| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #define LOG_NDEBUG 1 |
| |
| #define VERTEX_DEBUG 0 |
| |
| #if VERTEX_DEBUG |
| #define DEBUG_DUMP_ALPHA_BUFFER() \ |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \ |
| ALOGD("point %d at %f %f, alpha %f", i, buffer[i].x, buffer[i].y, buffer[i].alpha); \ |
| } |
| #define DEBUG_DUMP_BUFFER() \ |
| for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { \ |
| ALOGD("point %d at %f %f", i, buffer[i].x, buffer[i].y); \ |
| } |
| #else |
| #define DEBUG_DUMP_ALPHA_BUFFER() |
| #define DEBUG_DUMP_BUFFER() |
| #endif |
| |
| #include "PathTessellator.h" |
| |
| #include "Matrix.h" |
| #include "Vector.h" |
| #include "Vertex.h" |
| #include "utils/MathUtils.h" |
| |
| #include <algorithm> |
| |
| #include <SkGeometry.h> // WARNING: Internal Skia Header |
| #include <SkPaint.h> |
| #include <SkPath.h> |
| #include <SkPoint.h> |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <sys/types.h> |
| |
| #include <utils/Log.h> |
| #include <utils/Trace.h> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| #define OUTLINE_REFINE_THRESHOLD 0.5f |
| #define ROUND_CAP_THRESH 0.25f |
| #define PI 3.1415926535897932f |
| #define MAX_DEPTH 15 |
| |
| /** |
| * Extracts the x and y scale from the transform as positive values, and clamps them |
| */ |
| void PathTessellator::extractTessellationScales(const Matrix4& transform, float* scaleX, |
| float* scaleY) { |
| if (CC_LIKELY(transform.isPureTranslate())) { |
| *scaleX = 1.0f; |
| *scaleY = 1.0f; |
| } else { |
| float m00 = transform.data[Matrix4::kScaleX]; |
| float m01 = transform.data[Matrix4::kSkewY]; |
| float m10 = transform.data[Matrix4::kSkewX]; |
| float m11 = transform.data[Matrix4::kScaleY]; |
| *scaleX = MathUtils::clampTessellationScale(sqrt(m00 * m00 + m01 * m01)); |
| *scaleY = MathUtils::clampTessellationScale(sqrt(m10 * m10 + m11 * m11)); |
| } |
| } |
| |
| /** |
| * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset |
| * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices |
| * will be offset by 1.0 |
| * |
| * Note that we can't add and normalize the two vectors, that would result in a rectangle having an |
| * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1) |
| * |
| * NOTE: assumes angles between normals 90 degrees or less |
| */ |
| inline static Vector2 totalOffsetFromNormals(const Vector2& normalA, const Vector2& normalB) { |
| return (normalA + normalB) / (1 + fabs(normalA.dot(normalB))); |
| } |
| |
| /** |
| * Structure used for storing useful information about the SkPaint and scale used for tessellating |
| */ |
| struct PaintInfo { |
| public: |
| PaintInfo(const SkPaint* paint, const mat4& transform) |
| : style(paint->getStyle()) |
| , cap(paint->getStrokeCap()) |
| , isAA(paint->isAntiAlias()) |
| , halfStrokeWidth(paint->getStrokeWidth() * 0.5f) |
| , maxAlpha(1.0f) { |
| // compute inverse scales |
| if (CC_LIKELY(transform.isPureTranslate())) { |
| inverseScaleX = 1.0f; |
| inverseScaleY = 1.0f; |
| } else { |
| float scaleX, scaleY; |
| PathTessellator::extractTessellationScales(transform, &scaleX, &scaleY); |
| inverseScaleX = 1.0f / scaleX; |
| inverseScaleY = 1.0f / scaleY; |
| } |
| |
| if (isAA && halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && |
| 2 * halfStrokeWidth < inverseScaleX) { |
| // AA, with non-hairline stroke, width < 1 pixel. Scale alpha and treat as hairline. |
| maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; |
| halfStrokeWidth = 0.0f; |
| } |
| } |
| |
| SkPaint::Style style; |
| SkPaint::Cap cap; |
| bool isAA; |
| float inverseScaleX; |
| float inverseScaleY; |
| float halfStrokeWidth; |
| float maxAlpha; |
| |
| inline void scaleOffsetForStrokeWidth(Vector2& offset) const { |
| if (halfStrokeWidth == 0.0f) { |
| // hairline - compensate for scale |
| offset.x *= 0.5f * inverseScaleX; |
| offset.y *= 0.5f * inverseScaleY; |
| } else { |
| offset *= halfStrokeWidth; |
| } |
| } |
| |
| /** |
| * NOTE: the input will not always be a normal, especially for sharp edges - it should be the |
| * result of totalOffsetFromNormals (see documentation there) |
| */ |
| inline Vector2 deriveAAOffset(const Vector2& offset) const { |
| return (Vector2){offset.x * 0.5f * inverseScaleX, offset.y * 0.5f * inverseScaleY}; |
| } |
| |
| /** |
| * Returns the number of cap divisions beyond the minimum 2 (kButt_Cap/kSquareCap will return 0) |
| * Should only be used when stroking and drawing caps |
| */ |
| inline int capExtraDivisions() const { |
| if (cap == SkPaint::kRound_Cap) { |
| // always use 2 points for hairline |
| if (halfStrokeWidth == 0.0f) return 2; |
| |
| float threshold = std::min(inverseScaleX, inverseScaleY) * ROUND_CAP_THRESH; |
| return MathUtils::divisionsNeededToApproximateArc(halfStrokeWidth, PI, threshold); |
| } |
| return 0; |
| } |
| |
| /** |
| * Outset the bounds of point data (for line endpoints or points) to account for stroke |
| * geometry. |
| * |
