blob: 070ad333fd9c850ff6744986e6a76c658c80053d [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define DEBUG false // STOPSHIP if true
#include "Log.h"
#include "HashableDimensionKey.h"
#include "FieldValue.h"
namespace android {
namespace os {
namespace statsd {
using std::vector;
android::hash_t hashDimension(const HashableDimensionKey& value) {
android::hash_t hash = 0;
for (const auto& fieldValue : value.getValues()) {
hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mField.getField()));
hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mField.getTag()));
hash = android::JenkinsHashMix(hash, android::hash_type((int)fieldValue.mValue.getType()));
switch (fieldValue.mValue.getType()) {
case INT:
hash = android::JenkinsHashMix(hash,
android::hash_type(fieldValue.mValue.int_value));
break;
case LONG:
hash = android::JenkinsHashMix(hash,
android::hash_type(fieldValue.mValue.long_value));
break;
case STRING:
hash = android::JenkinsHashMix(hash, static_cast<uint32_t>(std::hash<std::string>()(
fieldValue.mValue.str_value)));
break;
case FLOAT: {
hash = android::JenkinsHashMix(hash,
android::hash_type(fieldValue.mValue.float_value));
break;
}
}
}
return JenkinsHashWhiten(hash);
}
// Filter fields using the matchers and output the results as a HashableDimensionKey.
// Note: HashableDimensionKey is just a wrapper for vector<FieldValue>
bool filterValues(const vector<Matcher>& matcherFields, const vector<FieldValue>& values,
vector<HashableDimensionKey>* output) {
output->push_back(HashableDimensionKey());
// Top level is only tag id. Now take the real child matchers
int prevAnyMatcherPrefix = 0;
size_t prevPrevFanout = 0;
size_t prevFanout = 0;
// For each matcher get matched results.
for (const auto& matcher : matcherFields) {
vector<FieldValue> matchedResults;
for (const auto& value : values) {
// TODO: potential optimization here to break early because all fields are naturally
// sorted.
if (value.mField.matches(matcher)) {
matchedResults.push_back(FieldValue(
Field(value.mField.getTag(), (value.mField.getField() & matcher.mMask)),
value.mValue));
}
}
if (matchedResults.size() == 0) {
VLOG("We can't find a dimension value for matcher (%d)%#x.", matcher.mMatcher.getTag(),
matcher.mMatcher.getField());
continue;
}
if (matchedResults.size() == 1) {
for (auto& dimension : *output) {
dimension.addValue(matchedResults[0]);
}
prevAnyMatcherPrefix = 0;
prevFanout = 0;
continue;
}
// All the complexity below is because we support ANY in dimension.
bool createFanout = true;
// createFanout is true when the matcher doesn't need to follow the prev matcher's
// order.
// e.g., get (uid, tag) from any position in attribution. because we have translated
// it as 2 matchers, they need to follow the same ordering, we can't create a cross
// product of all uid and tags.
// However, if the 2 matchers have different prefix, they will create a cross product
// e.g., [any uid] [any some other repeated field], we will create a cross product for them
if (prevAnyMatcherPrefix != 0) {
int anyMatcherPrefix = 0;
bool isAnyMatcher = matcher.hasAnyPositionMatcher(&anyMatcherPrefix);
if (isAnyMatcher && anyMatcherPrefix == prevAnyMatcherPrefix) {
createFanout = false;
} else {
prevAnyMatcherPrefix = anyMatcherPrefix;
}
}
// Each matcher should match exact one field, unless position is ANY
// When x number of fields matches a matcher, the returned dimension
// size is multiplied by x.
int oldSize;
if (createFanout) {
// First create fanout (fanout size is matchedResults.Size which could be one,
// which means we do nothing here)
oldSize = output->size();
for (size_t i = 1; i < matchedResults.size(); i++) {
output->insert(output->end(), output->begin(), output->begin() + oldSize);
}
prevPrevFanout = oldSize;
prevFanout = matchedResults.size();
} else {
// If we should not create fanout, e.g., uid tag from same position should be remain
// together.
oldSize = prevPrevFanout;
if (prevFanout != matchedResults.size()) {
// sanity check.
