blob: f748e7cd9dd2d488c07f41d01fc1e294a8a9643f [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Handle events, like key input and vsync.
//
// The goal is to provide an optimized solution for Linux, not an
// implementation that works well across all platforms. We expect
// events to arrive on file descriptors, so that we can use a select()
// select() call to sleep.
//
// We can't select() on anything but network sockets in Windows, so we
// provide an alternative implementation of waitEvent for that platform.
//
#define LOG_TAG "EventHub"
//#define LOG_NDEBUG 0
#include "EventHub.h"
#include <hardware_legacy/power.h>
#include <cutils/atomic.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <utils/Errors.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <assert.h>
#include <ui/KeyLayoutMap.h>
#include <ui/KeyCharacterMap.h>
#include <ui/VirtualKeyMap.h>
#include <string.h>
#include <stdint.h>
#include <dirent.h>
#ifdef HAVE_INOTIFY
# include <sys/inotify.h>
#endif
#ifdef HAVE_ANDROID_OS
# include <sys/limits.h> /* not part of Linux */
#endif
#include <sys/poll.h>
#include <sys/ioctl.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) ((bits + 7) / 8)
// Fd at index 0 is always reserved for inotify
#define FIRST_ACTUAL_DEVICE_INDEX 1
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
namespace android {
static const char *WAKE_LOCK_ID = "KeyEvents";
static const char *DEVICE_PATH = "/dev/input";
/* return the larger integer */
static inline int max(int v1, int v2)
{
return (v1 > v2) ? v1 : v2;
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, const String8& path,
const InputDeviceIdentifier& identifier) :
next(NULL),
fd(fd), id(id), path(path), identifier(identifier),
classes(0), keyBitmask(NULL), relBitmask(NULL),
configuration(NULL), virtualKeyMap(NULL) {
}
EventHub::Device::~Device() {
close();
delete[] keyBitmask;
delete[] relBitmask;
delete configuration;
delete virtualKeyMap;
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
// --- EventHub ---
EventHub::EventHub(void) :
mError(NO_INIT), mBuiltInKeyboardId(-1), mNextDeviceId(1),
mOpeningDevices(0), mClosingDevices(0),
mOpened(false), mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(0), mNeedToScanDevices(false),
mInputFdIndex(1) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
memset(mSwitches, 0, sizeof(mSwitches));
mNumCpus = sysconf(_SC_NPROCESSORS_ONLN);
}
EventHub::~EventHub(void) {
release_wake_lock(WAKE_LOCK_ID);
// we should free stuff here...
}
status_t EventHub::errorCheck() const {
return mError;
}
String8 EventHub::getDeviceName(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return String8();
return device->identifier.name;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return 0;
return device->classes;
}
void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->configuration) {
*outConfiguration = *device->configuration;
} else {
outConfiguration->clear();
}
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return -1;
struct input_absinfo info;
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
LOGW("Error reading absolute controller %d for device %s fd %d\n",
axis, device->identifier.name.string(), device->fd);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
}
return OK;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->relBitmask) {
return test_bit(axis, device->relBitmask);
}
}
return false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getScanCodeStateLocked(device, scanCode);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getScanCodeStateLocked(Device* device, int32_t scanCode) const {
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd,
EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
return test_bit(scanCode, key_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getKeyCodeStateLocked(device, keyCode);
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeStateLocked(Device* device, int32_t keyCode) const {
if (!device->keyMap.haveKeyLayout()) {
return AKEY_STATE_UNKNOWN;
}
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
if (ioctl(device->fd, EVIOCGKEY(sizeof(key_bitmask)), key_bitmask) >= 0) {
#if 0
for (size_t i=0; i<=KEY_MAX; i++) {
LOGI("(Scan code %d: down=%d)", i, test_bit(i, key_bitmask));
}
#endif
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
//LOGI("Code %d: down=%d", sc, test_bit(sc, key_bitmask));
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, key_bitmask)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return getSwitchStateLocked(device, sw);
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchStateLocked(Device* device, int32_t sw) const {
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
if (ioctl(device->fd,
EVIOCGSW(sizeof(sw_bitmask)), sw_bitmask) >= 0) {
return test_bit(sw, sw_bitmask) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