| * bounds are in pre-scaled space. |
| */ |
| void expandBoundsForStroke(Rect* bounds) const { |
| if (halfStrokeWidth == 0) { |
| // hairline, outset by (0.5f + fudge factor) in post-scaling space |
| bounds->outset(fabs(inverseScaleX) * (0.5f + Vertex::GeometryFudgeFactor()), |
| fabs(inverseScaleY) * (0.5f + Vertex::GeometryFudgeFactor())); |
| } else { |
| // non hairline, outset by half stroke width pre-scaled, and fudge factor post scaled |
| bounds->outset(halfStrokeWidth + fabs(inverseScaleX) * Vertex::GeometryFudgeFactor(), |
| halfStrokeWidth + fabs(inverseScaleY) * Vertex::GeometryFudgeFactor()); |
| } |
| } |
| }; |
| |
| void getFillVerticesFromPerimeter(const std::vector<Vertex>& perimeter, |
| VertexBuffer& vertexBuffer) { |
| Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size()); |
| |
| int currentIndex = 0; |
| // zig zag between all previous points on the inside of the hull to create a |
| // triangle strip that fills the hull |
| int srcAindex = 0; |
| int srcBindex = perimeter.size() - 1; |
| while (srcAindex <= srcBindex) { |
| buffer[currentIndex++] = perimeter[srcAindex]; |
| if (srcAindex == srcBindex) break; |
| buffer[currentIndex++] = perimeter[srcBindex]; |
| srcAindex++; |
| srcBindex--; |
| } |
| } |
| |
| /* |
| * Fills a vertexBuffer with non-alpha vertices, zig-zagging at each perimeter point to create a |
| * tri-strip as wide as the stroke. |
| * |
| * Uses an additional 2 vertices at the end to wrap around, closing the tri-strip |
| * (for a total of perimeter.size() * 2 + 2 vertices) |
| */ |
| void getStrokeVerticesFromPerimeter(const PaintInfo& paintInfo, |
| const std::vector<Vertex>& perimeter, |
| VertexBuffer& vertexBuffer) { |
| Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2); |
| |
| int currentIndex = 0; |
| const Vertex* last = &(perimeter[perimeter.size() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| Vector2 lastNormal = {current->y - last->y, last->x - current->x}; |
| lastNormal.normalize(); |
| for (unsigned int i = 0; i < perimeter.size(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); |
| Vector2 nextNormal = {next->y - current->y, current->x - next->x}; |
| nextNormal.normalize(); |
| |
| Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| paintInfo.scaleOffsetForStrokeWidth(totalOffset); |
| |
| Vertex::set(&buffer[currentIndex++], current->x + totalOffset.x, |
| current->y + totalOffset.y); |
| |
| Vertex::set(&buffer[currentIndex++], current->x - totalOffset.x, |
| current->y - totalOffset.y); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap around to beginning |
| buffer[currentIndex++] = buffer[0]; |
| buffer[currentIndex++] = buffer[1]; |
| |
| DEBUG_DUMP_BUFFER(); |
| } |
| |
| static inline void storeBeginEnd(const PaintInfo& paintInfo, const Vertex& center, |
| const Vector2& normal, Vertex* buffer, int& currentIndex, |
| bool begin) { |
| Vector2 strokeOffset = normal; |
| paintInfo.scaleOffsetForStrokeWidth(strokeOffset); |
| |
| Vector2 referencePoint = {center.x, center.y}; |
| if (paintInfo.cap == SkPaint::kSquare_Cap) { |
| Vector2 rotated = {-strokeOffset.y, strokeOffset.x}; |
| referencePoint += rotated * (begin ? -1 : 1); |
| } |
| |
| Vertex::set(&buffer[currentIndex++], referencePoint + strokeOffset); |
| Vertex::set(&buffer[currentIndex++], referencePoint - strokeOffset); |
| } |
| |
| /** |
| * Fills a vertexBuffer with non-alpha vertices similar to getStrokeVerticesFromPerimeter, except: |
| * |
| * 1 - Doesn't need to wrap around, since the input vertices are unclosed |
| * |
| * 2 - can zig-zag across 'extra' vertices at either end, to create round caps |
| */ |
| void getStrokeVerticesFromUnclosedVertices(const PaintInfo& paintInfo, |
| const std::vector<Vertex>& vertices, |
| VertexBuffer& vertexBuffer) { |
| const int extra = paintInfo.capExtraDivisions(); |
| const int allocSize = (vertices.size() + extra) * 2; |
| Vertex* buffer = vertexBuffer.alloc<Vertex>(allocSize); |
| |
| const int lastIndex = vertices.size() - 1; |
| if (extra > 0) { |
| // tessellate both round caps |
| float beginTheta = atan2(-(vertices[0].x - vertices[1].x), vertices[0].y - vertices[1].y); |
| float endTheta = atan2(-(vertices[lastIndex].x - vertices[lastIndex - 1].x), |
| vertices[lastIndex].y - vertices[lastIndex - 1].y); |
| const float dTheta = PI / (extra + 1); |
| |
| int capOffset; |
| for (int i = 0; i < extra; i++) { |
| if (i < extra / 2) { |
| capOffset = extra - 2 * i - 1; |
| } else { |
| capOffset = 2 * i - extra; |
| } |
| |
| beginTheta += dTheta; |
| Vector2 beginRadialOffset = {cosf(beginTheta), sinf(beginTheta)}; |
| paintInfo.scaleOffsetForStrokeWidth(beginRadialOffset); |
| Vertex::set(&buffer[capOffset], vertices[0].x + beginRadialOffset.x, |
| vertices[0].y + beginRadialOffset.y); |
| |
| endTheta += dTheta; |
| Vector2 endRadialOffset = {cosf(endTheta), sinf(endTheta)}; |
| paintInfo.scaleOffsetForStrokeWidth(endRadialOffset); |
