| /* |
| * Copyright (C) 2005 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "EventHub" |
| |
| // #define LOG_NDEBUG 0 |
| |
| #include "EventHub.h" |
| |
| #include <hardware_legacy/power.h> |
| |
| #include <cutils/properties.h> |
| #include <utils/Log.h> |
| #include <utils/Timers.h> |
| #include <utils/threads.h> |
| #include <utils/Errors.h> |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <memory.h> |
| #include <errno.h> |
| #include <assert.h> |
| |
| #include <input/KeyLayoutMap.h> |
| #include <input/KeyCharacterMap.h> |
| #include <input/VirtualKeyMap.h> |
| |
| #include <string.h> |
| #include <stdint.h> |
| #include <dirent.h> |
| |
| #include <sys/inotify.h> |
| #include <sys/epoll.h> |
| #include <sys/ioctl.h> |
| #include <sys/limits.h> |
| #include <sys/sha1.h> |
| |
| /* this macro is used to tell if "bit" is set in "array" |
| * it selects a byte from the array, and does a boolean AND |
| * operation with a byte that only has the relevant bit set. |
| * eg. to check for the 12th bit, we do (array[1] & 1<<4) |
| */ |
| #define test_bit(bit, array) (array[bit/8] & (1<<(bit%8))) |
| |
| /* this macro computes the number of bytes needed to represent a bit array of the specified size */ |
| #define sizeof_bit_array(bits) ((bits + 7) / 8) |
| |
| #define INDENT " " |
| #define INDENT2 " " |
| #define INDENT3 " " |
| |
| namespace android { |
| |
| static const char *WAKE_LOCK_ID = "KeyEvents"; |
| static const char *DEVICE_PATH = "/dev/input"; |
| |
| /* return the larger integer */ |
| static inline int max(int v1, int v2) |
| { |
| return (v1 > v2) ? v1 : v2; |
| } |
| |
| static inline const char* toString(bool value) { |
| return value ? "true" : "false"; |
| } |
| |
| static String8 sha1(const String8& in) { |
| SHA1_CTX ctx; |
| SHA1Init(&ctx); |
| SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size()); |
| u_char digest[SHA1_DIGEST_LENGTH]; |
| SHA1Final(digest, &ctx); |
| |
| String8 out; |
| for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) { |
| out.appendFormat("%02x", digest[i]); |
| } |
| return out; |
| } |
| |
| static void setDescriptor(InputDeviceIdentifier& identifier) { |
| // Compute a device descriptor that uniquely identifies the device. |
| // The descriptor is assumed to be a stable identifier. Its value should not |
| // change between reboots, reconnections, firmware updates or new releases of Android. |
| // Ideally, we also want the descriptor to be short and relatively opaque. |
| String8 rawDescriptor; |
| rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product); |
| if (!identifier.uniqueId.isEmpty()) { |
| rawDescriptor.append("uniqueId:"); |
| rawDescriptor.append(identifier.uniqueId); |
| } if (identifier.vendor == 0 && identifier.product == 0) { |
| // If we don't know the vendor and product id, then the device is probably |
| // built-in so we need to rely on other information to uniquely identify |
| // the input device. Usually we try to avoid relying on the device name or |
| // location but for built-in input device, they are unlikely to ever change. |
| if (!identifier.name.isEmpty()) { |
| rawDescriptor.append("name:"); |
| rawDescriptor.append(identifier.name); |
| } else if (!identifier.location.isEmpty()) { |
| rawDescriptor.append("location:"); |
| rawDescriptor.append(identifier.location); |
| } |
| } |
| identifier.descriptor = sha1(rawDescriptor); |
| ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), |
| identifier.descriptor.string()); |
| } |
| |
| // --- Global Functions --- |
| |
| uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) { |
| // Touch devices get dibs on touch-related axes. |
| if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) { |
| switch (axis) { |
| case ABS_X: |
| case ABS_Y: |
| case ABS_PRESSURE: |
| case ABS_TOOL_WIDTH: |
| case ABS_DISTANCE: |
| case ABS_TILT_X: |
| case ABS_TILT_Y: |
| case ABS_MT_SLOT: |
| case ABS_MT_TOUCH_MAJOR: |
| case ABS_MT_TOUCH_MINOR: |
| case ABS_MT_WIDTH_MAJOR: |
| case ABS_MT_WIDTH_MINOR: |
| case ABS_MT_ORIENTATION: |
| case ABS_MT_POSITION_X: |
| case ABS_MT_POSITION_Y: |
| case ABS_MT_TOOL_TYPE: |
| case ABS_MT_BLOB_ID: |
| case ABS_MT_TRACKING_ID: |
| case ABS_MT_PRESSURE: |
| case ABS_MT_DISTANCE: |
| return INPUT_DEVICE_CLASS_TOUCH; |
| } |
| } |
| |
| // Joystick devices get the rest. |
| return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK; |
| } |
| |
| // --- EventHub::Device --- |
| |
| EventHub::Device::Device(int fd, int32_t id, const String8& path, |
| const InputDeviceIdentifier& identifier) : |
| next(NULL), |
| fd(fd), id(id), path(path), identifier(identifier), |
| classes(0), configuration(NULL), virtualKeyMap(NULL), |
| ffEffectPlaying(false), ffEffectId(-1), controllerNumber(0), |
| timestampOverrideSec(0), timestampOverrideUsec(0) { |
| memset(keyBitmask, 0, sizeof(keyBitmask)); |
| memset(absBitmask, 0, sizeof(absBitmask)); |
| memset(relBitmask, 0, sizeof(relBitmask)); |
| memset(swBitmask, 0, sizeof(swBitmask)); |
| memset(ledBitmask, 0, sizeof(ledBitmask)); |
| memset(ffBitmask, 0, sizeof(ffBitmask)); |
| memset(propBitmask, 0, sizeof(propBitmask)); |
| } |
| |
| EventHub::Device::~Device() { |
| close(); |
| delete configuration; |
| delete virtualKeyMap; |
| } |
| |
| void EventHub::Device::close() { |
| if (fd >= 0) { |
| ::close(fd); |
| fd = -1; |
| } |
| } |
| |
| |
| // --- EventHub --- |
| |
| const uint32_t EventHub::EPOLL_ID_INOTIFY; |
| const uint32_t EventHub::EPOLL_ID_WAKE; |
| const int EventHub::EPOLL_SIZE_HINT; |
| const int EventHub::EPOLL_MAX_EVENTS; |
| |
| EventHub::EventHub(void) : |
| mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1), mControllerNumbers(), |
| mOpeningDevices(0), mClosingDevices(0), |
| mNeedToSendFinishedDeviceScan(false), |
| mNeedToReopenDevices(false), mNeedToScanDevices(true), |
| mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) { |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); |
| |
| mEpollFd = epoll_create(EPOLL_SIZE_HINT); |
| LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno); |
| |
| mINotifyFd = inotify_init(); |
| int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE); |
| LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d", |
| DEVICE_PATH, errno); |
| |
| struct epoll_event eventItem; |
| memset(&eventItem, 0, sizeof(eventItem)); |
| eventItem.events = EPOLLIN; |
| eventItem.data.u32 = EPOLL_ID_INOTIFY; |
| result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno); |
| |
| int wakeFds[2]; |
| result = pipe(wakeFds); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno); |
| |
| mWakeReadPipeFd = wakeFds[0]; |
| mWakeWritePipeFd = wakeFds[1]; |