return AKEY_STATE_UNKNOWN;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device != NULL) {
return markSupportedKeyCodesLocked(device, numCodes, keyCodes, outFlags);
}
return false;
}
bool EventHub::markSupportedKeyCodesLocked(Device* device, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
return false;
}
Vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
keyCodes[codeIndex], &scanCodes);
if (! err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], device->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
status_t EventHub::mapKey(int32_t deviceId, int scancode,
int32_t* outKeycode, uint32_t* outFlags) const
{
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mBuiltInKeyboardId != -1) {
device = getDeviceLocked(mBuiltInKeyboardId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(scancode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
*outKeycode = 0;
*outFlags = 0;
return NAME_NOT_FOUND;
}
status_t EventHub::mapAxis(int32_t deviceId, int scancode, AxisInfo* outAxisInfo) const
{
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
if (mBuiltInKeyboardId != -1) {
device = getDeviceLocked(mBuiltInKeyboardId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scancode, outAxisInfo);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
}
return NAME_NOT_FOUND;
}
void EventHub::setExcludedDevices(const Vector<String8>& devices) {
AutoMutex _l(mLock);
mExcludedDevices = devices;
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
uint8_t bitmask[sizeof_bit_array(LED_MAX + 1)];
memset(bitmask, 0, sizeof(bitmask));
if (ioctl(device->fd, EVIOCGBIT(EV_LED, sizeof(bitmask)), bitmask) >= 0) {
if (test_bit(led, bitmask)) {
return true;
}
}
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_LED;
ev.code = led;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(device->fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
Vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->virtualKeyMap) {
outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
}
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == 0) {
deviceId = mBuiltInKeyboardId;
}
size_t numDevices = mDevices.size();
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < numDevices; i++) {
Device* device = mDevices[i];
if (device->id == deviceId) {
return device;
}
}
return NULL;
}
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
// Note that we only allow one caller to getEvents(), so don't need
// to do locking here... only when adding/removing devices.
assert(bufferSize >= 1);
if (!mOpened) {
android_atomic_acquire_store(0, &mNeedToReopenDevices);
mError = openPlatformInput() ? NO_ERROR : UNKNOWN_ERROR;
mOpened = true;
mNeedToScanDevices = true;
}
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (android_atomic_acquire_load(&mNeedToReopenDevices)) {
android_atomic_acquire_store(0, &mNeedToReopenDevices);
LOGI("Reopening all input devices due to a configuration change.");
AutoMutex _l(mLock);
while (mDevices.size() > 1) {
closeDeviceAtIndexLocked(mDevices.size() - 1);
}
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
while (mClosingDevices) {
Device* device = mClosingDevices;
LOGV("Reporting device closed: id=%d, name=%s\n",
device->id, device->path.string());
mClosingDevices = device->next;
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_REMOVED;
event += 1;
delete device;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevices();
mNeedToSendFinishedDeviceScan = true;
}
while (mOpeningDevices != NULL) {
Device* device = mOpeningDevices;
LOGV("Reporting device opened: id=%d, name=%s\n",
device->id, device->path.string());
mOpeningDevices = device->next;
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
// mInputFdIndex is initially 1 because index 0 is used for inotify.
bool deviceWasRemoved = false;
while (mInputFdIndex < mFds.size()) {
const struct pollfd& pfd = mFds[mInputFdIndex];
if (pfd.revents & POLLIN) {
int32_t readSize = read(pfd.fd, readBuffer, sizeof(struct input_event) * capacity);
if (readSize < 0) {
if (errno == ENODEV) {
deviceWasRemoved = true;
break;
}
if (errno != EAGAIN && errno != EINTR) {
LOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
LOGE("could not get event (wrong size: %d)", readSize);
} else if (readSize == 0) { // eof
deviceWasRemoved = true;
break;
} else {
const Device* device = mDevices[mInputFdIndex];
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
const struct input_event& iev = readBuffer[i];
LOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
device->path.string(),
(int) iev.time.tv_sec, (int) iev.time.tv_usec,
iev.type, iev.code, iev.value);
#ifdef HAVE_POSIX_CLOCKS
// Use the time specified in the event instead of the current time
// so that downstream code can get more accurate estimates of
// event dispatch latency from the time the event is enqueued onto
// the evdev client buffer.
