blob: ea702c01694e63f78ef41543ef4c7f5a9b94b78e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <GpuMemoryTracker.h>
#include "CanvasContext.h"
#include "AnimationContext.h"
#include "Caches.h"
#include "Canvas.h"
#include "DeferredLayerUpdater.h"
#include "EglManager.h"
#include "LayerUpdateQueue.h"
#include "LayerRenderer.h"
#include "OpenGLRenderer.h"
#include "Properties.h"
#include "RenderThread.h"
#include "renderstate/RenderState.h"
#include "renderstate/Stencil.h"
#include "protos/hwui.pb.h"
#include "utils/GLUtils.h"
#include "utils/TimeUtils.h"
#include <cutils/properties.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <private/hwui/DrawGlInfo.h>
#include <strings.h>
#include <algorithm>
#include <fcntl.h>
#include <sys/stat.h>
#include <cstdlib>
#define TRIM_MEMORY_COMPLETE 80
#define TRIM_MEMORY_UI_HIDDEN 20
#define ENABLE_RENDERNODE_SERIALIZATION false
#define LOG_FRAMETIME_MMA 0
#if LOG_FRAMETIME_MMA
static float sBenchMma = 0;
static int sFrameCount = 0;
static const float NANOS_PER_MILLIS_F = 1000000.0f;
#endif
namespace android {
namespace uirenderer {
namespace renderthread {
CanvasContext::CanvasContext(RenderThread& thread, bool translucent,
RenderNode* rootRenderNode, IContextFactory* contextFactory)
: mRenderThread(thread)
, mEglManager(thread.eglManager())
, mOpaque(!translucent)
, mAnimationContext(contextFactory->createAnimationContext(mRenderThread.timeLord()))
, mJankTracker(thread.timeLord().frameIntervalNanos())
, mProfiler(mFrames)
, mContentDrawBounds(0, 0, 0, 0) {
mRenderNodes.emplace_back(rootRenderNode);
mRenderThread.renderState().registerCanvasContext(this);
mProfiler.setDensity(mRenderThread.mainDisplayInfo().density);
}
CanvasContext::~CanvasContext() {
destroy();
mRenderThread.renderState().unregisterCanvasContext(this);
}
void CanvasContext::destroy() {
stopDrawing();
setSurface(nullptr);
freePrefetechedLayers();
destroyHardwareResources();
mAnimationContext->destroy();
if (mCanvas) {
delete mCanvas;
mCanvas = nullptr;
}
}
void CanvasContext::setSurface(Surface* surface) {
ATRACE_CALL();
mNativeSurface = surface;
if (mEglSurface != EGL_NO_SURFACE) {
mEglManager.destroySurface(mEglSurface);
mEglSurface = EGL_NO_SURFACE;
}
if (surface) {
mEglSurface = mEglManager.createSurface(surface);
}
if (mEglSurface != EGL_NO_SURFACE) {
const bool preserveBuffer = (mSwapBehavior != kSwap_discardBuffer);
mBufferPreserved = mEglManager.setPreserveBuffer(mEglSurface, preserveBuffer);
mHaveNewSurface = true;
mSwapHistory.clear();
makeCurrent();
} else {
mRenderThread.removeFrameCallback(this);
}
}
void CanvasContext::requireSurface() {
LOG_ALWAYS_FATAL_IF(mEglSurface == EGL_NO_SURFACE,
"requireSurface() called but no surface set!");
makeCurrent();
}
void CanvasContext::setSwapBehavior(SwapBehavior swapBehavior) {
mSwapBehavior = swapBehavior;
}
void CanvasContext::initialize(Surface* surface) {
setSurface(surface);
#if !HWUI_NEW_OPS
if (mCanvas) return;
mCanvas = new OpenGLRenderer(mRenderThread.renderState());
mCanvas->initProperties();
#endif
}
void CanvasContext::updateSurface(Surface* surface) {
setSurface(surface);
}
bool CanvasContext::pauseSurface(Surface* surface) {
return mRenderThread.removeFrameCallback(this);
}
// TODO: don't pass viewport size, it's automatic via EGL
void CanvasContext::setup(int width, int height, float lightRadius,
