |
| if (revealClipPath && revealClipPath->isEmpty()) return; |
| |
| /** |
| * The drawing area of the caster is always the same as the its perimeter (which |
| * the shadow system uses) *except* in the inverse clip case. Inform the shadow |
| * system that the caster's drawing area (as opposed to its perimeter) has been |
| * clipped, so that it knows the caster can't be opaque. |
| */ |
| bool casterUnclipped = !revealClip.willClip() || revealClip.hasConvexClip(); |
| |
| DisplayListOp* shadowOp = new (handler.allocator()) DrawShadowOp( |
| shadowMatrixXY, shadowMatrixZ, |
| properties().getAlpha(), casterUnclipped, |
| outlinePath, revealClipPath); |
| handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } |
| |
| #define SHADOW_DELTA 0.1f |
| |
| template <class T> |
| void RenderNode::issueOperationsOf3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes, |
| ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) { |
| const int size = zTranslatedNodes.size(); |
| if (size == 0 |
| || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f) |
| || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) { |
| // no 3d children to draw |
| return; |
| } |
| |
| /** |
| * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters |
| * with very similar Z heights to draw together. |
| * |
| * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are |
| * underneath both, and neither's shadow is drawn on top of the other. |
| */ |
| const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); |
| size_t drawIndex, shadowIndex, endIndex; |
| if (mode == kNegativeZChildren) { |
| drawIndex = 0; |
| endIndex = nonNegativeIndex; |
| shadowIndex = endIndex; // draw no shadows |
| } else { |
| drawIndex = nonNegativeIndex; |
| endIndex = size; |
| shadowIndex = drawIndex; // potentially draw shadow for each pos Z child |
| } |
| |
| DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "", |
| endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive"); |
| |
| float lastCasterZ = 0.0f; |
| while (shadowIndex < endIndex || drawIndex < endIndex) { |
| if (shadowIndex < endIndex) { |
| DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value; |
| RenderNode* caster = casterOp->mDisplayList; |
| const float casterZ = zTranslatedNodes[shadowIndex].key; |
| // attempt to render the shadow if the caster about to be drawn is its caster, |
| // OR if its caster's Z value is similar to the previous potential caster |
| if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) { |
| caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler); |
| |
| lastCasterZ = casterZ; // must do this even if current caster not casting a shadow |
| shadowIndex++; |
| continue; |
| } |
| } |
| |
| // only the actual child DL draw needs to be in save/restore, |
| // since it modifies the renderer's matrix |
| int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); |
| |
| DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value; |
| RenderNode* child = childOp->mDisplayList; |
| |
| renderer.concatMatrix(childOp->mTransformFromParent); |
| childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone |
| handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); |
| childOp->mSkipInOrderDraw = true; |
| |
| renderer.restoreToCount(restoreTo); |
| drawIndex++; |
| } |
| } |
| |
| template <class T> |
| void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) { |
| DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size()); |
| const SkPath* projectionReceiverOutline = properties().getOutline().getPath(); |
| bool maskProjecteesWithPath = projectionReceiverOutline != NULL |
| && !projectionReceiverOutline->isRect(NULL); |
| int restoreTo = renderer.getSaveCount(); |
| |
| // If the projection reciever has an outline, we mask each of the projected rendernodes to it |
| // Either with clipRect, or special saveLayer masking |
| LinearAllocator& alloc = handler.allocator(); |
| if (projectionReceiverOutline != NULL) { |
| const SkRect& outlineBounds = projectionReceiverOutline->getBounds(); |
| if (projectionReceiverOutline->isRect(NULL)) { |
| // mask to the rect outline simply with clipRect |
| handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), |
| PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| ClipRectOp* clipOp = new (alloc) ClipRectOp( |
| outlineBounds.left(), outlineBounds.top(), |
| outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op); |
| handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } else { |