| |
| result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d", |
| errno); |
| |
| result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d", |
| errno); |
| |
| eventItem.data.u32 = EPOLL_ID_WAKE; |
| result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem); |
| LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d", |
| errno); |
| } |
| |
| EventHub::~EventHub(void) { |
| closeAllDevicesLocked(); |
| |
| while (mClosingDevices) { |
| Device* device = mClosingDevices; |
| mClosingDevices = device->next; |
| delete device; |
| } |
| |
| ::close(mEpollFd); |
| ::close(mINotifyFd); |
| ::close(mWakeReadPipeFd); |
| ::close(mWakeWritePipeFd); |
| |
| release_wake_lock(WAKE_LOCK_ID); |
| } |
| |
| InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == NULL) return InputDeviceIdentifier(); |
| return device->identifier; |
| } |
| |
| uint32_t EventHub::getDeviceClasses(int32_t deviceId) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == NULL) return 0; |
| return device->classes; |
| } |
| |
| int32_t EventHub::getDeviceControllerNumber(int32_t deviceId) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device == NULL) return 0; |
| return device->controllerNumber; |
| } |
| |
| void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device && device->configuration) { |
| *outConfiguration = *device->configuration; |
| } else { |
| outConfiguration->clear(); |
| } |
| } |
| |
| status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis, |
| RawAbsoluteAxisInfo* outAxisInfo) const { |
| outAxisInfo->clear(); |
| |
| if (axis >= 0 && axis <= ABS_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { |
| struct input_absinfo info; |
| if(ioctl(device->fd, EVIOCGABS(axis), &info)) { |
| ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", |
| axis, device->identifier.name.string(), device->fd, errno); |
| return -errno; |
| } |
| |
| if (info.minimum != info.maximum) { |
| outAxisInfo->valid = true; |
| outAxisInfo->minValue = info.minimum; |
| outAxisInfo->maxValue = info.maximum; |
| outAxisInfo->flat = info.flat; |
| outAxisInfo->fuzz = info.fuzz; |
| outAxisInfo->resolution = info.resolution; |
| } |
| return OK; |
| } |
| } |
| return -1; |
| } |
| |
| bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const { |
| if (axis >= 0 && axis <= REL_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device) { |
| return test_bit(axis, device->relBitmask); |
| } |
| } |
| return false; |
| } |
| |
| bool EventHub::hasInputProperty(int32_t deviceId, int property) const { |
| if (property >= 0 && property <= INPUT_PROP_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device) { |
| return test_bit(property, device->propBitmask); |
| } |
| } |
| return false; |
| } |
| |
| int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const { |
| if (scanCode >= 0 && scanCode <= KEY_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) { |
| uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; |
| memset(keyState, 0, sizeof(keyState)); |
| if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { |
| return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| } |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) { |
| Vector<int32_t> scanCodes; |
| device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes); |
| if (scanCodes.size() != 0) { |
| uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)]; |
| memset(keyState, 0, sizeof(keyState)); |
| if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) { |
| for (size_t i = 0; i < scanCodes.size(); i++) { |
| int32_t sc = scanCodes.itemAt(i); |
| if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) { |
| return AKEY_STATE_DOWN; |
| } |
| } |
| return AKEY_STATE_UP; |
| } |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const { |
| if (sw >= 0 && sw <= SW_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) { |
| uint8_t swState[sizeof_bit_array(SW_MAX + 1)]; |
| memset(swState, 0, sizeof(swState)); |
| if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) { |
| return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP; |
| } |
| } |
| } |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const { |
| *outValue = 0; |
| |
| if (axis >= 0 && axis <= ABS_MAX) { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) { |
| struct input_absinfo info; |
| if(ioctl(device->fd, EVIOCGABS(axis), &info)) { |
| ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d", |
| axis, device->identifier.name.string(), device->fd, errno); |
| return -errno; |
| } |
| |
| *outValue = info.value; |
| return OK; |
| } |
| } |
| return -1; |
| } |
| |
| bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) const { |
| AutoMutex _l(mLock); |
| |
| Device* device = getDeviceLocked(deviceId); |
| if (device && device->keyMap.haveKeyLayout()) { |
| Vector<int32_t> scanCodes; |
| for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) { |
| scanCodes.clear(); |
| |
| status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey( |
| keyCodes[codeIndex], &scanCodes); |
| if (! err) { |
| // check the possible scan codes identified by the layout map against the |
| // map of codes actually emitted by the driver |
| for (size_t sc = 0; sc < scanCodes.size(); sc++) { |
| if (test_bit(scanCodes[sc], device->keyBitmask)) { |
| outFlags[codeIndex] = 1; |
| break; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode, |
| int32_t* outKeycode, uint32_t* outFlags) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| |
| if (device) { |
| // Check the key character map first. |
| sp<KeyCharacterMap> kcm = device->getKeyCharacterMap(); |
| if (kcm != NULL) { |
| if (!kcm->mapKey(scanCode, usageCode, outKeycode)) { |
| *outFlags = 0; |
| return NO_ERROR; |
| } |
| } |
| |
| // Check the key layout next. |
| if (device->keyMap.haveKeyLayout()) { |
| if (!device->keyMap.keyLayoutMap->mapKey( |
| scanCode, usageCode, outKeycode, outFlags)) { |
| return NO_ERROR; |
| } |
| } |
| } |
| |
| *outKeycode = 0; |
| *outFlags = 0; |
| return NAME_NOT_FOUND; |
| } |
| |
| status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| |
| if (device && device->keyMap.haveKeyLayout()) { |
| status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo); |
| if (err == NO_ERROR) { |
| return NO_ERROR; |
| } |
| } |
| |
| return NAME_NOT_FOUND; |
| } |
| |
| void EventHub::setExcludedDevices(const Vector<String8>& devices) { |
| AutoMutex _l(mLock); |
| |
| mExcludedDevices = devices; |
| } |
| |
| bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device && scanCode >= 0 && scanCode <= KEY_MAX) { |