uint8_t ambientShadowAlpha, uint8_t spotShadowAlpha) {
#if HWUI_NEW_OPS
mLightGeometry.radius = lightRadius;
mLightInfo.ambientShadowAlpha = ambientShadowAlpha;
mLightInfo.spotShadowAlpha = spotShadowAlpha;
#else
if (!mCanvas) return;
mCanvas->initLight(lightRadius, ambientShadowAlpha, spotShadowAlpha);
#endif
}
void CanvasContext::setLightCenter(const Vector3& lightCenter) {
#if HWUI_NEW_OPS
mLightGeometry.center = lightCenter;
#else
if (!mCanvas) return;
mCanvas->setLightCenter(lightCenter);
#endif
}
void CanvasContext::setOpaque(bool opaque) {
mOpaque = opaque;
}
void CanvasContext::makeCurrent() {
// TODO: Figure out why this workaround is needed, see b/13913604
// In the meantime this matches the behavior of GLRenderer, so it is not a regression
EGLint error = 0;
mHaveNewSurface |= mEglManager.makeCurrent(mEglSurface, &error);
if (error) {
setSurface(nullptr);
}
}
static bool wasSkipped(FrameInfo* info) {
return info && ((*info)[FrameInfoIndex::Flags] & FrameInfoFlags::SkippedFrame);
}
void CanvasContext::prepareTree(TreeInfo& info, int64_t* uiFrameInfo,
int64_t syncQueued, RenderNode* target) {
mRenderThread.removeFrameCallback(this);
// If the previous frame was dropped we don't need to hold onto it, so
// just keep using the previous frame's structure instead
if (!wasSkipped(mCurrentFrameInfo)) {
mCurrentFrameInfo = &mFrames.next();
}
mCurrentFrameInfo->importUiThreadInfo(uiFrameInfo);
mCurrentFrameInfo->set(FrameInfoIndex::SyncQueued) = syncQueued;
mCurrentFrameInfo->markSyncStart();
info.damageAccumulator = &mDamageAccumulator;
#if HWUI_NEW_OPS
info.layerUpdateQueue = &mLayerUpdateQueue;
#else
info.renderer = mCanvas;
#endif
if (CC_LIKELY(mNativeSurface.get())) {
info.frameNumber = static_cast<int64_t>(mNativeSurface->getNextFrameNumber());
}
mAnimationContext->startFrame(info.mode);
for (const sp<RenderNode>& node : mRenderNodes) {
// Only the primary target node will be drawn full - all other nodes would get drawn in
// real time mode. In case of a window, the primary node is the window content and the other
// node(s) are non client / filler nodes.
info.mode = (node.get() == target ? TreeInfo::MODE_FULL : TreeInfo::MODE_RT_ONLY);
node->prepareTree(info);
GL_CHECKPOINT(MODERATE);
}
mAnimationContext->runRemainingAnimations(info);
GL_CHECKPOINT(MODERATE);
freePrefetechedLayers();
GL_CHECKPOINT(MODERATE);
if (CC_UNLIKELY(!mNativeSurface.get())) {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
info.out.canDrawThisFrame = false;
return;
}
if (CC_LIKELY(mSwapHistory.size())) {
nsecs_t latestVsync = mRenderThread.timeLord().latestVsync();
const SwapHistory& lastSwap = mSwapHistory.back();
nsecs_t vsyncDelta = std::abs(lastSwap.vsyncTime - latestVsync);
// The slight fudge-factor is to deal with cases where
// the vsync was estimated due to being slow handling the signal.
// See the logic in TimeLord#computeFrameTimeNanos or in
// Choreographer.java for details on when this happens
if (vsyncDelta < 2_ms) {
// Already drew for this vsync pulse, UI draw request missed
// the deadline for RT animations
info.out.canDrawThisFrame = false;
} else if (lastSwap.swapTime < latestVsync) {
info.out.canDrawThisFrame = true;
} else {
// We're maybe behind? Find out for sure
int runningBehind = 0;
// TODO: Have this method be on Surface, too, not just ANativeWindow...
