| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_HWUI_RECT_H |
| #define ANDROID_HWUI_RECT_H |
| |
| #include <cmath> |
| #include <algorithm> |
| #include <SkRect.h> |
| |
| #include <utils/Log.h> |
| |
| #include "Vertex.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| #define RECT_STRING "%5.2f %5.2f %5.2f %5.2f" |
| #define RECT_ARGS(r) \ |
| (r).left, (r).top, (r).right, (r).bottom |
| #define SK_RECT_ARGS(r) \ |
| (r).left(), (r).top(), (r).right(), (r).bottom() |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Structs |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class Rect { |
| public: |
| float left; |
| float top; |
| float right; |
| float bottom; |
| |
| // Used by Region |
| typedef float value_type; |
| |
| // we don't provide copy-ctor and operator= on purpose |
| // because we want the compiler generated versions |
| |
| inline Rect(): |
| left(0), |
| top(0), |
| right(0), |
| bottom(0) { |
| } |
| |
| inline Rect(float left, float top, float right, float bottom): |
| left(left), |
| top(top), |
| right(right), |
| bottom(bottom) { |
| } |
| |
| inline Rect(float width, float height): |
| left(0.0f), |
| top(0.0f), |
| right(width), |
| bottom(height) { |
| } |
| |
| inline Rect(const SkRect& rect): |
| left(rect.fLeft), |
| top(rect.fTop), |
| right(rect.fRight), |
| bottom(rect.fBottom) { |
| } |
| |
| friend int operator==(const Rect& a, const Rect& b) { |
| return !memcmp(&a, &b, sizeof(a)); |
| } |
| |
| friend int operator!=(const Rect& a, const Rect& b) { |
| return memcmp(&a, &b, sizeof(a)); |
| } |
| |
| inline void clear() { |
| left = top = right = bottom = 0.0f; |
| } |
| |
| inline bool isEmpty() const { |
| // this is written in such way this it'll handle NANs to return |
| // true (empty) |
| return !((left < right) && (top < bottom)); |
| } |
| |
| inline void setEmpty() { |
| left = top = right = bottom = 0.0f; |
| } |
| |
| inline void set(float left, float top, float right, float bottom) { |
| this->left = left; |
| this->right = right; |
| this->top = top; |
| this->bottom = bottom; |
| } |
| |
| inline void set(const Rect& r) { |
| set(r.left, r.top, r.right, r.bottom); |
| } |
| |
| inline void set(const SkIRect& r) { |
| set(r.left(), r.top(), r.right(), r.bottom()); |
| } |
| |
| inline float getWidth() const { |
| return right - left; |
| } |
| |
| inline float getHeight() const { |
| return bottom - top; |
| } |
| |
| bool intersects(float l, float t, float r, float b) const { |
| return !intersectWith(l, t, r, b).isEmpty(); |
| } |
| |
| bool intersects(const Rect& r) const { |
| return intersects(r.left, r.top, r.right, r.bottom); |
| } |
| |
| bool intersect(float l, float t, float r, float b) { |
| Rect tmp(l, t, r, b); |
| intersectWith(tmp); |
| if (!tmp.isEmpty()) { |
| set(tmp); |
| return true; |
| } |
| return false; |
| } |
| |
| bool intersect(const Rect& r) { |
| return intersect(r.left, r.top, r.right, r.bottom); |
| } |
| |
| inline bool contains(float l, float t, float r, float b) const { |
| return l >= left && t >= top && r <= right && b <= bottom; |
| } |
| |
| inline bool contains(const Rect& r) const { |
| return contains(r.left, r.top, r.right, r.bottom); |
| } |
| |
| bool unionWith(const Rect& r) { |
| if (r.left < r.right && r.top < r.bottom) { |
| if (left < right && top < bottom) { |
| if (left > r.left) left = r.left; |
| if (top > r.top) top = r.top; |
| if (right < r.right) right = r.right; |
| if (bottom < r.bottom) bottom = r.bottom; |
| return true; |
| } else { |
| left = r.left; |
| top = r.top; |
| right = r.right; |
| bottom = r.bottom; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void translate(float dx, float dy) { |
| left += dx; |
| right += dx; |