| if (test_bit(scanCode, device->keyBitmask)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool EventHub::hasLed(int32_t deviceId, int32_t led) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| int32_t sc; |
| if (device && mapLed(device, led, &sc) == NO_ERROR) { |
| if (test_bit(sc, device->ledBitmask)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| setLedStateLocked(device, led, on); |
| } |
| |
| void EventHub::setLedStateLocked(Device* device, int32_t led, bool on) { |
| int32_t sc; |
| if (device && !device->isVirtual() && mapLed(device, led, &sc) != NAME_NOT_FOUND) { |
| struct input_event ev; |
| ev.time.tv_sec = 0; |
| ev.time.tv_usec = 0; |
| ev.type = EV_LED; |
| ev.code = sc; |
| ev.value = on ? 1 : 0; |
| |
| ssize_t nWrite; |
| do { |
| nWrite = write(device->fd, &ev, sizeof(struct input_event)); |
| } while (nWrite == -1 && errno == EINTR); |
| } |
| } |
| |
| void EventHub::getVirtualKeyDefinitions(int32_t deviceId, |
| Vector<VirtualKeyDefinition>& outVirtualKeys) const { |
| outVirtualKeys.clear(); |
| |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device && device->virtualKeyMap) { |
| outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys()); |
| } |
| } |
| |
| sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device) { |
| return device->getKeyCharacterMap(); |
| } |
| return NULL; |
| } |
| |
| bool EventHub::setKeyboardLayoutOverlay(int32_t deviceId, |
| const sp<KeyCharacterMap>& map) { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device) { |
| if (map != device->overlayKeyMap) { |
| device->overlayKeyMap = map; |
| device->combinedKeyMap = KeyCharacterMap::combine( |
| device->keyMap.keyCharacterMap, map); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static String8 generateDescriptor(InputDeviceIdentifier& identifier) { |
| String8 rawDescriptor; |
| rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, |
| identifier.product); |
| // TODO add handling for USB devices to not uniqueify kbs that show up twice |
| if (!identifier.uniqueId.isEmpty()) { |
| rawDescriptor.append("uniqueId:"); |
| rawDescriptor.append(identifier.uniqueId); |
| } else if (identifier.nonce != 0) { |
| rawDescriptor.appendFormat("nonce:%04x", identifier.nonce); |
| } |
| |
| if (identifier.vendor == 0 && identifier.product == 0) { |
| // If we don't know the vendor and product id, then the device is probably |
| // built-in so we need to rely on other information to uniquely identify |
| // the input device. Usually we try to avoid relying on the device name or |
| // location but for built-in input device, they are unlikely to ever change. |
| if (!identifier.name.isEmpty()) { |
| rawDescriptor.append("name:"); |
| rawDescriptor.append(identifier.name); |
| } else if (!identifier.location.isEmpty()) { |
| rawDescriptor.append("location:"); |
| rawDescriptor.append(identifier.location); |
| } |
| } |
| identifier.descriptor = sha1(rawDescriptor); |
| return rawDescriptor; |
| } |
| |
| void EventHub::assignDescriptorLocked(InputDeviceIdentifier& identifier) { |
| // Compute a device descriptor that uniquely identifies the device. |
| // The descriptor is assumed to be a stable identifier. Its value should not |
| // change between reboots, reconnections, firmware updates or new releases |
| // of Android. In practice we sometimes get devices that cannot be uniquely |
| // identified. In this case we enforce uniqueness between connected devices. |
| // Ideally, we also want the descriptor to be short and relatively opaque. |
| |
| identifier.nonce = 0; |
| String8 rawDescriptor = generateDescriptor(identifier); |
| if (identifier.uniqueId.isEmpty()) { |
| // If it didn't have a unique id check for conflicts and enforce |
| // uniqueness if necessary. |
| while(getDeviceByDescriptorLocked(identifier.descriptor) != NULL) { |
| identifier.nonce++; |
| rawDescriptor = generateDescriptor(identifier); |
| } |
| } |
| ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(), |
| identifier.descriptor.string()); |
| } |
| |
| void EventHub::vibrate(int32_t deviceId, nsecs_t duration) { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual()) { |
| ff_effect effect; |
| memset(&effect, 0, sizeof(effect)); |
| effect.type = FF_RUMBLE; |
| effect.id = device->ffEffectId; |
| effect.u.rumble.strong_magnitude = 0xc000; |
| effect.u.rumble.weak_magnitude = 0xc000; |
| effect.replay.length = (duration + 999999LL) / 1000000LL; |
| effect.replay.delay = 0; |
| if (ioctl(device->fd, EVIOCSFF, &effect)) { |
| ALOGW("Could not upload force feedback effect to device %s due to error %d.", |
| device->identifier.name.string(), errno); |
| return; |
| } |
| device->ffEffectId = effect.id; |
| |
| struct input_event ev; |
| ev.time.tv_sec = 0; |
| ev.time.tv_usec = 0; |
| ev.type = EV_FF; |
| ev.code = device->ffEffectId; |
| ev.value = 1; |
| if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| ALOGW("Could not start force feedback effect on device %s due to error %d.", |
| device->identifier.name.string(), errno); |
| return; |
| } |
| device->ffEffectPlaying = true; |
| } |
| } |
| |
| void EventHub::cancelVibrate(int32_t deviceId) { |
| AutoMutex _l(mLock); |
| Device* device = getDeviceLocked(deviceId); |
| if (device && !device->isVirtual()) { |
| if (device->ffEffectPlaying) { |
| device->ffEffectPlaying = false; |
| |
| struct input_event ev; |
| ev.time.tv_sec = 0; |
| ev.time.tv_usec = 0; |
| ev.type = EV_FF; |
| ev.code = device->ffEffectId; |
| ev.value = 0; |
| if (write(device->fd, &ev, sizeof(ev)) != sizeof(ev)) { |
| ALOGW("Could not stop force feedback effect on device %s due to error %d.", |
| device->identifier.name.string(), errno); |
| return; |
| } |
| } |
| } |
| } |
| |
| EventHub::Device* EventHub::getDeviceByDescriptorLocked(String8& descriptor) const { |
| size_t size = mDevices.size(); |
| for (size_t i = 0; i < size; i++) { |
| Device* device = mDevices.valueAt(i); |
| if (descriptor.compare(device->identifier.descriptor) == 0) { |
| return device; |
| } |
| } |
| return NULL; |
| } |
| |
| EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const { |
| if (deviceId == BUILT_IN_KEYBOARD_ID) { |
| deviceId = mBuiltInKeyboardId; |
| } |
| ssize_t index = mDevices.indexOfKey(deviceId); |
| return index >= 0 ? mDevices.valueAt(index) : NULL; |
| } |
| |
| EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| Device* device = mDevices.valueAt(i); |
| if (device->path == devicePath) { |
| return device; |
| } |
| } |
| return NULL; |
| } |
| |
| size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) { |
| ALOG_ASSERT(bufferSize >= 1); |
| |
| AutoMutex _l(mLock); |
| |
| struct input_event readBuffer[bufferSize]; |
| |
| RawEvent* event = buffer; |