ANativeWindow* window = mNativeSurface.get();
window->query(window, NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND, &runningBehind);
info.out.canDrawThisFrame = !runningBehind;
}
} else {
info.out.canDrawThisFrame = true;
}
if (!info.out.canDrawThisFrame) {
mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
}
if (info.out.hasAnimations || !info.out.canDrawThisFrame) {
if (!info.out.requiresUiRedraw) {
// If animationsNeedsRedraw is set don't bother posting for an RT anim
// as we will just end up fighting the UI thread.
mRenderThread.postFrameCallback(this);
}
}
}
void CanvasContext::stopDrawing() {
mRenderThread.removeFrameCallback(this);
}
void CanvasContext::notifyFramePending() {
ATRACE_CALL();
mRenderThread.pushBackFrameCallback(this);
}
void CanvasContext::draw() {
#if !HWUI_NEW_OPS
LOG_ALWAYS_FATAL_IF(!mCanvas || mEglSurface == EGL_NO_SURFACE,
"drawRenderNode called on a context with no canvas or surface!");
#endif
SkRect dirty;
mDamageAccumulator.finish(&dirty);
// TODO: Re-enable after figuring out cause of b/22592975
// if (dirty.isEmpty() && Properties::skipEmptyFrames) {
// mCurrentFrameInfo->addFlag(FrameInfoFlags::SkippedFrame);
// return;
// }
mCurrentFrameInfo->markIssueDrawCommandsStart();
Frame frame = mEglManager.beginFrame(mEglSurface);
if (frame.width() != mLastFrameWidth || frame.height() != mLastFrameHeight) {
// can't rely on prior content of window if viewport size changes
dirty.setEmpty();
mLastFrameWidth = frame.width();
mLastFrameHeight = frame.height();
} else if (mHaveNewSurface || frame.bufferAge() == 0) {
// New surface needs a full draw
dirty.setEmpty();
} else {
if (!dirty.isEmpty() && !dirty.intersect(0, 0, frame.width(), frame.height())) {
ALOGW("Dirty " RECT_STRING " doesn't intersect with 0 0 %d %d ?",
SK_RECT_ARGS(dirty), frame.width(), frame.height());
dirty.setEmpty();
}
profiler().unionDirty(&dirty);
}
if (dirty.isEmpty()) {
dirty.set(0, 0, frame.width(), frame.height());
}
// At this point dirty is the area of the screen to update. However,
// the area of the frame we need to repaint is potentially different, so
// stash the screen area for later
SkRect screenDirty(dirty);
// If the buffer age is 0 we do a full-screen repaint (handled above)
// If the buffer age is 1 the buffer contents are the same as they were
// last frame so there's nothing to union() against
// Therefore we only care about the > 1 case.
if (frame.bufferAge() > 1) {
if (frame.bufferAge() > (int) mSwapHistory.size()) {
// We don't have enough history to handle this old of a buffer
// Just do a full-draw
dirty.set(0, 0, frame.width(), frame.height());
} else {
// At this point we haven't yet added the latest frame
// to the damage history (happens below)
// So we need to damage
for (int i = mSwapHistory.size() - 1;
i > ((int) mSwapHistory.size()) - frame.bufferAge(); i--) {
dirty.join(mSwapHistory[i].damage);
}
}
}
mEglManager.damageFrame(frame, dirty);
#if HWUI_NEW_OPS
FrameBuilder frameBuilder(mLayerUpdateQueue, dirty, frame.width(), frame.height(),
mRenderNodes, mLightGeometry, mContentDrawBounds, &Caches::getInstance());
mLayerUpdateQueue.clear();
BakedOpRenderer renderer(Caches::getInstance(), mRenderThread.renderState(),
mOpaque, mLightInfo);
// TODO: profiler().draw(mCanvas);
frameBuilder.replayBakedOps<BakedOpDispatcher>(renderer);
bool drew = renderer.didDraw();
#else
mCanvas->prepareDirty(frame.width(), frame.height(),
dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom, mOpaque);
Rect outBounds;
// It there are multiple render nodes, they are laid out as follows:
// #0 - backdrop (content + caption)
// #1 - content (positioned at (0,0) and clipped to - its bounds mContentDrawBounds)
// #2 - additional overlay nodes
// Usually the backdrop cannot be seen since it will be entirely covered by the content. While
// resizing however it might become partially visible. The following render loop will crop the
// backdrop against the content and draw the remaining part of it. It will then draw the content
// cropped to the backdrop (since that indicates a shrinking of the window).
//
// Additional nodes will be drawn on top with no particular clipping semantics.
// The bounds of the backdrop against which the content should be clipped.
Rect backdropBounds = mContentDrawBounds;
// Usually the contents bounds should be mContentDrawBounds - however - we will
// move it towards the fixed edge to give it a more stable appearance (for the moment).