| top += dy; |
| bottom += dy; |
| } |
| |
| void inset(float delta) { |
| outset(-delta); |
| } |
| |
| void outset(float delta) { |
| left -= delta; |
| top -= delta; |
| right += delta; |
| bottom += delta; |
| } |
| |
| void outset(float xdelta, float ydelta) { |
| left -= xdelta; |
| top -= ydelta; |
| right += xdelta; |
| bottom += ydelta; |
| } |
| |
| /** |
| * Similar to snapToPixelBoundaries, but estimates bounds conservatively to handle GL rounding |
| * errors. |
| * |
| * This function should be used whenever estimating the damage rect of geometry already mapped |
| * into layer space. |
| */ |
| void snapGeometryToPixelBoundaries(bool snapOut) { |
| if (snapOut) { |
| /* For AA geometry with a ramp perimeter, don't snap by rounding - AA geometry will have |
| * a 0.5 pixel perimeter not accounted for in its bounds. Instead, snap by |
| * conservatively rounding out the bounds with floor/ceil. |
| * |
| * In order to avoid changing integer bounds with floor/ceil due to rounding errors |
| * inset the bounds first by the fudge factor. Very small fraction-of-a-pixel errors |
| * from this inset will only incur similarly small errors in output, due to transparency |
| * in extreme outside of the geometry. |
| */ |
| left = floorf(left + Vertex::GeometryFudgeFactor()); |
| top = floorf(top + Vertex::GeometryFudgeFactor()); |
| right = ceilf(right - Vertex::GeometryFudgeFactor()); |
| bottom = ceilf(bottom - Vertex::GeometryFudgeFactor()); |
| } else { |
| /* For other geometry, we do the regular rounding in order to snap, but also outset the |
| * bounds by a fudge factor. This ensures that ambiguous geometry (e.g. a non-AA Rect |
| * with top left at (0.5, 0.5)) will err on the side of a larger damage rect. |
| */ |
| left = floorf(left + 0.5f - Vertex::GeometryFudgeFactor()); |
| top = floorf(top + 0.5f - Vertex::GeometryFudgeFactor()); |
| right = floorf(right + 0.5f + Vertex::GeometryFudgeFactor()); |
| bottom = floorf(bottom + 0.5f + Vertex::GeometryFudgeFactor()); |
| } |
| } |
| |
| void snapToPixelBoundaries() { |
| left = floorf(left + 0.5f); |
| top = floorf(top + 0.5f); |
| right = floorf(right + 0.5f); |
| bottom = floorf(bottom + 0.5f); |
| } |
| |
| void roundOut() { |
| left = floorf(left); |
| top = floorf(top); |
| right = ceilf(right); |
| bottom = ceilf(bottom); |
| } |
| |
| void expandToCoverVertex(float x, float y) { |
| left = std::min(left, x); |
| top = std::min(top, y); |
| right = std::max(right, x); |
| bottom = std::max(bottom, y); |
| } |
| |
| void expandToCoverRect(float otherLeft, float otherTop, float otherRight, float otherBottom) { |
| left = std::min(left, otherLeft); |
| top = std::min(top, otherTop); |
| right = std::max(right, otherRight); |
| bottom = std::max(bottom, otherBottom); |
| } |
| |
| SkRect toSkRect() const { |
| return SkRect::MakeLTRB(left, top, right, bottom); |
| } |
| |
| SkIRect toSkIRect() const { |
| return SkIRect::MakeLTRB(left, top, right, bottom); |
| } |
| |
| void dump(const char* label = nullptr) const { |
| ALOGD("%s[l=%f t=%f r=%f b=%f]", label ? label : "Rect", left, top, right, bottom); |
| } |
| |
| private: |
| void intersectWith(Rect& tmp) const { |
| tmp.left = std::max(left, tmp.left); |
| tmp.top = std::max(top, tmp.top); |
| tmp.right = std::min(right, tmp.right); |
| tmp.bottom = std::min(bottom, tmp.bottom); |
| } |
| |
| Rect intersectWith(float l, float t, float r, float b) const { |
| Rect tmp; |
| tmp.left = std::max(left, l); |
| tmp.top = std::max(top, t); |
| tmp.right = std::min(right, r); |
| tmp.bottom = std::min(bottom, b); |
| return tmp; |
| } |
| |
| }; // class Rect |
| |
| }; // namespace uirenderer |
| }; // namespace android |
| |
| #endif // ANDROID_HWUI_RECT_H |