| Vertex::set(&buffer[allocSize - 1 - capOffset], |
| vertices[lastIndex].x + endRadialOffset.x, |
| vertices[lastIndex].y + endRadialOffset.y); |
| } |
| } |
| |
| int currentIndex = extra; |
| const Vertex* last = &(vertices[0]); |
| const Vertex* current = &(vertices[1]); |
| Vector2 lastNormal = {current->y - last->y, last->x - current->x}; |
| lastNormal.normalize(); |
| |
| storeBeginEnd(paintInfo, vertices[0], lastNormal, buffer, currentIndex, true); |
| |
| for (unsigned int i = 1; i < vertices.size() - 1; i++) { |
| const Vertex* next = &(vertices[i + 1]); |
| Vector2 nextNormal = {next->y - current->y, current->x - next->x}; |
| nextNormal.normalize(); |
| |
| Vector2 strokeOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| paintInfo.scaleOffsetForStrokeWidth(strokeOffset); |
| |
| Vector2 center = {current->x, current->y}; |
| Vertex::set(&buffer[currentIndex++], center + strokeOffset); |
| Vertex::set(&buffer[currentIndex++], center - strokeOffset); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| storeBeginEnd(paintInfo, vertices[lastIndex], lastNormal, buffer, currentIndex, false); |
| |
| DEBUG_DUMP_BUFFER(); |
| } |
| |
| /** |
| * Populates a vertexBuffer with AlphaVertices to create an anti-aliased fill shape tessellation |
| * |
| * 1 - create the AA perimeter of unit width, by zig-zagging at each point around the perimeter of |
| * the shape (using 2 * perimeter.size() vertices) |
| * |
| * 2 - wrap around to the beginning to complete the perimeter (2 vertices) |
| * |
| * 3 - zig zag back and forth inside the shape to fill it (using perimeter.size() vertices) |
| */ |
| void getFillVerticesFromPerimeterAA(const PaintInfo& paintInfo, |
| const std::vector<Vertex>& perimeter, |
| VertexBuffer& vertexBuffer, float maxAlpha = 1.0f) { |
| AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2); |
| |
| // generate alpha points - fill Alpha vertex gaps in between each point with |
| // alpha 0 vertex, offset by a scaled normal. |
| int currentIndex = 0; |
| const Vertex* last = &(perimeter[perimeter.size() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| Vector2 lastNormal = {current->y - last->y, last->x - current->x}; |
| lastNormal.normalize(); |
| for (unsigned int i = 0; i < perimeter.size(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); |
| Vector2 nextNormal = {next->y - current->y, current->x - next->x}; |
| nextNormal.normalize(); |
| |
| // AA point offset from original point is that point's normal, such that each side is offset |
| // by .5 pixels |
| Vector2 totalOffset = |
| paintInfo.deriveAAOffset(totalOffsetFromNormals(lastNormal, nextNormal)); |
| |
| AlphaVertex::set(&buffer[currentIndex++], current->x + totalOffset.x, |
| current->y + totalOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[currentIndex++], current->x - totalOffset.x, |
| current->y - totalOffset.y, maxAlpha); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap around to beginning |
| buffer[currentIndex++] = buffer[0]; |
| buffer[currentIndex++] = buffer[1]; |
| |
| // zig zag between all previous points on the inside of the hull to create a |
| // triangle strip that fills the hull, repeating the first inner point to |
| // create degenerate tris to start inside path |
| int srcAindex = 0; |
| int srcBindex = perimeter.size() - 1; |
| while (srcAindex <= srcBindex) { |
| buffer[currentIndex++] = buffer[srcAindex * 2 + 1]; |
| if (srcAindex == srcBindex) break; |
| buffer[currentIndex++] = buffer[srcBindex * 2 + 1]; |
| srcAindex++; |
| srcBindex--; |
| } |
| |
| DEBUG_DUMP_BUFFER(); |
| } |
| |
| /** |
| * Stores geometry for a single, AA-perimeter (potentially rounded) cap |
| * |
| * For explanation of constants and general methodoloyg, see comments for |
| * getStrokeVerticesFromUnclosedVerticesAA() below. |
| */ |
| inline static void storeCapAA(const PaintInfo& paintInfo, const std::vector<Vertex>& vertices, |
| AlphaVertex* buffer, bool isFirst, Vector2 normal, int offset) { |
| const int extra = paintInfo.capExtraDivisions(); |
| const int extraOffset = (extra + 1) / 2; |
| const int capIndex = |
| isFirst ? 2 * offset + 6 + 2 * (extra + extraOffset) : offset + 2 + 2 * extraOffset; |
| if (isFirst) normal *= -1; |
| |
| // TODO: this normal should be scaled by radialScale if extra != 0, see totalOffsetFromNormals() |
| Vector2 AAOffset = paintInfo.deriveAAOffset(normal); |
| |
| Vector2 strokeOffset = normal; |
| paintInfo.scaleOffsetForStrokeWidth(strokeOffset); |
| Vector2 outerOffset = strokeOffset + AAOffset; |
| Vector2 innerOffset = strokeOffset - AAOffset; |
| |
| Vector2 capAAOffset = {0, 0}; |
| if (paintInfo.cap != SkPaint::kRound_Cap) { |
| // if the cap is square or butt, the inside primary cap vertices will be inset in two |
| // directions - both normal to the stroke, and parallel to it. |
| capAAOffset = (Vector2){-AAOffset.y, AAOffset.x}; |
| } |
| |
| // determine referencePoint, the center point for the 4 primary cap vertices |