Rect contentBounds;
// If there is no content bounds we ignore the layering as stated above and start with 2.
int layer = (mContentDrawBounds.isEmpty() || mRenderNodes.size() == 1) ? 2 : 0;
// Draw all render nodes. Note that
for (const sp<RenderNode>& node : mRenderNodes) {
if (layer == 0) { // Backdrop.
// Draw the backdrop clipped to the inverse content bounds, but assume that the content
// was moved to the upper left corner.
const RenderProperties& properties = node->properties();
Rect targetBounds(properties.getLeft(), properties.getTop(),
properties.getRight(), properties.getBottom());
// Move the content bounds towards the fixed corner of the backdrop.
const int x = targetBounds.left;
const int y = targetBounds.top;
contentBounds.set(x, y, x + mContentDrawBounds.getWidth(),
y + mContentDrawBounds.getHeight());
// Remember the intersection of the target bounds and the intersection bounds against
// which we have to crop the content.
backdropBounds.set(x, y, x + backdropBounds.getWidth(), y + backdropBounds.getHeight());
backdropBounds.doIntersect(targetBounds);
// Check if we have to draw something on the left side ...
if (targetBounds.left < contentBounds.left) {
mCanvas->save(SaveFlags::Clip);
if (mCanvas->clipRect(targetBounds.left, targetBounds.top,
contentBounds.left, targetBounds.bottom,
SkRegion::kIntersect_Op)) {
mCanvas->drawRenderNode(node.get(), outBounds);
}
// Reduce the target area by the area we have just painted.
targetBounds.left = std::min(contentBounds.left, targetBounds.right);
mCanvas->restore();
}
// ... or on the right side ...
if (targetBounds.right > contentBounds.right &&
!targetBounds.isEmpty()) {
mCanvas->save(SaveFlags::Clip);
if (mCanvas->clipRect(contentBounds.right, targetBounds.top,
targetBounds.right, targetBounds.bottom,
SkRegion::kIntersect_Op)) {
mCanvas->drawRenderNode(node.get(), outBounds);
}
// Reduce the target area by the area we have just painted.
targetBounds.right = std::max(targetBounds.left, contentBounds.right);
mCanvas->restore();
}
// ... or at the top ...
if (targetBounds.top < contentBounds.top &&
!targetBounds.isEmpty()) {
mCanvas->save(SaveFlags::Clip);
if (mCanvas->clipRect(targetBounds.left, targetBounds.top, targetBounds.right,
contentBounds.top,
SkRegion::kIntersect_Op)) {
mCanvas->drawRenderNode(node.get(), outBounds);
}
// Reduce the target area by the area we have just painted.
targetBounds.top = std::min(contentBounds.top, targetBounds.bottom);
mCanvas->restore();
}
// ... or at the bottom.
if (targetBounds.bottom > contentBounds.bottom &&
!targetBounds.isEmpty()) {
mCanvas->save(SaveFlags::Clip);
if (mCanvas->clipRect(targetBounds.left, contentBounds.bottom, targetBounds.right,
targetBounds.bottom, SkRegion::kIntersect_Op)) {
mCanvas->drawRenderNode(node.get(), outBounds);
}
mCanvas->restore();
}
} else if (layer == 1) { // Content
// It gets cropped against the bounds of the backdrop to stay inside.
mCanvas->save(SaveFlags::MatrixClip);
// We shift and clip the content to match its final location in the window.
const float left = mContentDrawBounds.left;
const float top = mContentDrawBounds.top;
const float dx = backdropBounds.left - left;
const float dy = backdropBounds.top - top;
const float width = backdropBounds.getWidth();
const float height = backdropBounds.getHeight();
mCanvas->translate(dx, dy);
if (mCanvas->clipRect(left, top, left + width, top + height, SkRegion::kIntersect_Op)) {
mCanvas->drawRenderNode(node.get(), outBounds);
}
mCanvas->restore();
} else { // draw the rest on top at will!