| size_t capacity = bufferSize; |
| bool awoken = false; |
| for (;;) { |
| nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| // Reopen input devices if needed. |
| if (mNeedToReopenDevices) { |
| mNeedToReopenDevices = false; |
| |
| ALOGI("Reopening all input devices due to a configuration change."); |
| |
| closeAllDevicesLocked(); |
| mNeedToScanDevices = true; |
| break; // return to the caller before we actually rescan |
| } |
| |
| // Report any devices that had last been added/removed. |
| while (mClosingDevices) { |
| Device* device = mClosingDevices; |
| ALOGV("Reporting device closed: id=%d, name=%s\n", |
| device->id, device->path.string()); |
| mClosingDevices = device->next; |
| event->when = now; |
| event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id; |
| event->type = DEVICE_REMOVED; |
| event += 1; |
| delete device; |
| mNeedToSendFinishedDeviceScan = true; |
| if (--capacity == 0) { |
| break; |
| } |
| } |
| |
| if (mNeedToScanDevices) { |
| mNeedToScanDevices = false; |
| scanDevicesLocked(); |
| mNeedToSendFinishedDeviceScan = true; |
| } |
| |
| while (mOpeningDevices != NULL) { |
| Device* device = mOpeningDevices; |
| ALOGV("Reporting device opened: id=%d, name=%s\n", |
| device->id, device->path.string()); |
| mOpeningDevices = device->next; |
| event->when = now; |
| event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| event->type = DEVICE_ADDED; |
| event += 1; |
| mNeedToSendFinishedDeviceScan = true; |
| if (--capacity == 0) { |
| break; |
| } |
| } |
| |
| if (mNeedToSendFinishedDeviceScan) { |
| mNeedToSendFinishedDeviceScan = false; |
| event->when = now; |
| event->type = FINISHED_DEVICE_SCAN; |
| event += 1; |
| if (--capacity == 0) { |
| break; |
| } |
| } |
| |
| // Grab the next input event. |
| bool deviceChanged = false; |
| while (mPendingEventIndex < mPendingEventCount) { |
| const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++]; |
| if (eventItem.data.u32 == EPOLL_ID_INOTIFY) { |
| if (eventItem.events & EPOLLIN) { |
| mPendingINotify = true; |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events); |
| } |
| continue; |
| } |
| |
| if (eventItem.data.u32 == EPOLL_ID_WAKE) { |
| if (eventItem.events & EPOLLIN) { |
| ALOGV("awoken after wake()"); |
| awoken = true; |
| char buffer[16]; |
| ssize_t nRead; |
| do { |
| nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer)); |
| } while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer)); |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.", |
| eventItem.events); |
| } |
| continue; |
| } |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32); |
| if (deviceIndex < 0) { |
| ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.", |
| eventItem.events, eventItem.data.u32); |
| continue; |
| } |
| |
| Device* device = mDevices.valueAt(deviceIndex); |
| if (eventItem.events & EPOLLIN) { |
| int32_t readSize = read(device->fd, readBuffer, |
| sizeof(struct input_event) * capacity); |
| if (readSize == 0 || (readSize < 0 && errno == ENODEV)) { |
| // Device was removed before INotify noticed. |
| ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d " |
| "capacity: %d errno: %d)\n", |
| device->fd, readSize, bufferSize, capacity, errno); |
| deviceChanged = true; |
| closeDeviceLocked(device); |
| } else if (readSize < 0) { |
| if (errno != EAGAIN && errno != EINTR) { |
| ALOGW("could not get event (errno=%d)", errno); |
| } |
| } else if ((readSize % sizeof(struct input_event)) != 0) { |
| ALOGE("could not get event (wrong size: %d)", readSize); |
| } else { |
| int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id; |
| |
| size_t count = size_t(readSize) / sizeof(struct input_event); |
| for (size_t i = 0; i < count; i++) { |
| struct input_event& iev = readBuffer[i]; |
| ALOGV("%s got: time=%d.%06d, type=%d, code=%d, value=%d", |
| device->path.string(), |
| (int) iev.time.tv_sec, (int) iev.time.tv_usec, |
| iev.type, iev.code, iev.value); |
| |
| // Some input devices may have a better concept of the time |
| // when an input event was actually generated than the kernel |
| // which simply timestamps all events on entry to evdev. |
| // This is a custom Android extension of the input protocol |
| // mainly intended for use with uinput based device drivers. |
| if (iev.type == EV_MSC) { |
| if (iev.code == MSC_ANDROID_TIME_SEC) { |
| device->timestampOverrideSec = iev.value; |
| continue; |
| } else if (iev.code == MSC_ANDROID_TIME_USEC) { |
| device->timestampOverrideUsec = iev.value; |
| continue; |
| } |
| } |
| if (device->timestampOverrideSec || device->timestampOverrideUsec) { |
| iev.time.tv_sec = device->timestampOverrideSec; |
| iev.time.tv_usec = device->timestampOverrideUsec; |
| if (iev.type == EV_SYN && iev.code == SYN_REPORT) { |
| device->timestampOverrideSec = 0; |
| device->timestampOverrideUsec = 0; |
| } |
| ALOGV("applied override time %d.%06d", |
| int(iev.time.tv_sec), int(iev.time.tv_usec)); |
| } |
| |
| #ifdef HAVE_POSIX_CLOCKS |
| // Use the time specified in the event instead of the current time |
| // so that downstream code can get more accurate estimates of |
| // event dispatch latency from the time the event is enqueued onto |
| // the evdev client buffer. |
| // |
| // The event's timestamp fortuitously uses the same monotonic clock |
| // time base as the rest of Android. The kernel event device driver |
| // (drivers/input/evdev.c) obtains timestamps using ktime_get_ts(). |
| // The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere |
| // calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a |
| // system call that also queries ktime_get_ts(). |
| event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL |
| + nsecs_t(iev.time.tv_usec) * 1000LL; |
| ALOGV("event time %lld, now %lld", event->when, now); |
| |
| // Bug 7291243: Add a guard in case the kernel generates timestamps |
| // that appear to be far into the future because they were generated |
| // using the wrong clock source. |
| // |
| // This can happen because when the input device is initially opened |
| // it has a default clock source of CLOCK_REALTIME. Any input events |
| // enqueued right after the device is opened will have timestamps |
| // generated using CLOCK_REALTIME. We later set the clock source |
| // to CLOCK_MONOTONIC but it is already too late. |
| // |
| // Invalid input event timestamps can result in ANRs, crashes and |
| // and other issues that are hard to track down. We must not let them |
| // propagate through the system. |
| // |
| // Log a warning so that we notice the problem and recover gracefully. |
| if (event->when >= now + 10 * 1000000000LL) { |