| const Vertex& point = isFirst ? vertices.front() : vertices.back(); |
| Vector2 referencePoint = {point.x, point.y}; |
| if (paintInfo.cap == SkPaint::kSquare_Cap) { |
| // To account for square cap, move the primary cap vertices (that create the AA edge) by the |
| // stroke offset vector (rotated to be parallel to the stroke) |
| Vector2 rotated = {-strokeOffset.y, strokeOffset.x}; |
| referencePoint += rotated; |
| } |
| |
| AlphaVertex::set(&buffer[capIndex + 0], referencePoint.x + outerOffset.x + capAAOffset.x, |
| referencePoint.y + outerOffset.y + capAAOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[capIndex + 1], referencePoint.x + innerOffset.x - capAAOffset.x, |
| referencePoint.y + innerOffset.y - capAAOffset.y, paintInfo.maxAlpha); |
| |
| bool isRound = paintInfo.cap == SkPaint::kRound_Cap; |
| |
| const int postCapIndex = (isRound && isFirst) ? (2 * extraOffset - 2) : capIndex + (2 * extra); |
| AlphaVertex::set(&buffer[postCapIndex + 2], referencePoint.x - outerOffset.x + capAAOffset.x, |
| referencePoint.y - outerOffset.y + capAAOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[postCapIndex + 3], referencePoint.x - innerOffset.x - capAAOffset.x, |
| referencePoint.y - innerOffset.y - capAAOffset.y, paintInfo.maxAlpha); |
| |
| if (isRound) { |
| const float dTheta = PI / (extra + 1); |
| const float radialScale = 2.0f / (1 + cos(dTheta)); |
| float theta = atan2(normal.y, normal.x); |
| int capPerimIndex = capIndex + 2; |
| |
| for (int i = 0; i < extra; i++) { |
| theta += dTheta; |
| |
| Vector2 radialOffset = {cosf(theta), sinf(theta)}; |
| |
| // scale to compensate for pinching at sharp angles, see totalOffsetFromNormals() |
| radialOffset *= radialScale; |
| |
| AAOffset = paintInfo.deriveAAOffset(radialOffset); |
| paintInfo.scaleOffsetForStrokeWidth(radialOffset); |
| AlphaVertex::set(&buffer[capPerimIndex++], |
| referencePoint.x + radialOffset.x + AAOffset.x, |
| referencePoint.y + radialOffset.y + AAOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[capPerimIndex++], |
| referencePoint.x + radialOffset.x - AAOffset.x, |
| referencePoint.y + radialOffset.y - AAOffset.y, paintInfo.maxAlpha); |
| |
| if (isFirst && i == extra - extraOffset) { |
| // copy most recent two points to first two points |
| buffer[0] = buffer[capPerimIndex - 2]; |
| buffer[1] = buffer[capPerimIndex - 1]; |
| |
| capPerimIndex = 2; // start writing the rest of the round cap at index 2 |
| } |
| } |
| |
| if (isFirst) { |
| const int startCapFillIndex = capIndex + 2 * (extra - extraOffset) + 4; |
| int capFillIndex = startCapFillIndex; |
| for (int i = 0; i < extra + 2; i += 2) { |
| buffer[capFillIndex++] = buffer[1 + i]; |
| // TODO: to support odd numbers of divisions, break here on the last iteration |
| buffer[capFillIndex++] = buffer[startCapFillIndex - 3 - i]; |
| } |
| } else { |
| int capFillIndex = 6 * vertices.size() + 2 + 6 * extra - (extra + 2); |
| for (int i = 0; i < extra + 2; i += 2) { |
| buffer[capFillIndex++] = buffer[capIndex + 1 + i]; |
| // TODO: to support odd numbers of divisions, break here on the last iteration |
| buffer[capFillIndex++] = buffer[capIndex + 3 + 2 * extra - i]; |
| } |
| } |
| return; |
| } |
| if (isFirst) { |
| buffer[0] = buffer[postCapIndex + 2]; |
| buffer[1] = buffer[postCapIndex + 3]; |
| buffer[postCapIndex + 4] = buffer[1]; // degenerate tris (the only two!) |
| buffer[postCapIndex + 5] = buffer[postCapIndex + 1]; |
| } else { |
| buffer[6 * vertices.size()] = buffer[postCapIndex + 1]; |
| buffer[6 * vertices.size() + 1] = buffer[postCapIndex + 3]; |
| } |
| } |
| |
| /* |
| the geometry for an aa, capped stroke consists of the following: |
| |
| # vertices | function |
| ---------------------------------------------------------------------- |
| a) 2 | Start AA perimeter |
| b) 2, 2 * roundDivOff | First half of begin cap's perimeter |
| | |
| 2 * middlePts | 'Outer' or 'Top' AA perimeter half (between caps) |
| | |
| a) 4 | End cap's |
| b) 2, 2 * roundDivs, 2 | AA perimeter |
| | |
| 2 * middlePts | 'Inner' or 'bottom' AA perimeter half |
| | |
| a) 6 | Begin cap's perimeter |
| b) 2, 2*(rD - rDO + 1), | Last half of begin cap's perimeter |
| roundDivs, 2 | |
| | |
| 2 * middlePts | Stroke's full opacity center strip |
| | |
| a) 2 | end stroke |
| b) 2, roundDivs | (and end cap fill, for round) |
| |
| Notes: |
| * rows starting with 'a)' denote the Butt or Square cap vertex use, 'b)' denote Round |
| |
| * 'middlePts' is (number of points in the unclosed input vertex list, minus 2) times two |
| |
| * 'roundDivs' or 'rD' is the number of extra vertices (beyond the minimum of 2) that define the |
| round cap's shape, and is at least two. This will increase with cap size to sufficiently |
| define the cap's level of tessellation. |
| |
| * 'roundDivOffset' or 'rDO' is the point about halfway along the start cap's round perimeter, where |
| the stream of vertices for the AA perimeter starts. By starting and ending the perimeter at |