mCanvas->drawRenderNode(node.get(), outBounds);
}
layer++;
}
profiler().draw(mCanvas);
bool drew = mCanvas->finish();
#endif
GL_CHECKPOINT(LOW);
// Even if we decided to cancel the frame, from the perspective of jank
// metrics the frame was swapped at this point
mCurrentFrameInfo->markSwapBuffers();
if (drew) {
if (CC_UNLIKELY(!mEglManager.swapBuffers(frame, screenDirty))) {
setSurface(nullptr);
}
SwapHistory& swap = mSwapHistory.next();
swap.damage = screenDirty;
swap.swapTime = systemTime(CLOCK_MONOTONIC);
swap.vsyncTime = mRenderThread.timeLord().latestVsync();
mHaveNewSurface = false;
}
// TODO: Use a fence for real completion?
mCurrentFrameInfo->markFrameCompleted();
#if LOG_FRAMETIME_MMA
float thisFrame = mCurrentFrameInfo->duration(
FrameInfoIndex::IssueDrawCommandsStart,
FrameInfoIndex::FrameCompleted) / NANOS_PER_MILLIS_F;
if (sFrameCount) {
sBenchMma = ((9 * sBenchMma) + thisFrame) / 10;
} else {
sBenchMma = thisFrame;
}
if (++sFrameCount == 10) {
sFrameCount = 1;
ALOGD("Average frame time: %.4f", sBenchMma);
}
#endif
mJankTracker.addFrame(*mCurrentFrameInfo);
mRenderThread.jankTracker().addFrame(*mCurrentFrameInfo);
if (CC_UNLIKELY(mFrameStatsReporter.get() != nullptr)) {
mFrameStatsReporter->reportFrameStats(mCurrentFrameInfo->data());
}
GpuMemoryTracker::onFrameCompleted();
}
// Called by choreographer to do an RT-driven animation
void CanvasContext::doFrame() {
#if HWUI_NEW_OPS
if (CC_UNLIKELY(mEglSurface == EGL_NO_SURFACE)) return;
#else
if (CC_UNLIKELY(!mCanvas || mEglSurface == EGL_NO_SURFACE)) return;
#endif
prepareAndDraw(nullptr);
}
void CanvasContext::prepareAndDraw(RenderNode* node) {
ATRACE_CALL();
nsecs_t vsync = mRenderThread.timeLord().computeFrameTimeNanos();
int64_t frameInfo[UI_THREAD_FRAME_INFO_SIZE];
UiFrameInfoBuilder(frameInfo)
.addFlag(FrameInfoFlags::RTAnimation)
.setVsync(vsync, vsync);
TreeInfo info(TreeInfo::MODE_RT_ONLY, *this);
prepareTree(info, frameInfo, systemTime(CLOCK_MONOTONIC), node);
if (info.out.canDrawThisFrame) {
draw();
}
}
void CanvasContext::invokeFunctor(RenderThread& thread, Functor* functor) {
ATRACE_CALL();
DrawGlInfo::Mode mode = DrawGlInfo::kModeProcessNoContext;
if (thread.eglManager().hasEglContext()) {
mode = DrawGlInfo::kModeProcess;
}
thread.renderState().invokeFunctor(functor, mode, nullptr);
}
void CanvasContext::markLayerInUse(RenderNode* node) {
if (mPrefetechedLayers.erase(node)) {
node->decStrong(nullptr);
}
}
static void destroyPrefetechedNode(RenderNode* node) {
ALOGW("Incorrectly called buildLayer on View: %s, destroying layer...", node->getName());
node->destroyHardwareResources();
node->decStrong(nullptr);
}
void CanvasContext::freePrefetechedLayers() {
if (mPrefetechedLayers.size()) {
std::for_each(mPrefetechedLayers.begin(), mPrefetechedLayers.end(), destroyPrefetechedNode);
mPrefetechedLayers.clear();
}
}
void CanvasContext::buildLayer(RenderNode* node) {
ATRACE_CALL();
if (!mEglManager.hasEglContext() || !mCanvas) {
return;
}
// buildLayer() will leave the tree in an unknown state, so we must stop drawing
stopDrawing();
TreeInfo info(TreeInfo::MODE_FULL, *this);
info.damageAccumulator = &mDamageAccumulator;
#if HWUI_NEW_OPS
info.layerUpdateQueue = &mLayerUpdateQueue;
#else
info.renderer = mCanvas;
#endif
info.runAnimations = false;
node->prepareTree(info);
SkRect ignore;
mDamageAccumulator.finish(&ignore);
// Tickle the GENERIC property on node to mark it as dirty for damaging