//
// The event's timestamp fortuitously uses the same monotonic clock
// time base as the rest of Android. The kernel event device driver
// (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
// The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
// calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
// system call that also queries ktime_get_ts().
event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
+ nsecs_t(iev.time.tv_usec) * 1000LL;
LOGV("event time %lld, now %lld", event->when, now);
#else
event->when = now;
#endif
event->deviceId = deviceId;
event->type = iev.type;
event->scanCode = iev.code;
event->value = iev.value;
event->keyCode = AKEYCODE_UNKNOWN;
event->flags = 0;
if (iev.type == EV_KEY && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(iev.code,
&event->keyCode, &event->flags);
LOGV("iev.code=%d keyCode=%d flags=0x%08x err=%d\n",
iev.code, event->keyCode, event->flags, err);
}
event += 1;
}
capacity -= count;
if (capacity == 0) {
break;
}
}
}
mInputFdIndex += 1;
}
// Handle the case where a device has been removed but INotify has not yet noticed.
if (deviceWasRemoved) {
AutoMutex _l(mLock);
closeDeviceAtIndexLocked(mInputFdIndex);
continue; // report added or removed devices immediately
}
#if HAVE_INOTIFY
// readNotify() will modify mFDs and mFDCount, so this must be done after
// processing all other events.
if(mFds[0].revents & POLLIN) {
readNotify(mFds[0].fd);
mFds.editItemAt(0).revents = 0;
mInputFdIndex = mFds.size();
continue; // report added or removed devices immediately
}
#endif
// Return now if we have collected any events, otherwise poll.
if (event != buffer) {
break;
}
// Poll for events. Mind the wake lock dance!
// We hold a wake lock at all times except during poll(). This works due to some
// subtle choreography. When a device driver has pending (unread) events, it acquires
// a kernel wake lock. However, once the last pending event has been read, the device
// driver will release the kernel wake lock. To prevent the system from going to sleep
// when this happens, the EventHub holds onto its own user wake lock while the client
// is processing events. Thus the system can only sleep if there are no events
// pending or currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
release_wake_lock(WAKE_LOCK_ID);
int pollResult = poll(mFds.editArray(), mFds.size(), timeoutMillis);
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
if (pollResult == 0) {
break; // timed out
}
if (pollResult < 0) {
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
LOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// On an SMP system, it is possible for the framework to read input events
// faster than the kernel input device driver can produce a complete packet.
// Because poll() wakes up as soon as the first input event becomes available,
// the framework will often end up reading one event at a time until the
// packet is complete. Instead of one call to read() returning 71 events,
// it could take 71 calls to read() each returning 1 event.
//
// Sleep for a short period of time after waking up from the poll() to give
// the kernel time to finish writing the entire packet of input events.
if (mNumCpus > 1) {
usleep(250);
}
}
// Prepare to process all of the FDs we just polled.
mInputFdIndex = 1;
}
// All done, return the number of events we read.
return event - buffer;
}
/*
* Open the platform-specific input device.
*/
bool EventHub::openPlatformInput(void) {
/*
* Open platform-specific input device(s).
*/
int res, fd;
#ifdef HAVE_INOTIFY
fd = inotify_init();
res = inotify_add_watch(fd, DEVICE_PATH, IN_DELETE | IN_CREATE);
if(res < 0) {
LOGE("could not add watch for %s, %s\n", DEVICE_PATH, strerror(errno));
}
#else
/*
* The code in EventHub::getEvent assumes that mFDs[0] is an inotify fd.
* We allocate space for it and set it to something invalid.