| // Double-check. Time may have moved on. |
| nsecs_t time = systemTime(SYSTEM_TIME_MONOTONIC); |
| if (event->when > time) { |
| ALOGW("An input event from %s has a timestamp that appears to " |
| "have been generated using the wrong clock source " |
| "(expected CLOCK_MONOTONIC): " |
| "event time %lld, current time %lld, call time %lld. " |
| "Using current time instead.", |
| device->path.string(), event->when, time, now); |
| event->when = time; |
| } else { |
| ALOGV("Event time is ok but failed the fast path and required " |
| "an extra call to systemTime: " |
| "event time %lld, current time %lld, call time %lld.", |
| event->when, time, now); |
| } |
| } |
| #else |
| event->when = now; |
| #endif |
| event->deviceId = deviceId; |
| event->type = iev.type; |
| event->code = iev.code; |
| event->value = iev.value; |
| event += 1; |
| capacity -= 1; |
| } |
| if (capacity == 0) { |
| // The result buffer is full. Reset the pending event index |
| // so we will try to read the device again on the next iteration. |
| mPendingEventIndex -= 1; |
| break; |
| } |
| } |
| } else if (eventItem.events & EPOLLHUP) { |
| ALOGI("Removing device %s due to epoll hang-up event.", |
| device->identifier.name.string()); |
| deviceChanged = true; |
| closeDeviceLocked(device); |
| } else { |
| ALOGW("Received unexpected epoll event 0x%08x for device %s.", |
| eventItem.events, device->identifier.name.string()); |
| } |
| } |
| |
| // readNotify() will modify the list of devices so this must be done after |
| // processing all other events to ensure that we read all remaining events |
| // before closing the devices. |
| if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) { |
| mPendingINotify = false; |
| readNotifyLocked(); |
| deviceChanged = true; |
| } |
| |
| // Report added or removed devices immediately. |
| if (deviceChanged) { |
| continue; |
| } |
| |
| // Return now if we have collected any events or if we were explicitly awoken. |
| if (event != buffer || awoken) { |
| break; |
| } |
| |
| // Poll for events. Mind the wake lock dance! |
| // We hold a wake lock at all times except during epoll_wait(). This works due to some |
| // subtle choreography. When a device driver has pending (unread) events, it acquires |
| // a kernel wake lock. However, once the last pending event has been read, the device |
| // driver will release the kernel wake lock. To prevent the system from going to sleep |
| // when this happens, the EventHub holds onto its own user wake lock while the client |
| // is processing events. Thus the system can only sleep if there are no events |
| // pending or currently being processed. |
| // |
| // The timeout is advisory only. If the device is asleep, it will not wake just to |
| // service the timeout. |
| mPendingEventIndex = 0; |
| |
| mLock.unlock(); // release lock before poll, must be before release_wake_lock |
| release_wake_lock(WAKE_LOCK_ID); |
| |
| int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis); |
| |
| acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID); |
| mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock |
| |
| if (pollResult == 0) { |
| // Timed out. |
| mPendingEventCount = 0; |
| break; |
| } |
| |
| if (pollResult < 0) { |
| // An error occurred. |
| mPendingEventCount = 0; |
| |
| // Sleep after errors to avoid locking up the system. |
| // Hopefully the error is transient. |
| if (errno != EINTR) { |
| ALOGW("poll failed (errno=%d)\n", errno); |
| usleep(100000); |
| } |
| } else { |
| // Some events occurred. |
| mPendingEventCount = size_t(pollResult); |
| } |
| } |
| |
| // All done, return the number of events we read. |
| return event - buffer; |
| } |
| |
| void EventHub::wake() { |
| ALOGV("wake() called"); |
| |
| ssize_t nWrite; |
| do { |
| nWrite = write(mWakeWritePipeFd, "W", 1); |
| } while (nWrite == -1 && errno == EINTR); |
| |
| if (nWrite != 1 && errno != EAGAIN) { |
| ALOGW("Could not write wake signal, errno=%d", errno); |
| } |
| } |
| |
| void EventHub::scanDevicesLocked() { |
| status_t res = scanDirLocked(DEVICE_PATH); |
| if(res < 0) { |
| ALOGE("scan dir failed for %s\n", DEVICE_PATH); |
| } |
| if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) { |
| createVirtualKeyboardLocked(); |
| } |
| } |
| |
| // ---------------------------------------------------------------------------- |
| |
| static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) { |
| const uint8_t* end = array + endIndex; |
| array += startIndex; |
| while (array != end) { |
| if (*(array++) != 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static const int32_t GAMEPAD_KEYCODES[] = { |
| AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C, |
| AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z, |
| AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1, |
| AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2, |
| AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR, |
| AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE, |
| }; |
| |
| status_t EventHub::openDeviceLocked(const char *devicePath) { |
| char buffer[80]; |
| |
| ALOGV("Opening device: %s", devicePath); |
| |
| int fd = open(devicePath, O_RDWR | O_CLOEXEC); |
| if(fd < 0) { |
| ALOGE("could not open %s, %s\n", devicePath, strerror(errno)); |
| return -1; |
| } |
| |
| InputDeviceIdentifier identifier; |
| |
| // Get device name. |
| if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) { |
| //fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.name.setTo(buffer); |
| } |
| |
| // Check to see if the device is on our excluded list |
| for (size_t i = 0; i < mExcludedDevices.size(); i++) { |
| const String8& item = mExcludedDevices.itemAt(i); |
| if (identifier.name == item) { |
| ALOGI("ignoring event id %s driver %s\n", devicePath, item.string()); |
| close(fd); |
| return -1; |
| } |
| } |
| |
| // Get device driver version. |
| int driverVersion; |
| if(ioctl(fd, EVIOCGVERSION, &driverVersion)) { |
| ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno)); |
| close(fd); |
| return -1; |
| } |
| |
| // Get device identifier. |
| struct input_id inputId; |
| if(ioctl(fd, EVIOCGID, &inputId)) { |
| ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno)); |
| close(fd); |
| return -1; |
| } |
| identifier.bus = inputId.bustype; |
| identifier.product = inputId.product; |
| identifier.vendor = inputId.vendor; |
| identifier.version = inputId.version; |
| |
| // Get device physical location. |
| if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) { |
| //fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.location.setTo(buffer); |
