| // |
| // Copyright 2010 The Android Open Source Project |
| // |
| // The input reader. |
| // |
| #define LOG_TAG "InputReader" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log debug messages for each raw event received from the EventHub. |
| #define DEBUG_RAW_EVENTS 0 |
| |
| // Log debug messages about touch screen filtering hacks. |
| #define DEBUG_HACKS 0 |
| |
| // Log debug messages about virtual key processing. |
| #define DEBUG_VIRTUAL_KEYS 0 |
| |
| // Log debug messages about pointers. |
| #define DEBUG_POINTERS 0 |
| |
| // Log debug messages about pointer assignment calculations. |
| #define DEBUG_POINTER_ASSIGNMENT 0 |
| |
| #include <cutils/log.h> |
| #include <ui/InputReader.h> |
| |
| #include <stddef.h> |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <limits.h> |
| #include <math.h> |
| |
| #define INDENT " " |
| #define INDENT2 " " |
| #define INDENT3 " " |
| #define INDENT4 " " |
| |
| namespace android { |
| |
| // --- Static Functions --- |
| |
| template<typename T> |
| inline static T abs(const T& value) { |
| return value < 0 ? - value : value; |
| } |
| |
| template<typename T> |
| inline static T min(const T& a, const T& b) { |
| return a < b ? a : b; |
| } |
| |
| template<typename T> |
| inline static void swap(T& a, T& b) { |
| T temp = a; |
| a = b; |
| b = temp; |
| } |
| |
| inline static float avg(float x, float y) { |
| return (x + y) / 2; |
| } |
| |
| inline static float pythag(float x, float y) { |
| return sqrtf(x * x + y * y); |
| } |
| |
| static inline const char* toString(bool value) { |
| return value ? "true" : "false"; |
| } |
| |
| |
| int32_t updateMetaState(int32_t keyCode, bool down, int32_t oldMetaState) { |
| int32_t mask; |
| switch (keyCode) { |
| case AKEYCODE_ALT_LEFT: |
| mask = AMETA_ALT_LEFT_ON; |
| break; |
| case AKEYCODE_ALT_RIGHT: |
| mask = AMETA_ALT_RIGHT_ON; |
| break; |
| case AKEYCODE_SHIFT_LEFT: |
| mask = AMETA_SHIFT_LEFT_ON; |
| break; |
| case AKEYCODE_SHIFT_RIGHT: |
| mask = AMETA_SHIFT_RIGHT_ON; |
| break; |
| case AKEYCODE_SYM: |
| mask = AMETA_SYM_ON; |
| break; |
| default: |
| return oldMetaState; |
| } |
| |
| int32_t newMetaState = down ? oldMetaState | mask : oldMetaState & ~ mask |
| & ~ (AMETA_ALT_ON | AMETA_SHIFT_ON); |
| |
| if (newMetaState & (AMETA_ALT_LEFT_ON | AMETA_ALT_RIGHT_ON)) { |
| newMetaState |= AMETA_ALT_ON; |
| } |
| |
| if (newMetaState & (AMETA_SHIFT_LEFT_ON | AMETA_SHIFT_RIGHT_ON)) { |
| newMetaState |= AMETA_SHIFT_ON; |
| } |
| |
| return newMetaState; |
| } |
| |
| static const int32_t keyCodeRotationMap[][4] = { |
| // key codes enumerated counter-clockwise with the original (unrotated) key first |
| // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation |
| { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, |
| { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, |
| { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, |
| { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, |
| }; |
| static const int keyCodeRotationMapSize = |
| sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); |
| |
| int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { |
| if (orientation != InputReaderPolicyInterface::ROTATION_0) { |
| for (int i = 0; i < keyCodeRotationMapSize; i++) { |
| if (keyCode == keyCodeRotationMap[i][0]) { |
| return keyCodeRotationMap[i][orientation]; |
| } |
| } |
| } |
| return keyCode; |
| } |
| |
| static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { |
| return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; |
| } |
| |
| |
| // --- InputDeviceCalibration --- |
| |
| InputDeviceCalibration::InputDeviceCalibration() { |
| } |
| |
| void InputDeviceCalibration::clear() { |
| mProperties.clear(); |
| } |
| |
| void InputDeviceCalibration::addProperty(const String8& key, const String8& value) { |
| mProperties.add(key, value); |
| } |
| |
| bool InputDeviceCalibration::tryGetProperty(const String8& key, String8& outValue) const { |
| ssize_t index = mProperties.indexOfKey(key); |
| if (index < 0) { |
| return false; |
| } |
| |
| outValue = mProperties.valueAt(index); |