*/
fd = -1;
#endif
// Reserve fd index 0 for inotify.
struct pollfd pollfd;
pollfd.fd = fd;
pollfd.events = POLLIN;
pollfd.revents = 0;
mFds.push(pollfd);
mDevices.push(NULL);
return true;
}
void EventHub::scanDevices() {
int res = scanDir(DEVICE_PATH);
if(res < 0) {
LOGE("scan dir failed for %s\n", DEVICE_PATH);
}
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
};
int EventHub::openDevice(const char *devicePath) {
char buffer[80];
LOGV("Opening device: %s", devicePath);
AutoMutex _l(mLock);
int fd = open(devicePath, O_RDWR);
if(fd < 0) {
LOGE("could not open %s, %s\n", devicePath, strerror(errno));
return -1;
}
InputDeviceIdentifier identifier;
// Get device name.
if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name.setTo(buffer);
}
// Check to see if the device is on our excluded list
for (size_t i = 0; i < mExcludedDevices.size(); i++) {
const String8& item = mExcludedDevices.itemAt(i);
if (identifier.name == item) {
LOGI("ignoring event id %s driver %s\n", devicePath, item.string());
close(fd);
return -1;
}
}
// Get device driver version.
int driverVersion;
if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
LOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
// Get device identifier.
struct input_id inputId;
if(ioctl(fd, EVIOCGID, &inputId)) {
LOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location.setTo(buffer);
}
// Get device unique id.
if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId.setTo(buffer);
}
// Make file descriptor non-blocking for use with poll().
if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
LOGE("Error %d making device file descriptor non-blocking.", errno);
close(fd);
return -1;
}
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
#if 0
LOGI("add device %d: %s\n", deviceId, devicePath);
LOGI(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
LOGI(" name: \"%s\"\n", identifier.name.string());
LOGI(" location: \"%s\"\n", identifier.location.string());
LOGI(" unique id: \"%s\"\n", identifier.uniqueId.string());
LOGI(" driver: v%d.%d.%d\n",
driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
#endif
// Load the configuration file for the device.
loadConfiguration(device);
// Figure out the kinds of events the device reports.
uint8_t key_bitmask[sizeof_bit_array(KEY_MAX + 1)];
memset(key_bitmask, 0, sizeof(key_bitmask));
ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(key_bitmask)), key_bitmask);
uint8_t abs_bitmask[sizeof_bit_array(ABS_MAX + 1)];
memset(abs_bitmask, 0, sizeof(abs_bitmask));
ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(abs_bitmask)), abs_bitmask);
uint8_t rel_bitmask[sizeof_bit_array(REL_MAX + 1)];
memset(rel_bitmask, 0, sizeof(rel_bitmask));
ioctl(fd, EVIOCGBIT(EV_REL, sizeof(rel_bitmask)), rel_bitmask);
uint8_t sw_bitmask[sizeof_bit_array(SW_MAX + 1)];
memset(sw_bitmask, 0, sizeof(sw_bitmask));
ioctl(fd, EVIOCGBIT(EV_SW, sizeof(sw_bitmask)), sw_bitmask);
device->keyBitmask = new uint8_t[sizeof(key_bitmask)];
if (device->keyBitmask != NULL) {
memcpy(device->keyBitmask, key_bitmask, sizeof(key_bitmask));
} else {
delete device;
LOGE("out of memory allocating key bitmask");
return -1;
}
device->relBitmask = new uint8_t[sizeof(rel_bitmask)];
if (device->relBitmask != NULL) {
memcpy(device->relBitmask, rel_bitmask, sizeof(rel_bitmask));
} else {
delete device;
LOGE("out of memory allocating rel bitmask");
return -1;
}
// See if this is a keyboard. Ignore everything in the button range except for
// joystick and gamepad buttons which are handled like keyboards for the most part.
bool haveKeyboardKeys = containsNonZeroByte(key_bitmask, 0, sizeof_bit_array(BTN_MISC))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(KEY_OK),
sizeof_bit_array(KEY_MAX + 1));
bool haveGamepadButtons = containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_MISC),
sizeof_bit_array(BTN_MOUSE))
|| containsNonZeroByte(key_bitmask, sizeof_bit_array(BTN_JOYSTICK),
sizeof_bit_array(BTN_DIGI));
if (haveKeyboardKeys || haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (test_bit(BTN_MOUSE, key_bitmask)
&& test_bit(REL_X, rel_bitmask)
&& test_bit(REL_Y, rel_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_CURSOR;
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_POSITION_X, abs_bitmask)
&& test_bit(ABS_MT_POSITION_Y, abs_bitmask)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (test_bit(BTN_TOUCH, key_bitmask) || !haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
}
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, key_bitmask)
&& test_bit(ABS_X, abs_bitmask)
&& test_bit(ABS_Y, abs_bitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH;
}
// See if this device is a joystick.