| } |
| |
| // Get device unique id. |
| if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) { |
| //fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno)); |
| } else { |
| buffer[sizeof(buffer) - 1] = '\0'; |
| identifier.uniqueId.setTo(buffer); |
| } |
| |
| // Fill in the descriptor. |
| assignDescriptorLocked(identifier); |
| |
| // Make file descriptor non-blocking for use with poll(). |
| if (fcntl(fd, F_SETFL, O_NONBLOCK)) { |
| ALOGE("Error %d making device file descriptor non-blocking.", errno); |
| close(fd); |
| return -1; |
| } |
| |
| // Allocate device. (The device object takes ownership of the fd at this point.) |
| int32_t deviceId = mNextDeviceId++; |
| Device* device = new Device(fd, deviceId, String8(devicePath), identifier); |
| |
| ALOGV("add device %d: %s\n", deviceId, devicePath); |
| ALOGV(" bus: %04x\n" |
| " vendor %04x\n" |
| " product %04x\n" |
| " version %04x\n", |
| identifier.bus, identifier.vendor, identifier.product, identifier.version); |
| ALOGV(" name: \"%s\"\n", identifier.name.string()); |
| ALOGV(" location: \"%s\"\n", identifier.location.string()); |
| ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string()); |
| ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string()); |
| ALOGV(" driver: v%d.%d.%d\n", |
| driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff); |
| |
| // Load the configuration file for the device. |
| loadConfigurationLocked(device); |
| |
| // Figure out the kinds of events the device reports. |
| ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask); |
| ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask); |
| ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask); |
| ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask); |
| ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask); |
| ioctl(fd, EVIOCGBIT(EV_FF, sizeof(device->ffBitmask)), device->ffBitmask); |
| ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask); |
| |
| // See if this is a keyboard. Ignore everything in the button range except for |
| // joystick and gamepad buttons which are handled like keyboards for the most part. |
| bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC)) |
| || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK), |
| sizeof_bit_array(KEY_MAX + 1)); |
| bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC), |
| sizeof_bit_array(BTN_MOUSE)) |
| || containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK), |
| sizeof_bit_array(BTN_DIGI)); |
| if (haveKeyboardKeys || haveGamepadButtons) { |
| device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; |
| } |
| |
| // See if this is a cursor device such as a trackball or mouse. |
| if (test_bit(BTN_MOUSE, device->keyBitmask) |
| && test_bit(REL_X, device->relBitmask) |
| && test_bit(REL_Y, device->relBitmask)) { |
| device->classes |= INPUT_DEVICE_CLASS_CURSOR; |
| } |
| |
| // See if this is a touch pad. |
| // Is this a new modern multi-touch driver? |
| if (test_bit(ABS_MT_POSITION_X, device->absBitmask) |
| && test_bit(ABS_MT_POSITION_Y, device->absBitmask)) { |
| // Some joysticks such as the PS3 controller report axes that conflict |
| // with the ABS_MT range. Try to confirm that the device really is |
| // a touch screen. |
| if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) { |
| device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT; |
| } |
| // Is this an old style single-touch driver? |
| } else if (test_bit(BTN_TOUCH, device->keyBitmask) |
| && test_bit(ABS_X, device->absBitmask) |
| && test_bit(ABS_Y, device->absBitmask)) { |
| device->classes |= INPUT_DEVICE_CLASS_TOUCH; |
| } |
| |
| // See if this device is a joystick. |
| // Assumes that joysticks always have gamepad buttons in order to distinguish them |
| // from other devices such as accelerometers that also have absolute axes. |
| if (haveGamepadButtons) { |
| uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK; |
| for (int i = 0; i <= ABS_MAX; i++) { |
| if (test_bit(i, device->absBitmask) |
| && (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) { |
| device->classes = assumedClasses; |
| break; |
| } |
| } |
| } |
| |
| // Check whether this device has switches. |
| for (int i = 0; i <= SW_MAX; i++) { |
| if (test_bit(i, device->swBitmask)) { |
| device->classes |= INPUT_DEVICE_CLASS_SWITCH; |
| break; |
| } |
| } |
| |
| // Check whether this device supports the vibrator. |
| if (test_bit(FF_RUMBLE, device->ffBitmask)) { |
| device->classes |= INPUT_DEVICE_CLASS_VIBRATOR; |
| } |
| |
| // Configure virtual keys. |
| if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) { |
| // Load the virtual keys for the touch screen, if any. |
| // We do this now so that we can make sure to load the keymap if necessary. |
| status_t status = loadVirtualKeyMapLocked(device); |
| if (!status) { |
| device->classes |= INPUT_DEVICE_CLASS_KEYBOARD; |
| } |
| } |
| |
| // Load the key map. |
| // We need to do this for joysticks too because the key layout may specify axes. |
| status_t keyMapStatus = NAME_NOT_FOUND; |
| if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) { |
| // Load the keymap for the device. |
| keyMapStatus = loadKeyMapLocked(device); |
| } |
| |
| // Configure the keyboard, gamepad or virtual keyboard. |
| if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) { |
| // Register the keyboard as a built-in keyboard if it is eligible. |
| if (!keyMapStatus |
| && mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD |
| && isEligibleBuiltInKeyboard(device->identifier, |
| device->configuration, &device->keyMap)) { |
| mBuiltInKeyboardId = device->id; |
| } |
| |
| // 'Q' key support = cheap test of whether this is an alpha-capable kbd |
| if (hasKeycodeLocked(device, AKEYCODE_Q)) { |
| device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY; |
| } |
| |
| // See if this device has a DPAD. |
| if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) && |
| hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) && |
| hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) && |
| hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) && |
| hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) { |
| device->classes |= INPUT_DEVICE_CLASS_DPAD; |
| } |
| |
| // See if this device has a gamepad. |
| for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) { |
| if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) { |
| device->classes |= INPUT_DEVICE_CLASS_GAMEPAD; |
| break; |
| } |
| } |
| |
| // Disable kernel key repeat since we handle it ourselves |
| unsigned int repeatRate[] = {0,0}; |
| if (ioctl(fd, EVIOCSREP, repeatRate)) { |