| // wrap the projected RenderNodes with a SaveLayer that will mask to the outline |
| SaveLayerOp* op = new (alloc) SaveLayerOp( |
| outlineBounds.left(), outlineBounds.top(), |
| outlineBounds.right(), outlineBounds.bottom(), |
| 255, SkCanvas::kARGB_ClipLayer_SaveFlag); |
| op->setMask(projectionReceiverOutline); |
| handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| |
| /* TODO: add optimizations here to take advantage of placement/size of projected |
| * children (which may shrink saveLayer area significantly). This is dependent on |
| * passing actual drawing/dirtying bounds of projected content down to native. |
| */ |
| } |
| } |
| |
| // draw projected nodes |
| for (size_t i = 0; i < mProjectedNodes.size(); i++) { |
| DrawDisplayListOp* childOp = mProjectedNodes[i]; |
| |
| // matrix save, concat, and restore can be done safely without allocating operations |
| int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); |
| renderer.concatMatrix(childOp->mTransformFromCompositingAncestor); |
| childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone |
| handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); |
| childOp->mSkipInOrderDraw = true; |
| renderer.restoreToCount(restoreTo); |
| } |
| |
| if (projectionReceiverOutline != NULL) { |
| handler(new (alloc) RestoreToCountOp(restoreTo), |
| PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| } |
| } |
| |
| /** |
| * This function serves both defer and replay modes, and will organize the displayList's component |
| * operations for a single frame: |
| * |
| * Every 'simple' state operation that affects just the matrix and alpha (or other factors of |
| * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom |
| * defer logic) and operations in displayListOps are issued through the 'handler' which handles the |
| * defer vs replay logic, per operation |
| */ |
| template <class T> |
| void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) { |
| const int level = handler.level(); |
| if (mDisplayListData->isEmpty() || properties().getAlpha() <= 0) { |
| DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName()); |
| return; |
| } |
| |
| handler.startMark(getName()); |
| |
| #if DEBUG_DISPLAY_LIST |
| const Rect& clipRect = renderer.getLocalClipBounds(); |
| DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f", |
| level * 2, "", this, getName(), |
| clipRect.left, clipRect.top, clipRect.right, clipRect.bottom); |
| #endif |
| |
| LinearAllocator& alloc = handler.allocator(); |
| int restoreTo = renderer.getSaveCount(); |
| handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), |
| PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| |
| DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "", |
| SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo); |
| |
| setViewProperties<T>(renderer, handler); |
| |
| bool quickRejected = properties().getClipToBounds() |
| && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight()); |
| if (!quickRejected) { |
| if (mProperties.getOutline().willClip()) { |
| renderer.setClippingOutline(alloc, &(mProperties.getOutline())); |
| } |
| |
| Vector<ZDrawDisplayListOpPair> zTranslatedNodes; |
| buildZSortedChildList(zTranslatedNodes); |
| |
| // for 3d root, draw children with negative z values |
| issueOperationsOf3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler); |
| |
| DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); |
| const int saveCountOffset = renderer.getSaveCount() - 1; |
| const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex; |
| for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { |
| DisplayListOp *op = mDisplayListData->displayListOps[i]; |
| |
| #if DEBUG_DISPLAY_LIST |
| op->output(level + 1); |
| #endif |
| logBuffer.writeCommand(level, op->name()); |
| handler(op, saveCountOffset, properties().getClipToBounds()); |
| |
| if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) { |
| issueOperationsOfProjectedChildren(renderer, handler); |
| } |
| } |
| |
| // for 3d root, draw children with positive z values |
| issueOperationsOf3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler); |
| } |
| |
| DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo); |
| handler(new (alloc) RestoreToCountOp(restoreTo), |
| PROPERTY_SAVECOUNT, properties().getClipToBounds()); |
| renderer.setOverrideLayerAlpha(1.0f); |
| |
| DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName()); |
| handler.endMark(); |
| } |
| |
| } /* namespace uirenderer */ |
| } /* namespace android */ |