// purposes when the frame is actually drawn
node->setPropertyFieldsDirty(RenderNode::GENERIC);
#if HWUI_NEW_OPS
// TODO: support buildLayer
#else
mCanvas->markLayersAsBuildLayers();
mCanvas->flushLayerUpdates();
#endif
node->incStrong(nullptr);
mPrefetechedLayers.insert(node);
}
bool CanvasContext::copyLayerInto(DeferredLayerUpdater* layer, SkBitmap* bitmap) {
layer->apply();
return LayerRenderer::copyLayer(mRenderThread.renderState(), layer->backingLayer(), bitmap);
}
void CanvasContext::destroyHardwareResources() {
stopDrawing();
if (mEglManager.hasEglContext()) {
freePrefetechedLayers();
for (const sp<RenderNode>& node : mRenderNodes) {
node->destroyHardwareResources();
}
Caches& caches = Caches::getInstance();
// Make sure to release all the textures we were owning as there won't
// be another draw
caches.textureCache.resetMarkInUse(this);
mRenderThread.renderState().flush(Caches::FlushMode::Layers);
}
}
void CanvasContext::trimMemory(RenderThread& thread, int level) {
// No context means nothing to free
if (!thread.eglManager().hasEglContext()) return;
ATRACE_CALL();
if (level >= TRIM_MEMORY_COMPLETE) {
thread.renderState().flush(Caches::FlushMode::Full);
thread.eglManager().destroy();
} else if (level >= TRIM_MEMORY_UI_HIDDEN) {
thread.renderState().flush(Caches::FlushMode::Moderate);
}
}
void CanvasContext::runWithGlContext(RenderTask* task) {
LOG_ALWAYS_FATAL_IF(!mEglManager.hasEglContext(),
"GL context not initialized!");
task->run();
}
Layer* CanvasContext::createTextureLayer() {
requireSurface();
return LayerRenderer::createTextureLayer(mRenderThread.renderState());
}
void CanvasContext::setTextureAtlas(RenderThread& thread,
const sp<GraphicBuffer>& buffer, int64_t* map, size_t mapSize) {
thread.eglManager().setTextureAtlas(buffer, map, mapSize);
}
void CanvasContext::dumpFrames(int fd) {
FILE* file = fdopen(fd, "a");
fprintf(file, "\n\n---PROFILEDATA---\n");
for (size_t i = 0; i < static_cast<size_t>(FrameInfoIndex::NumIndexes); i++) {
fprintf(file, "%s", FrameInfoNames[i].c_str());
fprintf(file, ",");
}
for (size_t i = 0; i < mFrames.size(); i++) {
FrameInfo& frame = mFrames[i];
if (frame[FrameInfoIndex::SyncStart] == 0) {
continue;
}
fprintf(file, "\n");
for (int i = 0; i < static_cast<int>(FrameInfoIndex::NumIndexes); i++) {
fprintf(file, "%" PRId64 ",", frame[i]);
}
}
fprintf(file, "\n---PROFILEDATA---\n\n");
fflush(file);
}
void CanvasContext::resetFrameStats() {
mFrames.clear();
mRenderThread.jankTracker().reset();
}
void CanvasContext::serializeDisplayListTree() {
#if ENABLE_RENDERNODE_SERIALIZATION
using namespace google::protobuf::io;
char package[128];
// Check whether tracing is enabled for this process.
FILE * file = fopen("/proc/self/cmdline", "r");
if (file) {
if (!fgets(package, 128, file)) {
ALOGE("Error reading cmdline: %s (%d)", strerror(errno), errno);
fclose(file);
return;
}
fclose(file);
} else {
ALOGE("Error opening /proc/self/cmdline: %s (%d)", strerror(errno),
errno);
return;
}
char path[1024];
snprintf(path, 1024, "/data/data/%s/cache/rendertree_dump", package);
int fd = open(path, O_CREAT | O_WRONLY, S_IRWXU | S_IRGRP | S_IROTH);
if (fd == -1) {
ALOGD("Failed to open '%s'", path);
return;
}
proto::RenderNode tree;
// TODO: Streaming writes?
mRootRenderNode->copyTo(&tree);
std::string data = tree.SerializeAsString();
write(fd, data.c_str(), data.length());
close(fd);
#endif
}
} /* namespace renderthread */
} /* namespace uirenderer */
} /* namespace android */