| ALOGW("Unable to disable kernel key repeat for %s: %s", devicePath, strerror(errno)); |
| } |
| } |
| |
| // If the device isn't recognized as something we handle, don't monitor it. |
| if (device->classes == 0) { |
| ALOGV("Dropping device: id=%d, path='%s', name='%s'", |
| deviceId, devicePath, device->identifier.name.string()); |
| delete device; |
| return -1; |
| } |
| |
| // Determine whether the device is external or internal. |
| if (isExternalDeviceLocked(device)) { |
| device->classes |= INPUT_DEVICE_CLASS_EXTERNAL; |
| } |
| |
| if (device->classes & (INPUT_DEVICE_CLASS_JOYSTICK | INPUT_DEVICE_CLASS_DPAD) |
| && device->classes & INPUT_DEVICE_CLASS_GAMEPAD) { |
| device->controllerNumber = getNextControllerNumberLocked(device); |
| setLedForController(device); |
| } |
| |
| // Register with epoll. |
| struct epoll_event eventItem; |
| memset(&eventItem, 0, sizeof(eventItem)); |
| eventItem.events = EPOLLIN; |
| eventItem.data.u32 = deviceId; |
| if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) { |
| ALOGE("Could not add device fd to epoll instance. errno=%d", errno); |
| delete device; |
| return -1; |
| } |
| |
| // Enable wake-lock behavior on kernels that support it. |
| // TODO: Only need this for devices that can really wake the system. |
| #ifndef EVIOCSSUSPENDBLOCK |
| // uapi headers don't include EVIOCSSUSPENDBLOCK, and future kernels |
| // will use an epoll flag instead, so as long as we want to support |
| // this feature, we need to be prepared to define the ioctl ourselves. |
| #define EVIOCSSUSPENDBLOCK _IOW('E', 0x91, int) |
| #endif |
| bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1); |
| |
| // Tell the kernel that we want to use the monotonic clock for reporting timestamps |
| // associated with input events. This is important because the input system |
| // uses the timestamps extensively and assumes they were recorded using the monotonic |
| // clock. |
| // |
| // In older kernel, before Linux 3.4, there was no way to tell the kernel which |
| // clock to use to input event timestamps. The standard kernel behavior was to |
| // record a real time timestamp, which isn't what we want. Android kernels therefore |
| // contained a patch to the evdev_event() function in drivers/input/evdev.c to |
| // replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic |
| // clock to be used instead of the real time clock. |
| // |
| // As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock. |
| // Therefore, we no longer require the Android-specific kernel patch described above |
| // as long as we make sure to set select the monotonic clock. We do that here. |
| int clockId = CLOCK_MONOTONIC; |
| bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, &clockId); |
| |
| ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, " |
| "configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, " |
| "usingSuspendBlockIoctl=%s, usingClockIoctl=%s", |
| deviceId, fd, devicePath, device->identifier.name.string(), |
| device->classes, |
| device->configurationFile.string(), |
| device->keyMap.keyLayoutFile.string(), |
| device->keyMap.keyCharacterMapFile.string(), |
| toString(mBuiltInKeyboardId == deviceId), |
| toString(usingSuspendBlockIoctl), toString(usingClockIoctl)); |
| |
| addDeviceLocked(device); |
| return 0; |
| } |
| |
| void EventHub::createVirtualKeyboardLocked() { |
| InputDeviceIdentifier identifier; |
| identifier.name = "Virtual"; |
| identifier.uniqueId = "<virtual>"; |
| assignDescriptorLocked(identifier); |
| |
| Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier); |
| device->classes = INPUT_DEVICE_CLASS_KEYBOARD |
| | INPUT_DEVICE_CLASS_ALPHAKEY |
| | INPUT_DEVICE_CLASS_DPAD |
| | INPUT_DEVICE_CLASS_VIRTUAL; |
| loadKeyMapLocked(device); |
| addDeviceLocked(device); |
| } |
| |
| void EventHub::addDeviceLocked(Device* device) { |
| mDevices.add(device->id, device); |
| device->next = mOpeningDevices; |
| mOpeningDevices = device; |
| } |
| |
| void EventHub::loadConfigurationLocked(Device* device) { |
| device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier( |
| device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION); |
| if (device->configurationFile.isEmpty()) { |
| ALOGD("No input device configuration file found for device '%s'.", |
| device->identifier.name.string()); |
| } else { |
| status_t status = PropertyMap::load(device->configurationFile, |
| &device->configuration); |
| if (status) { |
| ALOGE("Error loading input device configuration file for device '%s'. " |
| "Using default configuration.", |
| device->identifier.name.string()); |
| } |
| } |
| } |
| |
| status_t EventHub::loadVirtualKeyMapLocked(Device* device) { |
| // The virtual key map is supplied by the kernel as a system board property file. |
| String8 path; |
| path.append("/sys/board_properties/virtualkeys."); |
| path.append(device->identifier.name); |
| if (access(path.string(), R_OK)) { |
| return NAME_NOT_FOUND; |
| } |
| return VirtualKeyMap::load(path, &device->virtualKeyMap); |
| } |
| |
| status_t EventHub::loadKeyMapLocked(Device* device) { |
| return device->keyMap.load(device->identifier, device->configuration); |
| } |
| |
| bool EventHub::isExternalDeviceLocked(Device* device) { |
| if (device->configuration) { |
| bool value; |
| if (device->configuration->tryGetProperty(String8("device.internal"), value)) { |
| return !value; |
| } |
| } |
| return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH; |
| } |
| |
| int32_t EventHub::getNextControllerNumberLocked(Device* device) { |
| if (mControllerNumbers.isFull()) { |
| ALOGI("Maximum number of controllers reached, assigning controller number 0 to device %s", |
| device->identifier.name.string()); |
| return 0; |
| } |
| // Since the controller number 0 is reserved for non-controllers, translate all numbers up by |
| // one |
| return static_cast<int32_t>(mControllerNumbers.markFirstUnmarkedBit() + 1); |
| } |
| |
| void EventHub::releaseControllerNumberLocked(Device* device) { |
| int32_t num = device->controllerNumber; |
| device->controllerNumber= 0; |
| if (num == 0) { |
| return; |
| } |
| mControllerNumbers.clearBit(static_cast<uint32_t>(num - 1)); |
| } |
| |
| void EventHub::setLedForController(Device* device) { |
| for (int i = 0; i < MAX_CONTROLLER_LEDS; i++) { |
| setLedStateLocked(device, ALED_CONTROLLER_1 + i, device->controllerNumber == i + 1); |
| } |
| } |
| |
| bool EventHub::hasKeycodeLocked(Device* device, int keycode) const { |
| if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) { |
| return false; |
| } |
| |
| Vector<int32_t> scanCodes; |