| this offset, the fill of the stroke is drawn from this point with minimal extra vertices. |
| |
| This means the outer perimeter starts at: |
| outerIndex = (2) OR (2 + 2 * roundDivOff) |
| the inner perimeter (since it is filled in reverse) starts at: |
| innerIndex = outerIndex + (4 * middlePts) + ((4) OR (4 + 2 * roundDivs)) - 1 |
| the stroke starts at: |
| strokeIndex = innerIndex + 1 + ((6) OR (6 + 3 * roundDivs - 2 * roundDivOffset)) |
| |
| The total needed allocated space is either: |
| 2 + 4 + 6 + 2 + 3 * (2 * middlePts) = 14 + 6 * middlePts = 2 + 6 * pts |
| or, for rounded caps: |
| (2 + 2 * rDO) + (4 + 2 * rD) + (2 * (rD - rDO + 1) |
| + roundDivs + 4) + (2 + roundDivs) + 3 * (2 * middlePts) |
| = 14 + 6 * middlePts + 6 * roundDivs |
| = 2 + 6 * pts + 6 * roundDivs |
| */ |
| void getStrokeVerticesFromUnclosedVerticesAA(const PaintInfo& paintInfo, |
| const std::vector<Vertex>& vertices, |
| VertexBuffer& vertexBuffer) { |
| const int extra = paintInfo.capExtraDivisions(); |
| const int allocSize = 6 * vertices.size() + 2 + 6 * extra; |
| |
| AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(allocSize); |
| |
| const int extraOffset = (extra + 1) / 2; |
| int offset = 2 * (vertices.size() - 2); |
| // there is no outer/inner here, using them for consistency with below approach |
| int currentAAOuterIndex = 2 + 2 * extraOffset; |
| int currentAAInnerIndex = currentAAOuterIndex + (2 * offset) + 3 + (2 * extra); |
| int currentStrokeIndex = currentAAInnerIndex + 7 + (3 * extra - 2 * extraOffset); |
| |
| const Vertex* last = &(vertices[0]); |
| const Vertex* current = &(vertices[1]); |
| Vector2 lastNormal = {current->y - last->y, last->x - current->x}; |
| lastNormal.normalize(); |
| |
| // TODO: use normal from bezier traversal for cap, instead of from vertices |
| storeCapAA(paintInfo, vertices, buffer, true, lastNormal, offset); |
| |
| for (unsigned int i = 1; i < vertices.size() - 1; i++) { |
| const Vertex* next = &(vertices[i + 1]); |
| Vector2 nextNormal = {next->y - current->y, current->x - next->x}; |
| nextNormal.normalize(); |
| |
| Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset); |
| |
| Vector2 innerOffset = totalOffset; |
| paintInfo.scaleOffsetForStrokeWidth(innerOffset); |
| Vector2 outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x, |
| current->y + outerOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x, |
| current->y + innerOffset.y, paintInfo.maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x, |
| current->y + innerOffset.y, paintInfo.maxAlpha); |
| AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x, |
| current->y - innerOffset.y, paintInfo.maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - innerOffset.x, |
| current->y - innerOffset.y, paintInfo.maxAlpha); |
| AlphaVertex::set(&buffer[currentAAInnerIndex--], current->x - outerOffset.x, |
| current->y - outerOffset.y, 0.0f); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // TODO: use normal from bezier traversal for cap, instead of from vertices |
| storeCapAA(paintInfo, vertices, buffer, false, lastNormal, offset); |
| |
| DEBUG_DUMP_ALPHA_BUFFER(); |
| } |
| |
| void getStrokeVerticesFromPerimeterAA(const PaintInfo& paintInfo, |
| const std::vector<Vertex>& perimeter, |
| VertexBuffer& vertexBuffer) { |
| AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8); |
| |
| int offset = 2 * perimeter.size() + 3; |
| int currentAAOuterIndex = 0; |
| int currentStrokeIndex = offset; |
| int currentAAInnerIndex = offset * 2; |
| |
| const Vertex* last = &(perimeter[perimeter.size() - 1]); |
| const Vertex* current = &(perimeter[0]); |
| Vector2 lastNormal = {current->y - last->y, last->x - current->x}; |
| lastNormal.normalize(); |
| for (unsigned int i = 0; i < perimeter.size(); i++) { |
| const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]); |
| Vector2 nextNormal = {next->y - current->y, current->x - next->x}; |
| nextNormal.normalize(); |
| |
| Vector2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); |
| Vector2 AAOffset = paintInfo.deriveAAOffset(totalOffset); |
| |
| Vector2 innerOffset = totalOffset; |
| paintInfo.scaleOffsetForStrokeWidth(innerOffset); |
| Vector2 outerOffset = innerOffset + AAOffset; |
| innerOffset -= AAOffset; |
| |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + outerOffset.x, |
| current->y + outerOffset.y, 0.0f); |
| AlphaVertex::set(&buffer[currentAAOuterIndex++], current->x + innerOffset.x, |
| current->y + innerOffset.y, paintInfo.maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentStrokeIndex++], current->x + innerOffset.x, |
| current->y + innerOffset.y, paintInfo.maxAlpha); |
| AlphaVertex::set(&buffer[currentStrokeIndex++], current->x - innerOffset.x, |
| current->y - innerOffset.y, paintInfo.maxAlpha); |
| |
| AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - innerOffset.x, |
| current->y - innerOffset.y, paintInfo.maxAlpha); |