// Ignore touchscreens because they use the same absolute axes for other purposes.
// Assumes that joysticks always have gamepad buttons in order to distinguish them
// from other devices such as accelerometers that also have absolute axes.
if (haveGamepadButtons
&& !(device->classes & INPUT_DEVICE_CLASS_TOUCH)
&& containsNonZeroByte(abs_bitmask, 0, sizeof_bit_array(ABS_MAX + 1))) {
device->classes |= INPUT_DEVICE_CLASS_JOYSTICK;
}
// figure out the switches this device reports
bool haveSwitches = false;
for (int i=0; i<EV_SW; i++) {
//LOGI("Device %d sw %d: has=%d", device->id, i, test_bit(i, sw_bitmask));
if (test_bit(i, sw_bitmask)) {
haveSwitches = true;
if (mSwitches[i] == 0) {
mSwitches[i] = device->id;
}
}
}
if (haveSwitches) {
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
}
if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
status_t status = loadVirtualKeyMap(device);
if (!status) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
}
// Load the key map.
// We need to do this for joysticks too because the key layout may specify axes.
status_t keyMapStatus = NAME_NOT_FOUND;
if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
// Load the keymap for the device.
keyMapStatus = loadKeyMap(device);
}
// Configure the keyboard, gamepad or virtual keyboard.
if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
// Set system properties for the keyboard.
setKeyboardProperties(device, false);
// Register the keyboard as a built-in keyboard if it is eligible.
if (!keyMapStatus
&& mBuiltInKeyboardId == -1
&& isEligibleBuiltInKeyboard(device->identifier,
device->configuration, &device->keyMap)) {
mBuiltInKeyboardId = device->id;
setKeyboardProperties(device, true);
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == 0) {
LOGV("Dropping device: id=%d, path='%s', name='%s'",
deviceId, devicePath, device->identifier.name.string());
delete device;
return -1;
}
// Determine whether the device is external or internal.
if (isExternalDevice(device)) {
device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
}
LOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s",
deviceId, fd, devicePath, device->identifier.name.string(),
device->classes,
device->configurationFile.string(),
device->keyMap.keyLayoutFile.string(),
device->keyMap.keyCharacterMapFile.string(),
toString(mBuiltInKeyboardId == deviceId));
struct pollfd pollfd;
pollfd.fd = fd;
pollfd.events = POLLIN;
pollfd.revents = 0;
mFds.push(pollfd);
mDevices.push(device);
device->next = mOpeningDevices;
mOpeningDevices = device;
return 0;
}
void EventHub::loadConfiguration(Device* device) {
device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
if (device->configurationFile.isEmpty()) {
LOGD("No input device configuration file found for device '%s'.",
device->identifier.name.string());
} else {
status_t status = PropertyMap::load(device->configurationFile,
&device->configuration);
if (status) {
LOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
device->identifier.name.string());
}
}
}
status_t EventHub::loadVirtualKeyMap(Device* device) {
// The virtual key map is supplied by the kernel as a system board property file.