| return true; |
| } |
| |
| bool InputDeviceCalibration::tryGetProperty(const String8& key, int32_t& outValue) const { |
| String8 stringValue; |
| if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) { |
| return false; |
| } |
| |
| char* end; |
| int value = strtol(stringValue.string(), & end, 10); |
| if (*end != '\0') { |
| LOGW("Input device calibration key '%s' has invalid value '%s'. Expected an integer.", |
| key.string(), stringValue.string()); |
| return false; |
| } |
| outValue = value; |
| return true; |
| } |
| |
| bool InputDeviceCalibration::tryGetProperty(const String8& key, float& outValue) const { |
| String8 stringValue; |
| if (! tryGetProperty(key, stringValue) || stringValue.length() == 0) { |
| return false; |
| } |
| |
| char* end; |
| float value = strtof(stringValue.string(), & end); |
| if (*end != '\0') { |
| LOGW("Input device calibration key '%s' has invalid value '%s'. Expected a float.", |
| key.string(), stringValue.string()); |
| return false; |
| } |
| outValue = value; |
| return true; |
| } |
| |
| |
| // --- InputReader --- |
| |
| InputReader::InputReader(const sp<EventHubInterface>& eventHub, |
| const sp<InputReaderPolicyInterface>& policy, |
| const sp<InputDispatcherInterface>& dispatcher) : |
| mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher), |
| mGlobalMetaState(0) { |
| configureExcludedDevices(); |
| updateGlobalMetaState(); |
| updateInputConfiguration(); |
| } |
| |
| InputReader::~InputReader() { |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| delete mDevices.valueAt(i); |
| } |
| } |
| |
| void InputReader::loopOnce() { |
| RawEvent rawEvent; |
| mEventHub->getEvent(& rawEvent); |
| |
| #if DEBUG_RAW_EVENTS |
| LOGD("Input event: device=0x%x type=0x%x scancode=%d keycode=%d value=%d", |
| rawEvent.deviceId, rawEvent.type, rawEvent.scanCode, rawEvent.keyCode, |
| rawEvent.value); |
| #endif |
| |
| process(& rawEvent); |
| } |
| |
| void InputReader::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EventHubInterface::DEVICE_ADDED: |
| addDevice(rawEvent->deviceId); |
| break; |
| |
| case EventHubInterface::DEVICE_REMOVED: |
| removeDevice(rawEvent->deviceId); |
| break; |
| |
| case EventHubInterface::FINISHED_DEVICE_SCAN: |
| handleConfigurationChanged(rawEvent->when); |
| break; |
| |
| default: |
| consumeEvent(rawEvent); |
| break; |
| } |
| } |
| |
| void InputReader::addDevice(int32_t deviceId) { |
| String8 name = mEventHub->getDeviceName(deviceId); |
| uint32_t classes = mEventHub->getDeviceClasses(deviceId); |
| |
| InputDevice* device = createDevice(deviceId, name, classes); |
| device->configure(); |
| |
| if (device->isIgnored()) { |
| LOGI("Device added: id=0x%x, name=%s (ignored non-input device)", deviceId, name.string()); |
| } else { |
| LOGI("Device added: id=0x%x, name=%s, sources=%08x", deviceId, name.string(), |
| device->getSources()); |
| } |
| |
| bool added = false; |
| { // acquire device registry writer lock |
| RWLock::AutoWLock _wl(mDeviceRegistryLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| mDevices.add(deviceId, device); |
| added = true; |
| } |
| } // release device registry writer lock |
| |
| if (! added) { |
| LOGW("Ignoring spurious device added event for deviceId %d.", deviceId); |
| delete device; |
| return; |
| } |
| } |
| |
| void InputReader::removeDevice(int32_t deviceId) { |
| bool removed = false; |
| InputDevice* device = NULL; |
| { // acquire device registry writer lock |
| RWLock::AutoWLock _wl(mDeviceRegistryLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| device = mDevices.valueAt(deviceIndex); |
| mDevices.removeItemsAt(deviceIndex, 1); |
| removed = true; |
| } |
| } // release device registry writer lock |
| |
| if (! removed) { |
| LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); |
| return; |
| } |
| |
| if (device->isIgnored()) { |
| LOGI("Device removed: id=0x%x, name=%s (ignored non-input device)", |
| device->getId(), device->getName().string()); |
| } else { |
| LOGI("Device removed: id=0x%x, name=%s, sources=%08x", |