| AlphaVertex::set(&buffer[currentAAInnerIndex++], current->x - outerOffset.x, |
| current->y - outerOffset.y, 0.0f); |
| |
| current = next; |
| lastNormal = nextNormal; |
| } |
| |
| // wrap each strip around to beginning, creating degenerate tris to bridge strips |
| buffer[currentAAOuterIndex++] = buffer[0]; |
| buffer[currentAAOuterIndex++] = buffer[1]; |
| buffer[currentAAOuterIndex++] = buffer[1]; |
| |
| buffer[currentStrokeIndex++] = buffer[offset]; |
| buffer[currentStrokeIndex++] = buffer[offset + 1]; |
| buffer[currentStrokeIndex++] = buffer[offset + 1]; |
| |
| buffer[currentAAInnerIndex++] = buffer[2 * offset]; |
| buffer[currentAAInnerIndex++] = buffer[2 * offset + 1]; |
| // don't need to create last degenerate tri |
| |
| DEBUG_DUMP_ALPHA_BUFFER(); |
| } |
| |
| void PathTessellator::tessellatePath(const SkPath& path, const SkPaint* paint, |
| const mat4& transform, VertexBuffer& vertexBuffer) { |
| ATRACE_CALL(); |
| |
| const PaintInfo paintInfo(paint, transform); |
| |
| std::vector<Vertex> tempVertices; |
| float threshInvScaleX = paintInfo.inverseScaleX; |
| float threshInvScaleY = paintInfo.inverseScaleY; |
| if (paintInfo.style == SkPaint::kStroke_Style) { |
| // alter the bezier recursion threshold values we calculate in order to compensate for |
| // expansion done after the path vertices are found |
| SkRect bounds = path.getBounds(); |
| if (!bounds.isEmpty()) { |
| threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth()); |
| threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth()); |
| } |
| } |
| |
| // force close if we're filling the path, since fill path expects closed perimeter. |
| bool forceClose = paintInfo.style != SkPaint::kStroke_Style; |
| PathApproximationInfo approximationInfo(threshInvScaleX, threshInvScaleY, |
| OUTLINE_REFINE_THRESHOLD); |
| bool wasClosed = |
| approximatePathOutlineVertices(path, forceClose, approximationInfo, tempVertices); |
| |
| if (!tempVertices.size()) { |
| // path was empty, return without allocating vertex buffer |
| return; |
| } |
| |
| #if VERTEX_DEBUG |
| for (unsigned int i = 0; i < tempVertices.size(); i++) { |
| ALOGD("orig path: point at %f %f", tempVertices[i].x, tempVertices[i].y); |
| } |
| #endif |
| |
| if (paintInfo.style == SkPaint::kStroke_Style) { |
| if (!paintInfo.isAA) { |
| if (wasClosed) { |
| getStrokeVerticesFromPerimeter(paintInfo, tempVertices, vertexBuffer); |
| } else { |
| getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer); |
| } |
| |
| } else { |
| if (wasClosed) { |
| getStrokeVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer); |
| } else { |
| getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer); |
| } |
| } |
| } else { |
| // For kStrokeAndFill style, the path should be adjusted externally. |
| // It will be treated as a fill here. |
| if (!paintInfo.isAA) { |
| getFillVerticesFromPerimeter(tempVertices, vertexBuffer); |
| } else { |
| getFillVerticesFromPerimeterAA(paintInfo, tempVertices, vertexBuffer); |
| } |
| } |
| |
| Rect bounds(path.getBounds()); |
| paintInfo.expandBoundsForStroke(&bounds); |
| vertexBuffer.setBounds(bounds); |
| vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); |
| } |
| |
| template <class TYPE> |
| static void instanceVertices(VertexBuffer& srcBuffer, VertexBuffer& dstBuffer, const float* points, |
| int count, Rect& bounds) { |
| bounds.set(points[0], points[1], points[0], points[1]); |
| |
| int numPoints = count / 2; |
| int verticesPerPoint = srcBuffer.getVertexCount(); |
| dstBuffer.alloc<TYPE>(numPoints * verticesPerPoint + (numPoints - 1) * 2); |
| |
| for (int i = 0; i < count; i += 2) { |
| bounds.expandToCover(points[i + 0], points[i + 1]); |
| dstBuffer.copyInto<TYPE>(srcBuffer, points[i + 0], points[i + 1]); |
| } |
| dstBuffer.createDegenerateSeparators<TYPE>(verticesPerPoint); |
| } |
| |
| void PathTessellator::tessellatePoints(const float* points, int count, const SkPaint* paint, |
| const mat4& transform, VertexBuffer& vertexBuffer) { |
| const PaintInfo paintInfo(paint, transform); |
| |
| // determine point shape |
| SkPath path; |
| float radius = paintInfo.halfStrokeWidth; |
| if (radius == 0.0f) radius = 0.5f; |
| |
| if (paintInfo.cap == SkPaint::kRound_Cap) { |
| path.addCircle(0, 0, radius); |
| } else { |
| path.addRect(-radius, -radius, radius, radius); |
| } |
| |
| // calculate outline |
| std::vector<Vertex> outlineVertices; |
| PathApproximationInfo approximationInfo(paintInfo.inverseScaleX, paintInfo.inverseScaleY, |
| OUTLINE_REFINE_THRESHOLD); |
| approximatePathOutlineVertices(path, true, approximationInfo, outlineVertices); |
| |
| if (!outlineVertices.size()) return; |
| |
| Rect bounds; |
| // tessellate, then duplicate outline across points |
| VertexBuffer tempBuffer; |
| if (!paintInfo.isAA) { |
| getFillVerticesFromPerimeter(outlineVertices, tempBuffer); |
| instanceVertices<Vertex>(tempBuffer, vertexBuffer, points, count, bounds); |
| } else { |