String8 path;
path.append("/sys/board_properties/virtualkeys.");
path.append(device->identifier.name);
if (access(path.string(), R_OK)) {
return NAME_NOT_FOUND;
}
return VirtualKeyMap::load(path, &device->virtualKeyMap);
}
status_t EventHub::loadKeyMap(Device* device) {
return device->keyMap.load(device->identifier, device->configuration);
}
void EventHub::setKeyboardProperties(Device* device, bool builtInKeyboard) {
int32_t id = builtInKeyboard ? 0 : device->id;
android::setKeyboardProperties(id, device->identifier,
device->keyMap.keyLayoutFile, device->keyMap.keyCharacterMapFile);
}
void EventHub::clearKeyboardProperties(Device* device, bool builtInKeyboard) {
int32_t id = builtInKeyboard ? 0 : device->id;
android::clearKeyboardProperties(id);
}
bool EventHub::isExternalDevice(Device* device) {
if (device->configuration) {
bool value;
if (device->configuration->tryGetProperty(String8("device.internal"), value)
&& value) {
return false;
}
}
return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
}
bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
return false;
}
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
int EventHub::closeDevice(const char *devicePath) {
AutoMutex _l(mLock);
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
Device* device = mDevices[i];
if (device->path == devicePath) {
return closeDeviceAtIndexLocked(i);
}
}
LOGV("Remove device: %s not found, device may already have been removed.", devicePath);
return -1;
}
int EventHub::closeDeviceAtIndexLocked(int index) {
Device* device = mDevices[index];
LOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
device->path.string(), device->identifier.name.string(), device->id,
device->fd, device->classes);
for (int j=0; j<EV_SW; j++) {
if (mSwitches[j] == device->id) {
mSwitches[j] = 0;
}
}
if (device->id == mBuiltInKeyboardId) {
LOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.string(), mBuiltInKeyboardId);
mBuiltInKeyboardId = -1;
clearKeyboardProperties(device, true);
}
clearKeyboardProperties(device, false);
mFds.removeAt(index);
mDevices.removeAt(index);
device->close();
// Unlink for opening devices list if it is present.
Device* pred = NULL;
bool found = false;
for (Device* entry = mOpeningDevices; entry != NULL; ) {
if (entry == device) {
found = true;
break;
}
pred = entry;
entry = entry->next;
}
if (found) {
// Unlink the device from the opening devices list then delete it.
// We don't need to tell the client that the device was closed because
// it does not even know it was opened in the first place.
LOGI("Device %s was immediately closed after opening.", device->path.string());
if (pred) {
pred->next = device->next;
} else {
mOpeningDevices = device->next;
}
delete device;
} else {
// Link into closing devices list.
// The device will be deleted later after we have informed the client.
device->next = mClosingDevices;
mClosingDevices = device;
}
return 0;
}
int EventHub::readNotify(int nfd) {
#ifdef HAVE_INOTIFY
int res;
char devname[PATH_MAX];
char *filename;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event *event;
LOGV("EventHub::readNotify nfd: %d\n", nfd);
res = read(nfd, event_buf, sizeof(event_buf));
if(res < (int)sizeof(*event)) {
if(errno == EINTR)
return 0;
LOGW("could not get event, %s\n", strerror(errno));
return 1;
}
//printf("got %d bytes of event information\n", res);
strcpy(devname, DEVICE_PATH);
filename = devname + strlen(devname);
*filename++ = '/';
while(res >= (int)sizeof(*event)) {
event = (struct inotify_event *)(event_buf + event_pos);
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
if(event->len) {
strcpy(filename, event->name);
if(event->mask & IN_CREATE) {
openDevice(devname);
}
else {
closeDevice(devname);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
#endif
return 0;
}
int EventHub::scanDir(const char *dirname)
{
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
openDevice(devname);
}
closedir(dir);
return 0;
}
void EventHub::reopenDevices() {
android_atomic_release_store(1, &mNeedToReopenDevices);
}
void EventHub::dump(String8& dump) {
dump.append("Event Hub State:\n");
{ // acquire lock
AutoMutex _l(mLock);
dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump.append(INDENT "Devices:\n");
for (size_t i = FIRST_ACTUAL_DEVICE_INDEX; i < mDevices.size(); i++) {
const Device* device = mDevices[i];
if (device) {
if (mBuiltInKeyboardId == device->id) {
dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.string());
} else {
dump.appendFormat(INDENT2 "%d: %s\n", device->id,
device->identifier.name.string());
}
dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version);
dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.string());
dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.string());
dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.string());
}
}
} // release lock
}
}; // namespace android