| device->getId(), device->getName().string(), device->getSources()); |
| } |
| |
| device->reset(); |
| |
| delete device; |
| } |
| |
| InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) { |
| InputDevice* device = new InputDevice(this, deviceId, name); |
| |
| const int32_t associatedDisplayId = 0; // FIXME: hardcoded for current single-display devices |
| |
| // Switch-like devices. |
| if (classes & INPUT_DEVICE_CLASS_SWITCH) { |
| device->addMapper(new SwitchInputMapper(device)); |
| } |
| |
| // Keyboard-like devices. |
| uint32_t keyboardSources = 0; |
| int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; |
| if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { |
| keyboardSources |= AINPUT_SOURCE_KEYBOARD; |
| } |
| if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { |
| keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; |
| } |
| if (classes & INPUT_DEVICE_CLASS_DPAD) { |
| keyboardSources |= AINPUT_SOURCE_DPAD; |
| } |
| |
| if (keyboardSources != 0) { |
| device->addMapper(new KeyboardInputMapper(device, |
| associatedDisplayId, keyboardSources, keyboardType)); |
| } |
| |
| // Trackball-like devices. |
| if (classes & INPUT_DEVICE_CLASS_TRACKBALL) { |
| device->addMapper(new TrackballInputMapper(device, associatedDisplayId)); |
| } |
| |
| // Touchscreen-like devices. |
| if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN_MT) { |
| device->addMapper(new MultiTouchInputMapper(device, associatedDisplayId)); |
| } else if (classes & INPUT_DEVICE_CLASS_TOUCHSCREEN) { |
| device->addMapper(new SingleTouchInputMapper(device, associatedDisplayId)); |
| } |
| |
| return device; |
| } |
| |
| void InputReader::consumeEvent(const RawEvent* rawEvent) { |
| int32_t deviceId = rawEvent->deviceId; |
| |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| LOGW("Discarding event for unknown deviceId %d.", deviceId); |
| return; |
| } |
| |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (device->isIgnored()) { |
| //LOGD("Discarding event for ignored deviceId %d.", deviceId); |
| return; |
| } |
| |
| device->process(rawEvent); |
| } // release device registry reader lock |
| } |
| |
| void InputReader::handleConfigurationChanged(nsecs_t when) { |
| // Reset global meta state because it depends on the list of all configured devices. |
| updateGlobalMetaState(); |
| |
| // Update input configuration. |
| updateInputConfiguration(); |
| |
| // Enqueue configuration changed. |
| mDispatcher->notifyConfigurationChanged(when); |
| } |
| |
| void InputReader::configureExcludedDevices() { |
| Vector<String8> excludedDeviceNames; |
| mPolicy->getExcludedDeviceNames(excludedDeviceNames); |
| |
| for (size_t i = 0; i < excludedDeviceNames.size(); i++) { |
| mEventHub->addExcludedDevice(excludedDeviceNames[i]); |
| } |
| } |
| |
| void InputReader::updateGlobalMetaState() { |
| { // acquire state lock |
| AutoMutex _l(mStateLock); |
| |
| mGlobalMetaState = 0; |
| |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| mGlobalMetaState |= device->getMetaState(); |
| } |
| } // release device registry reader lock |
| } // release state lock |
| } |
| |
| int32_t InputReader::getGlobalMetaState() { |
| { // acquire state lock |
| AutoMutex _l(mStateLock); |
| |
| return mGlobalMetaState; |
| } // release state lock |
| } |
| |
| void InputReader::updateInputConfiguration() { |
| { // acquire state lock |
| AutoMutex _l(mStateLock); |
| |
| int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH; |
| int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS; |
| int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV; |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| InputDeviceInfo deviceInfo; |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| device->getDeviceInfo(& deviceInfo); |
| uint32_t sources = deviceInfo.getSources(); |
| |
| if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) { |
| touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER; |
| } |
| if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) { |
| navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL; |
| } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) { |
| navigationConfig = InputConfiguration::NAVIGATION_DPAD; |
| } |
| if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) { |
| keyboardConfig = InputConfiguration::KEYBOARD_QWERTY; |
| } |
| } |
| } // release device registry reader lock |
| |
| mInputConfiguration.touchScreen = touchScreenConfig; |
| mInputConfiguration.keyboard = keyboardConfig; |
| mInputConfiguration.navigation = navigationConfig; |
| } // release state lock |
| } |
| |
| void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) { |
| { // acquire state lock |
| AutoMutex _l(mStateLock); |
| |
| *outConfiguration = mInputConfiguration; |
| } // release state lock |
| } |
| |
| status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) { |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex < 0) { |
| return NAME_NOT_FOUND; |
| } |
| |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (device->isIgnored()) { |
| return NAME_NOT_FOUND; |
| } |
| |
| device->getDeviceInfo(outDeviceInfo); |
| return OK; |
| } // release device registy reader lock |
| } |
| |
| void InputReader::getInputDeviceIds(Vector<int32_t>& outDeviceIds) { |
| outDeviceIds.clear(); |
| |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (! device->isIgnored()) { |
| outDeviceIds.add(device->getId()); |
| } |
| } |
| } // release device registy reader lock |
| } |
| |
| int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, |
| int32_t keyCode) { |
| return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState); |
| } |
| |
| int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, |
| int32_t scanCode) { |
| return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState); |
| } |
| |
| int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { |
| return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState); |
| } |
| |
| int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code, |
| GetStateFunc getStateFunc) { |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| int32_t result = AKEY_STATE_UNKNOWN; |
| if (deviceId >= 0) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result = (device->*getStateFunc)(sourceMask, code); |
| } |
| } |
| } else { |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result = (device->*getStateFunc)(sourceMask, code); |
| if (result >= AKEY_STATE_DOWN) { |
| return result; |
| } |
| } |
| } |
| } |
| return result; |
| } // release device registy reader lock |
| } |
| |
| bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, |
| size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { |
| memset(outFlags, 0, numCodes); |
| return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags); |
| } |
| |
| bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| bool result = false; |
| if (deviceId >= 0) { |
| ssize_t deviceIndex = mDevices.indexOfKey(deviceId); |
| if (deviceIndex >= 0) { |
| InputDevice* device = mDevices.valueAt(deviceIndex); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result = device->markSupportedKeyCodes(sourceMask, |
| numCodes, keyCodes, outFlags); |
| } |
| } |
| } else { |
| size_t numDevices = mDevices.size(); |
| for (size_t i = 0; i < numDevices; i++) { |
| InputDevice* device = mDevices.valueAt(i); |
| if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { |
| result |= device->markSupportedKeyCodes(sourceMask, |
| numCodes, keyCodes, outFlags); |
| } |
| } |
| } |
| return result; |
| } // release device registy reader lock |
| } |
| |
| void InputReader::dump(String8& dump) { |
| mEventHub->dump(dump); |
| dump.append("\n"); |
| |
| dump.append("Input Reader State:\n"); |
| |
| { // acquire device registry reader lock |
| RWLock::AutoRLock _rl(mDeviceRegistryLock); |
| |
| for (size_t i = 0; i < mDevices.size(); i++) { |
| mDevices.valueAt(i)->dump(dump); |
| } |
| } // release device registy reader lock |
| } |
| |
| |
| // --- InputReaderThread --- |
| |
| InputReaderThread::InputReaderThread(const sp<InputReaderInterface>& reader) : |
| Thread(/*canCallJava*/ true), mReader(reader) { |
| } |
| |
| InputReaderThread::~InputReaderThread() { |