| // note: pass maxAlpha directly, since we want fill to be alpha modulated |
| getFillVerticesFromPerimeterAA(paintInfo, outlineVertices, tempBuffer, paintInfo.maxAlpha); |
| instanceVertices<AlphaVertex>(tempBuffer, vertexBuffer, points, count, bounds); |
| } |
| |
| // expand bounds from vertex coords to pixel data |
| paintInfo.expandBoundsForStroke(&bounds); |
| vertexBuffer.setBounds(bounds); |
| vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); |
| } |
| |
| void PathTessellator::tessellateLines(const float* points, int count, const SkPaint* paint, |
| const mat4& transform, VertexBuffer& vertexBuffer) { |
| ATRACE_CALL(); |
| const PaintInfo paintInfo(paint, transform); |
| |
| const int extra = paintInfo.capExtraDivisions(); |
| int numLines = count / 4; |
| int lineAllocSize; |
| // pre-allocate space for lines in the buffer, and degenerate tris in between |
| if (paintInfo.isAA) { |
| lineAllocSize = 6 * (2) + 2 + 6 * extra; |
| vertexBuffer.alloc<AlphaVertex>(numLines * lineAllocSize + (numLines - 1) * 2); |
| } else { |
| lineAllocSize = 2 * ((2) + extra); |
| vertexBuffer.alloc<Vertex>(numLines * lineAllocSize + (numLines - 1) * 2); |
| } |
| |
| std::vector<Vertex> tempVertices(2); |
| Vertex* tempVerticesData = &tempVertices.front(); |
| Rect bounds; |
| bounds.set(points[0], points[1], points[0], points[1]); |
| for (int i = 0; i < count; i += 4) { |
| Vertex::set(&(tempVerticesData[0]), points[i + 0], points[i + 1]); |
| Vertex::set(&(tempVerticesData[1]), points[i + 2], points[i + 3]); |
| |
| if (paintInfo.isAA) { |
| getStrokeVerticesFromUnclosedVerticesAA(paintInfo, tempVertices, vertexBuffer); |
| } else { |
| getStrokeVerticesFromUnclosedVertices(paintInfo, tempVertices, vertexBuffer); |
| } |
| |
| // calculate bounds |
| bounds.expandToCover(tempVerticesData[0].x, tempVerticesData[0].y); |
| bounds.expandToCover(tempVerticesData[1].x, tempVerticesData[1].y); |
| } |
| |
| // since multiple objects tessellated into buffer, separate them with degen tris |
| if (paintInfo.isAA) { |
| vertexBuffer.createDegenerateSeparators<AlphaVertex>(lineAllocSize); |
| } else { |
| vertexBuffer.createDegenerateSeparators<Vertex>(lineAllocSize); |
| } |
| |
| // expand bounds from vertex coords to pixel data |
| paintInfo.expandBoundsForStroke(&bounds); |
| vertexBuffer.setBounds(bounds); |
| vertexBuffer.setMeshFeatureFlags(paintInfo.isAA ? VertexBuffer::kAlpha : VertexBuffer::kNone); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Simple path line approximation |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, float threshold, |
| std::vector<Vertex>& outputVertices) { |
| PathApproximationInfo approximationInfo(1.0f, 1.0f, threshold); |
| return approximatePathOutlineVertices(path, true, approximationInfo, outputVertices); |
| } |
| |
| class ClockwiseEnforcer { |
| public: |
| void addPoint(const SkPoint& point) { |
| double x = point.x(); |
| double y = point.y(); |
| |
| if (initialized) { |
| sum += (x + lastX) * (y - lastY); |
| } else { |
| initialized = true; |
| } |
| |
| lastX = x; |
| lastY = y; |
| } |
| void reverseVectorIfNotClockwise(std::vector<Vertex>& vertices) { |
| if (sum < 0) { |
| // negative sum implies CounterClockwise |
| const int size = vertices.size(); |
| for (int i = 0; i < size / 2; i++) { |
| Vertex tmp = vertices[i]; |
| int k = size - 1 - i; |
| vertices[i] = vertices[k]; |
| vertices[k] = tmp; |
| } |
| } |
| } |
| |
| private: |
| bool initialized = false; |
| double lastX = 0; |
| double lastY = 0; |
| double sum = 0; |
| }; |
| |
| bool PathTessellator::approximatePathOutlineVertices(const SkPath& path, bool forceClose, |
| const PathApproximationInfo& approximationInfo, |
| std::vector<Vertex>& outputVertices) { |
| ATRACE_CALL(); |
| |
| // TODO: to support joins other than sharp miter, join vertices should be labelled in the |
| // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case. |
| SkPath::Iter iter(path, forceClose); |
| SkPoint pts[4]; |
| SkPath::Verb v; |
| ClockwiseEnforcer clockwiseEnforcer; |
| while (SkPath::kDone_Verb != (v = iter.next(pts))) { |
| switch (v) { |
| case SkPath::kMove_Verb: |
| outputVertices.push_back(Vertex{pts[0].x(), pts[0].y()}); |
| ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y()); |
| clockwiseEnforcer.addPoint(pts[0]); |
| break; |
| case SkPath::kClose_Verb: |
| ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y()); |
| clockwiseEnforcer.addPoint(pts[0]); |
| break; |
| case SkPath::kLine_Verb: |
| ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y()); |
| outputVertices.push_back(Vertex{pts[1].x(), pts[1].y()}); |
| clockwiseEnforcer.addPoint(pts[1]); |
| break; |
| case SkPath::kQuad_Verb: |
| ALOGV("kQuad_Verb"); |
| recursiveQuadraticBezierVertices(pts[0].x(), pts[0].y(), pts[2].x(), pts[2].y(), |
| pts[1].x(), pts[1].y(), approximationInfo, |
| outputVertices); |
| clockwiseEnforcer.addPoint(pts[1]); |
| clockwiseEnforcer.addPoint(pts[2]); |