| device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes); |
| const size_t N = scanCodes.size(); |
| for (size_t i=0; i<N && i<=KEY_MAX; i++) { |
| int32_t sc = scanCodes.itemAt(i); |
| if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| status_t EventHub::mapLed(Device* device, int32_t led, int32_t* outScanCode) const { |
| if (!device->keyMap.haveKeyLayout() || !device->ledBitmask) { |
| return NAME_NOT_FOUND; |
| } |
| |
| int32_t scanCode; |
| if(device->keyMap.keyLayoutMap->findScanCodeForLed(led, &scanCode) != NAME_NOT_FOUND) { |
| if(scanCode >= 0 && scanCode <= LED_MAX && test_bit(scanCode, device->ledBitmask)) { |
| *outScanCode = scanCode; |
| return NO_ERROR; |
| } |
| } |
| return NAME_NOT_FOUND; |
| } |
| |
| status_t EventHub::closeDeviceByPathLocked(const char *devicePath) { |
| Device* device = getDeviceByPathLocked(devicePath); |
| if (device) { |
| closeDeviceLocked(device); |
| return 0; |
| } |
| ALOGV("Remove device: %s not found, device may already have been removed.", devicePath); |
| return -1; |
| } |
| |
| void EventHub::closeAllDevicesLocked() { |
| while (mDevices.size() > 0) { |
| closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1)); |
| } |
| } |
| |
| void EventHub::closeDeviceLocked(Device* device) { |
| ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n", |
| device->path.string(), device->identifier.name.string(), device->id, |
| device->fd, device->classes); |
| |
| if (device->id == mBuiltInKeyboardId) { |
| ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this", |
| device->path.string(), mBuiltInKeyboardId); |
| mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD; |
| } |
| |
| if (!device->isVirtual()) { |
| if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) { |
| ALOGW("Could not remove device fd from epoll instance. errno=%d", errno); |
| } |
| } |
| |
| releaseControllerNumberLocked(device); |
| |
| mDevices.removeItem(device->id); |
| device->close(); |
| |
| // Unlink for opening devices list if it is present. |
| Device* pred = NULL; |
| bool found = false; |
| for (Device* entry = mOpeningDevices; entry != NULL; ) { |
| if (entry == device) { |
| found = true; |
| break; |
| } |
| pred = entry; |
| entry = entry->next; |
| } |
| if (found) { |
| // Unlink the device from the opening devices list then delete it. |
| // We don't need to tell the client that the device was closed because |
| // it does not even know it was opened in the first place. |
| ALOGI("Device %s was immediately closed after opening.", device->path.string()); |
| if (pred) { |
| pred->next = device->next; |
| } else { |
| mOpeningDevices = device->next; |
| } |
| delete device; |
| } else { |
| // Link into closing devices list. |
| // The device will be deleted later after we have informed the client. |
| device->next = mClosingDevices; |
| mClosingDevices = device; |
| } |
| } |
| |
| status_t EventHub::readNotifyLocked() { |
| int res; |
| char devname[PATH_MAX]; |
| char *filename; |
| char event_buf[512]; |
| int event_size; |
| int event_pos = 0; |
| struct inotify_event *event; |
| |
| ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd); |
| res = read(mINotifyFd, event_buf, sizeof(event_buf)); |
| if(res < (int)sizeof(*event)) { |
| if(errno == EINTR) |
| return 0; |
| ALOGW("could not get event, %s\n", strerror(errno)); |
| return -1; |
| } |
| //printf("got %d bytes of event information\n", res); |
| |
| strcpy(devname, DEVICE_PATH); |
| filename = devname + strlen(devname); |
| *filename++ = '/'; |
| |
| while(res >= (int)sizeof(*event)) { |
| event = (struct inotify_event *)(event_buf + event_pos); |
| //printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : ""); |
| if(event->len) { |
| strcpy(filename, event->name); |
| if(event->mask & IN_CREATE) { |
| openDeviceLocked(devname); |
| } else { |
| ALOGI("Removing device '%s' due to inotify event\n", devname); |
| closeDeviceByPathLocked(devname); |
| } |
| } |
| event_size = sizeof(*event) + event->len; |
| res -= event_size; |
| event_pos += event_size; |
| } |
| return 0; |
| } |
| |
| status_t EventHub::scanDirLocked(const char *dirname) |
| { |
| char devname[PATH_MAX]; |
| char *filename; |
| DIR *dir; |
| struct dirent *de; |
| dir = opendir(dirname); |
| if(dir == NULL) |
| return -1; |
| strcpy(devname, dirname); |
| filename = devname + strlen(devname); |
| *filename++ = '/'; |
| while((de = readdir(dir))) { |
| if(de->d_name[0] == '.' && |
| (de->d_name[1] == '\0' || |
| (de->d_name[1] == '.' && de->d_name[2] == '\0'))) |
| continue; |
| strcpy(filename, de->d_name); |
| openDeviceLocked(devname); |
| } |
| closedir(dir); |
| return 0; |
| } |
| |
| void EventHub::requestReopenDevices() { |
| ALOGV("requestReopenDevices() called"); |
| |
| AutoMutex _l(mLock); |
| mNeedToReopenDevices = true; |
| } |
| |
| void EventHub::dump(String8& dump) { |
| dump.append("Event Hub State:\n"); |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId); |
| |
| dump.append(INDENT "Devices:\n"); |
| |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| const Device* device = mDevices.valueAt(i); |
| if (mBuiltInKeyboardId == device->id) { |
| dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n", |
| device->id, device->identifier.name.string()); |
| } else { |
| dump.appendFormat(INDENT2 "%d: %s\n", device->id, |
| device->identifier.name.string()); |
| } |
| dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes); |
| dump.appendFormat(INDENT3 "Path: %s\n", device->path.string()); |
| dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string()); |
| dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string()); |
| dump.appendFormat(INDENT3 "ControllerNumber: %d\n", device->controllerNumber); |
| dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string()); |
| dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, " |
| "product=0x%04x, version=0x%04x\n", |
| device->identifier.bus, device->identifier.vendor, |
| device->identifier.product, device->identifier.version); |
| dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n", |
| device->keyMap.keyLayoutFile.string()); |
| dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n", |
| device->keyMap.keyCharacterMapFile.string()); |
| dump.appendFormat(INDENT3 "ConfigurationFile: %s\n", |
| device->configurationFile.string()); |
| dump.appendFormat(INDENT3 "HaveKeyboardLayoutOverlay: %s\n", |
| toString(device->overlayKeyMap != NULL)); |
| } |
| } // release lock |
| } |
| |
| void EventHub::monitor() { |
| // Acquire and release the lock to ensure that the event hub has not deadlocked. |
| mLock.lock(); |
| mLock.unlock(); |
| } |
| |
| |
| }; // namespace android |