ALOGE("2 Any matcher result in different output");
return false;
}
}
// now add the matched field value to output
for (size_t i = 0; i < matchedResults.size(); i++) {
for (int j = 0; j < oldSize; j++) {
(*output)[i * oldSize + j].addValue(matchedResults[i]);
}
}
}
return output->size() > 0 && (*output)[0].getValues().size() > 0;
}
void filterGaugeValues(const std::vector<Matcher>& matcherFields,
const std::vector<FieldValue>& values, std::vector<FieldValue>* output) {
for (const auto& field : matcherFields) {
for (const auto& value : values) {
if (value.mField.matches(field)) {
output->push_back(value);
}
}
}
}
void getDimensionForCondition(const LogEvent& event, Metric2Condition links,
vector<HashableDimensionKey>* conditionDimension) {
// Get the dimension first by using dimension from what.
filterValues(links.metricFields, event.getValues(), conditionDimension);
// Then replace the field with the dimension from condition.
for (auto& dim : *conditionDimension) {
size_t count = dim.getValues().size();
if (count != links.conditionFields.size()) {
// ALOGE("WTF condition link is bad");
return;
}
for (size_t i = 0; i < count; i++) {
dim.mutableValue(i)->mField.setField(links.conditionFields[i].mMatcher.getField());
dim.mutableValue(i)->mField.setTag(links.conditionFields[i].mMatcher.getTag());
}
}
}
bool LessThan(const vector<FieldValue>& s1, const vector<FieldValue>& s2) {
if (s1.size() != s2.size()) {
return s1.size() < s2.size();
}
size_t count = s1.size();
for (size_t i = 0; i < count; i++) {
if (s1[i] != s2[i]) {
return s1[i] < s2[i];
}
}
return false;
}
bool HashableDimensionKey::operator==(const HashableDimensionKey& that) const {
if (mValues.size() != that.getValues().size()) {
return false;
}
size_t count = mValues.size();
for (size_t i = 0; i < count; i++) {
if (mValues[i] != (that.getValues())[i]) {
return false;
}
}
return true;
};
bool HashableDimensionKey::operator<(const HashableDimensionKey& that) const {
return LessThan(getValues(), that.getValues());
};
bool HashableDimensionKey::contains(const HashableDimensionKey& that) const {
if (mValues.size() < that.getValues().size()) {
return false;
}
if (mValues.size() == that.getValues().size()) {
return (*this) == that;
}
for (const auto& value : that.getValues()) {
bool found = false;
for (const auto& myValue : mValues) {
if (value.mField == myValue.mField && value.mValue == myValue.mValue) {
found = true;
break;
}
}
if (!found) {
return false;
}
}
return true;
}
string HashableDimensionKey::toString() const {
std::string output;
for (const auto& value : mValues) {
output += StringPrintf("(%d)%#x->%s ", value.mField.getTag(), value.mField.getField(),
value.mValue.toString().c_str());
}
return output;
}
bool MetricDimensionKey::operator==(const MetricDimensionKey& that) const {
return mDimensionKeyInWhat == that.getDimensionKeyInWhat() &&
mDimensionKeyInCondition == that.getDimensionKeyInCondition();
};
string MetricDimensionKey::toString() const {
return mDimensionKeyInWhat.toString() + mDimensionKeyInCondition.toString();
}
bool MetricDimensionKey::operator<(const MetricDimensionKey& that) const {
if (mDimensionKeyInWhat < that.getDimensionKeyInWhat()) {
return true;
} else if (that.getDimensionKeyInWhat() < mDimensionKeyInWhat) {
return false;
}
return mDimensionKeyInCondition < that.getDimensionKeyInCondition();
}
} // namespace statsd
} // namespace os
} // namespace android