| break; |
| case SkPath::kCubic_Verb: |
| ALOGV("kCubic_Verb"); |
| recursiveCubicBezierVertices(pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y(), |
| pts[3].x(), pts[3].y(), pts[2].x(), pts[2].y(), |
| approximationInfo, outputVertices); |
| clockwiseEnforcer.addPoint(pts[1]); |
| clockwiseEnforcer.addPoint(pts[2]); |
| clockwiseEnforcer.addPoint(pts[3]); |
| break; |
| case SkPath::kConic_Verb: { |
| ALOGV("kConic_Verb"); |
| SkAutoConicToQuads converter; |
| const SkPoint* quads = converter.computeQuads( |
| pts, iter.conicWeight(), approximationInfo.thresholdForConicQuads); |
| for (int i = 0; i < converter.countQuads(); ++i) { |
| const int offset = 2 * i; |
| recursiveQuadraticBezierVertices(quads[offset].x(), quads[offset].y(), |
| quads[offset + 2].x(), quads[offset + 2].y(), |
| quads[offset + 1].x(), quads[offset + 1].y(), |
| approximationInfo, outputVertices); |
| } |
| clockwiseEnforcer.addPoint(pts[1]); |
| clockwiseEnforcer.addPoint(pts[2]); |
| break; |
| } |
| default: |
| static_assert(SkPath::kMove_Verb == 0 && SkPath::kLine_Verb == 1 && |
| SkPath::kQuad_Verb == 2 && SkPath::kConic_Verb == 3 && |
| SkPath::kCubic_Verb == 4 && SkPath::kClose_Verb == 5 && |
| SkPath::kDone_Verb == 6, |
| "Path enum changed, new types may have been added"); |
| break; |
| } |
| } |
| |
| bool wasClosed = false; |
| int size = outputVertices.size(); |
| if (size >= 2 && outputVertices[0].x == outputVertices[size - 1].x && |
| outputVertices[0].y == outputVertices[size - 1].y) { |
| outputVertices.pop_back(); |
| wasClosed = true; |
| } |
| |
| // ensure output vector is clockwise |
| clockwiseEnforcer.reverseVectorIfNotClockwise(outputVertices); |
| return wasClosed; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // Bezier approximation |
| // |
| // All the inputs and outputs here are in path coordinates. |
| // We convert the error threshold from screen coordinates into path coordinates. |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Get a threshold in path coordinates, by scaling the thresholdSquared from screen coordinates. |
| // TODO: Document the math behind this algorithm. |
| static inline float getThreshold(const PathApproximationInfo& info, float dx, float dy) { |
| // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors |
| float scale = (dx * dx * info.sqrInvScaleY + dy * dy * info.sqrInvScaleX); |
| return info.thresholdSquared * scale; |
| } |
| |
| void PathTessellator::recursiveCubicBezierVertices(float p1x, float p1y, float c1x, float c1y, |
| float p2x, float p2y, float c2x, float c2y, |
| const PathApproximationInfo& approximationInfo, |
| std::vector<Vertex>& outputVertices, int depth) { |
| float dx = p2x - p1x; |
| float dy = p2y - p1y; |
| float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx); |
| float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx); |
| float d = d1 + d2; |
| |
| if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) { |
| // below thresh, draw line by adding endpoint |
| outputVertices.push_back(Vertex{p2x, p2y}); |
| } else { |
| float p1c1x = (p1x + c1x) * 0.5f; |
| float p1c1y = (p1y + c1y) * 0.5f; |
| float p2c2x = (p2x + c2x) * 0.5f; |
| float p2c2y = (p2y + c2y) * 0.5f; |
| |
| float c1c2x = (c1x + c2x) * 0.5f; |
| float c1c2y = (c1y + c2y) * 0.5f; |
| |
| float p1c1c2x = (p1c1x + c1c2x) * 0.5f; |
| float p1c1c2y = (p1c1y + c1c2y) * 0.5f; |
| |
| float p2c1c2x = (p2c2x + c1c2x) * 0.5f; |
| float p2c1c2y = (p2c2y + c1c2y) * 0.5f; |
| |
| float mx = (p1c1c2x + p2c1c2x) * 0.5f; |
| float my = (p1c1c2y + p2c1c2y) * 0.5f; |
| |
| recursiveCubicBezierVertices(p1x, p1y, p1c1x, p1c1y, mx, my, p1c1c2x, p1c1c2y, |
| approximationInfo, outputVertices, depth + 1); |
| recursiveCubicBezierVertices(mx, my, p2c1c2x, p2c1c2y, p2x, p2y, p2c2x, p2c2y, |
| approximationInfo, outputVertices, depth + 1); |
| } |
| } |
| |
| void PathTessellator::recursiveQuadraticBezierVertices( |
| float ax, float ay, float bx, float by, float cx, float cy, |
| const PathApproximationInfo& approximationInfo, std::vector<Vertex>& outputVertices, |
| int depth) { |
| float dx = bx - ax; |
| float dy = by - ay; |
| // d is the cross product of vector (B-A) and (C-B). |
| float d = (cx - bx) * dy - (cy - by) * dx; |
| |
| if (depth >= MAX_DEPTH || d * d <= getThreshold(approximationInfo, dx, dy)) { |
| // below thresh, draw line by adding endpoint |
| outputVertices.push_back(Vertex{bx, by}); |
| } else { |
| float acx = (ax + cx) * 0.5f; |
| float bcx = (bx + cx) * 0.5f; |
| float acy = (ay + cy) * 0.5f; |
| float bcy = (by + cy) * 0.5f; |
| |
| // midpoint |
| float mx = (acx + bcx) * 0.5f; |
| float my = (acy + bcy) * 0.5f; |
| |
| recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, approximationInfo, |
| outputVertices, depth + 1); |
| recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, approximationInfo, |
| outputVertices, depth + 1); |
| } |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |