blob: e371590b8120ee89d6f93912308b7c72fd7af276 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_VIEW
#include "RenderNode.h"
#include <SkCanvas.h>
#include <algorithm>
#include <utils/Trace.h>
#include "Debug.h"
#include "DisplayListOp.h"
#include "DisplayListLogBuffer.h"
namespace android {
namespace uirenderer {
void RenderNode::outputLogBuffer(int fd) {
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
if (logBuffer.isEmpty()) {
return;
}
FILE *file = fdopen(fd, "a");
fprintf(file, "\nRecent DisplayList operations\n");
logBuffer.outputCommands(file);
String8 cachesLog;
Caches::getInstance().dumpMemoryUsage(cachesLog);
fprintf(file, "\nCaches:\n%s", cachesLog.string());
fprintf(file, "\n");
fflush(file);
}
RenderNode::RenderNode() : mDestroyed(false), mDisplayListData(0) {
}
RenderNode::~RenderNode() {
LOG_ALWAYS_FATAL_IF(mDestroyed, "Double destroyed DisplayList %p", this);
mDestroyed = true;
delete mDisplayListData;
}
void RenderNode::destroyDisplayListDeferred(RenderNode* displayList) {
if (displayList) {
DISPLAY_LIST_LOGD("Deferring display list destruction");
Caches::getInstance().deleteDisplayListDeferred(displayList);
}
}
void RenderNode::setData(DisplayListData* data) {
delete mDisplayListData;
mDisplayListData = data;
if (mDisplayListData) {
Caches::getInstance().registerFunctors(mDisplayListData->functorCount);
}
}
/**
* This function is a simplified version of replay(), where we simply retrieve and log the
* display list. This function should remain in sync with the replay() function.
*/
void RenderNode::output(uint32_t level) {
ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
mName.string(), isRenderable());
ALOGD("%*s%s %d", level * 2, "", "Save",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
outputViewProperties(level);
int flags = DisplayListOp::kOpLogFlag_Recurse;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
mDisplayListData->displayListOps[i]->output(level, flags);
}
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string());
}
void RenderNode::outputViewProperties(const int level) {
properties().updateMatrix();
if (properties().mLeft != 0 || properties().mTop != 0) {
ALOGD("%*sTranslate (left, top) %d, %d", level * 2, "", properties().mLeft, properties().mTop);
}
if (properties().mStaticMatrix) {
ALOGD("%*sConcatMatrix (static) %p: " SK_MATRIX_STRING,
level * 2, "", properties().mStaticMatrix, SK_MATRIX_ARGS(properties().mStaticMatrix));
}
if (properties().mAnimationMatrix) {
ALOGD("%*sConcatMatrix (animation) %p: " SK_MATRIX_STRING,
level * 2, "", properties().mAnimationMatrix, SK_MATRIX_ARGS(properties().mAnimationMatrix));
}
if (properties().mMatrixFlags != 0) {
if (properties().mMatrixFlags == TRANSLATION) {
ALOGD("%*sTranslate %.2f, %.2f, %.2f",
level * 2, "", properties().mTranslationX, properties().mTranslationY, properties().mTranslationZ);
} else {
ALOGD("%*sConcatMatrix %p: " MATRIX_4_STRING,
level * 2, "", properties().mTransformMatrix, MATRIX_4_ARGS(properties().mTransformMatrix));
}
}
bool clipToBoundsNeeded = properties().mCaching ? false : properties().mClipToBounds;
if (properties().mAlpha < 1) {
if (properties().mCaching) {
ALOGD("%*sSetOverrideLayerAlpha %.2f", level * 2, "", properties().mAlpha);
} else if (!properties().mHasOverlappingRendering) {
ALOGD("%*sScaleAlpha %.2f", level * 2, "", properties().mAlpha);
} else {
int flags = SkCanvas::kHasAlphaLayer_SaveFlag;
if (clipToBoundsNeeded) {
flags |= SkCanvas::kClipToLayer_SaveFlag;
clipToBoundsNeeded = false; // clipping done by save layer
}
ALOGD("%*sSaveLayerAlpha %.2f, %.2f, %.2f, %.2f, %d, 0x%x", level * 2, "",
(float) 0, (float) 0, (float) properties().mRight - properties().mLeft, (float) properties().mBottom - properties().mTop,
(int)(properties().mAlpha * 255), flags);
}
}
if (clipToBoundsNeeded) {
ALOGD("%*sClipRect %.2f, %.2f, %.2f, %.2f", level * 2, "", 0.0f, 0.0f,
(float) properties().mRight - properties().mLeft, (float) properties().mBottom - properties().mTop);
}
}
/*
* For property operations, we pass a savecount of 0, since the operations aren't part of the
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
* base saveCount (i.e., how RestoreToCount uses saveCount + properties().mCount)
*/
#define PROPERTY_SAVECOUNT 0
template <class T>
void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler,
const int level) {
#if DEBUG_DISPLAY_LIST
outputViewProperties(level);
#endif
properties().updateMatrix();
if (properties().mLeft != 0 || properties().mTop != 0) {
renderer.translate(properties().mLeft, properties().mTop);
}
if (properties().mStaticMatrix) {
renderer.concatMatrix(properties().mStaticMatrix);
} else if (properties().mAnimationMatrix) {
renderer.concatMatrix(properties().mAnimationMatrix);
}
if (properties().mMatrixFlags != 0) {
if (properties().mMatrixFlags == TRANSLATION) {
renderer.translate(properties().mTranslationX, properties().mTranslationY);
} else {
renderer.concatMatrix(*properties().mTransformMatrix);
}
}
bool clipToBoundsNeeded = properties().mCaching ? false : properties().mClipToBounds;
if (properties().mAlpha < 1) {
if (properties().mCaching) {
renderer.setOverrideLayerAlpha(properties().mAlpha);
} else if (!properties().mHasOverlappingRendering) {
renderer.scaleAlpha(properties().mAlpha);
} else {
// TODO: should be able to store the size of a DL at record time and not
// have to pass it into this call. In fact, this information might be in the
// location/size info that we store with the new native transform data.
int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
if (clipToBoundsNeeded) {
saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
clipToBoundsNeeded = false; // clipping done by saveLayer
}
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
0, 0, properties().mRight - properties().mLeft, properties().mBottom - properties().mTop, properties().mAlpha * 255, saveFlags);
handler(op, PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
}
if (clipToBoundsNeeded) {
ClipRectOp* op = new (handler.allocator()) ClipRectOp(0, 0,
properties().mRight - properties().mLeft, properties().mBottom - properties().mTop, SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
if (CC_UNLIKELY(properties().mClipToOutline && !properties().mOutline.isEmpty())) {
ClipPathOp* op = new (handler.allocator()) ClipPathOp(&properties().mOutline, SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
}
/**
* Apply property-based transformations to input matrix
*
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
*/
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) {
if (properties().mLeft != 0 || properties().mTop != 0) {
matrix.translate(properties().mLeft, properties().mTop);
}
if (properties().mStaticMatrix) {
mat4 stat(*properties().mStaticMatrix);
matrix.multiply(stat);
} else if (properties().mAnimationMatrix) {
mat4 anim(*properties().mAnimationMatrix);
matrix.multiply(anim);
}
if (properties().mMatrixFlags != 0) {
properties().updateMatrix();
if (properties().mMatrixFlags == TRANSLATION) {
matrix.translate(properties().mTranslationX, properties().mTranslationY,
true3dTransform ? properties().mTranslationZ : 0.0f);
} else {
if (!true3dTransform) {
matrix.multiply(*properties().mTransformMatrix);
} else {
mat4 true3dMat;
true3dMat.loadTranslate(
properties().mPivotX + properties().mTranslationX,
properties().mPivotY + properties().mTranslationY,
properties().mTranslationZ);
true3dMat.rotate(properties().mRotationX, 1, 0, 0);
true3dMat.rotate(properties().mRotationY, 0, 1, 0);
true3dMat.rotate(properties().mRotation, 0, 0, 1);
true3dMat.scale(properties().mScaleX, properties().mScaleY, 1);
true3dMat.translate(-properties().mPivotX, -properties().mPivotY);
matrix.multiply(true3dMat);
}
}
}
}
/**
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
*
* This should be called before a call to defer() or drawDisplayList()
*
* Each DisplayList that serves as a 3d root builds its list of composited children,
* which are flagged to not draw in the standard draw loop.
*/
void RenderNode::computeOrdering() {
ATRACE_CALL();
mProjectedNodes.clear();
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
// transform properties are applied correctly to top level children
if (mDisplayListData == NULL) return;
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
DrawDisplayListOp* childOp = mDisplayListData->children[i];
childOp->mDisplayList->computeOrderingImpl(childOp,
&mProjectedNodes, &mat4::identity());
}
}
void RenderNode::computeOrderingImpl(
DrawDisplayListOp* opState,
Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface) {
mProjectedNodes.clear();
if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return;
// TODO: should avoid this calculation in most cases
// TODO: just calculate single matrix, down to all leaf composited elements
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
if (properties().mProjectBackwards) {
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
opState->mSkipInOrderDraw = true;
opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
compositedChildrenOfProjectionSurface->add(opState);
} else {
// standard in order draw
opState->mSkipInOrderDraw = false;
}
if (mDisplayListData->children.size() > 0) {
const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
bool haveAppliedPropertiesToProjection = false;
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
DrawDisplayListOp* childOp = mDisplayListData->children[i];
RenderNode* child = childOp->mDisplayList;
Vector<DrawDisplayListOp*>* projectionChildren = NULL;
const mat4* projectionTransform = NULL;
if (isProjectionReceiver && !child->properties().mProjectBackwards) {
// if receiving projections, collect projecting descendent
// Note that if a direct descendent is projecting backwards, we pass it's
// grandparent projection collection, since it shouldn't project onto it's
// parent, where it will already be drawing.
projectionChildren = &mProjectedNodes;
projectionTransform = &mat4::identity();
} else {
if (!haveAppliedPropertiesToProjection) {
applyViewPropertyTransforms(localTransformFromProjectionSurface);
haveAppliedPropertiesToProjection = true;
}
projectionChildren = compositedChildrenOfProjectionSurface;
projectionTransform = &localTransformFromProjectionSurface;
}
child->computeOrderingImpl(childOp, projectionChildren, projectionTransform);
}
}
}
class DeferOperationHandler {
public:
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
: mDeferStruct(deferStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
private:
DeferStateStruct& mDeferStruct;
const int mLevel;
};
void RenderNode::defer(DeferStateStruct& deferStruct, const int level) {
DeferOperationHandler handler(deferStruct, level);
iterate<DeferOperationHandler>(deferStruct.mRenderer, handler, level);
}
class ReplayOperationHandler {
public:
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
: mReplayStruct(replayStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
properties().mReplayStruct.mRenderer.eventMark(operation->name());
#endif
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
private:
ReplayStateStruct& mReplayStruct;
const int mLevel;
};
void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) {
ReplayOperationHandler handler(replayStruct, level);
replayStruct.mRenderer.startMark(mName.string());
iterate<ReplayOperationHandler>(replayStruct.mRenderer, handler, level);
replayStruct.mRenderer.endMark();
DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(),
replayStruct.mDrawGlStatus);
}
void RenderNode::buildZSortedChildList(Vector<ZDrawDisplayListOpPair>& zTranslatedNodes) {
if (mDisplayListData == NULL || mDisplayListData->children.size() == 0) return;
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
DrawDisplayListOp* childOp = mDisplayListData->children[i];
RenderNode* child = childOp->mDisplayList;
float childZ = child->properties().mTranslationZ;
if (childZ != 0.0f) {
zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp));
childOp->mSkipInOrderDraw = true;
} else if (!child->properties().mProjectBackwards) {
// regular, in order drawing DisplayList
childOp->mSkipInOrderDraw = false;
}
}
// Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end());
}
#define SHADOW_DELTA 0.1f
template <class T>
void RenderNode::iterate3dChildren(const Vector<ZDrawDisplayListOpPair>& zTranslatedNodes,
ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) {
const int size = zTranslatedNodes.size();
if (size == 0
|| (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f)
|| (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
LinearAllocator& alloc = handler.allocator();
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().mWidth, properties().mHeight,
SkRegion::kIntersect_Op); // clip to 3d root bounds
handler(clipOp, PROPERTY_SAVECOUNT, properties().mClipToBounds);
/**
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
* with very similar Z heights to draw together.
*
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
* underneath both, and neither's shadow is drawn on top of the other.
*/
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
size_t drawIndex, shadowIndex, endIndex;
if (mode == kNegativeZChildren) {
drawIndex = 0;
endIndex = nonNegativeIndex;
shadowIndex = endIndex; // draw no shadows
} else {
drawIndex = nonNegativeIndex;
endIndex = size;
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
}
float lastCasterZ = 0.0f;
while (shadowIndex < endIndex || drawIndex < endIndex) {
if (shadowIndex < endIndex) {
DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value;
RenderNode* caster = casterOp->mDisplayList;
const float casterZ = zTranslatedNodes[shadowIndex].key;
// attempt to render the shadow if the caster about to be drawn is its caster,
// OR if its caster's Z value is similar to the previous potential caster
if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) {
if (caster->properties().mAlpha > 0.0f) {
mat4 shadowMatrixXY(casterOp->mTransformFromParent);
caster->applyViewPropertyTransforms(shadowMatrixXY);
// Z matrix needs actual 3d transformation, so mapped z values will be correct
mat4 shadowMatrixZ(casterOp->mTransformFromParent);
caster->applyViewPropertyTransforms(shadowMatrixZ, true);
DisplayListOp* shadowOp = new (alloc) DrawShadowOp(
shadowMatrixXY, shadowMatrixZ,
caster->properties().mAlpha, &(caster->properties().mOutline),
caster->properties().mWidth, caster->properties().mHeight);
handler(shadowOp, PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
shadowIndex++;
continue;
}
}
// only the actual child DL draw needs to be in save/restore,
// since it modifies the renderer's matrix
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value;
RenderNode* child = childOp->mDisplayList;
renderer.concatMatrix(childOp->mTransformFromParent);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().mClipToBounds);
childOp->mSkipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
drawIndex++;
}
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
template <class T>
void RenderNode::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) {
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
LinearAllocator& alloc = handler.allocator();
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().mWidth, properties().mHeight,
SkRegion::kReplace_Op); // clip to projection surface root bounds
handler(clipOp, PROPERTY_SAVECOUNT, properties().mClipToBounds);
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
DrawDisplayListOp* childOp = mProjectedNodes[i];
// matrix save, concat, and restore can be done safely without allocating operations
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, properties().mClipToBounds);
childOp->mSkipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
}
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().mClipToBounds);
}
/**
* This function serves both defer and replay modes, and will organize the displayList's component
* operations for a single frame:
*
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
* defer vs replay logic, per operation
*/
template <class T>
void RenderNode::iterate(OpenGLRenderer& renderer, T& handler, const int level) {
if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging
ALOGW("Error: %s is drawing after destruction", mName.string());
CRASH();
}
if (mDisplayListData->isEmpty() || properties().mAlpha <= 0) {
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string());
return;
}
#if DEBUG_DISPLAY_LIST
Rect* clipRect = renderer.getClipRect();
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f",
level * 2, "", this, mName.string(), clipRect->left, clipRect->top,
clipRect->right, clipRect->bottom);
#endif
LinearAllocator& alloc = handler.allocator();
int restoreTo = renderer.getSaveCount();
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
PROPERTY_SAVECOUNT, properties().mClipToBounds);
DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
setViewProperties<T>(renderer, handler, level + 1);
bool quickRejected = properties().mClipToBounds && renderer.quickRejectConservative(0, 0, properties().mWidth, properties().mHeight);
if (!quickRejected) {
Vector<ZDrawDisplayListOpPair> zTranslatedNodes;
buildZSortedChildList(zTranslatedNodes);
// for 3d root, draw children with negative z values
iterate3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler);
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
const int saveCountOffset = renderer.getSaveCount() - 1;
const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
DisplayListOp *op = mDisplayListData->displayListOps[i];
#if DEBUG_DISPLAY_LIST
op->output(level + 1);
#endif
logBuffer.writeCommand(level, op->name());
handler(op, saveCountOffset, properties().mClipToBounds);
if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
iterateProjectedChildren(renderer, handler, level);
}
}
// for 3d root, draw children with positive z values
iterate3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler);
}
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, properties().mClipToBounds);
renderer.setOverrideLayerAlpha(1.0f);
}
} /* namespace uirenderer */
} /* namespace android */