| } |
| |
| bool InputReaderThread::threadLoop() { |
| mReader->loopOnce(); |
| return true; |
| } |
| |
| |
| // --- InputDevice --- |
| |
| InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) : |
| mContext(context), mId(id), mName(name), mSources(0) { |
| } |
| |
| InputDevice::~InputDevice() { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| delete mMappers[i]; |
| } |
| mMappers.clear(); |
| } |
| |
| static void dumpMotionRange(String8& dump, const InputDeviceInfo& deviceInfo, |
| int32_t rangeType, const char* name) { |
| const InputDeviceInfo::MotionRange* range = deviceInfo.getMotionRange(rangeType); |
| if (range) { |
| dump.appendFormat(INDENT3 "%s: min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n", |
| name, range->min, range->max, range->flat, range->fuzz); |
| } |
| } |
| |
| void InputDevice::dump(String8& dump) { |
| InputDeviceInfo deviceInfo; |
| getDeviceInfo(& deviceInfo); |
| |
| dump.appendFormat(INDENT "Device 0x%x: %s\n", deviceInfo.getId(), |
| deviceInfo.getName().string()); |
| dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); |
| dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); |
| if (!deviceInfo.getMotionRanges().isEmpty()) { |
| dump.append(INDENT2 "Motion Ranges:\n"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_X, "X"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_Y, "Y"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_PRESSURE, "Pressure"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_SIZE, "Size"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MAJOR, "TouchMajor"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOUCH_MINOR, "TouchMinor"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MAJOR, "ToolMajor"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_TOOL_MINOR, "ToolMinor"); |
| dumpMotionRange(dump, deviceInfo, AINPUT_MOTION_RANGE_ORIENTATION, "Orientation"); |
| } |
| |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->dump(dump); |
| } |
| } |
| |
| void InputDevice::addMapper(InputMapper* mapper) { |
| mMappers.add(mapper); |
| } |
| |
| void InputDevice::configure() { |
| if (! isIgnored()) { |
| mContext->getPolicy()->getInputDeviceCalibration(mName, mCalibration); |
| } |
| |
| mSources = 0; |
| |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->configure(); |
| mSources |= mapper->getSources(); |
| } |
| } |
| |
| void InputDevice::reset() { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->reset(); |
| } |
| } |
| |
| void InputDevice::process(const RawEvent* rawEvent) { |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->process(rawEvent); |
| } |
| } |
| |
| void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { |
| outDeviceInfo->initialize(mId, mName); |
| |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| mapper->populateDeviceInfo(outDeviceInfo); |
| } |
| } |
| |
| int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); |
| } |
| |
| int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); |
| } |
| |
| int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return getState(sourceMask, switchCode, & InputMapper::getSwitchState); |
| } |
| |
| int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { |
| int32_t result = AKEY_STATE_UNKNOWN; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| if (sourcesMatchMask(mapper->getSources(), sourceMask)) { |
| result = (mapper->*getStateFunc)(sourceMask, code); |
| if (result >= AKEY_STATE_DOWN) { |
| return result; |
| } |
| } |
| } |
| return result; |
| } |
| |
| bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| bool result = false; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| if (sourcesMatchMask(mapper->getSources(), sourceMask)) { |
| result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); |
| } |
| } |
| return result; |
| } |
| |
| int32_t InputDevice::getMetaState() { |
| int32_t result = 0; |
| size_t numMappers = mMappers.size(); |
| for (size_t i = 0; i < numMappers; i++) { |
| InputMapper* mapper = mMappers[i]; |
| result |= mapper->getMetaState(); |
| } |
| return result; |
| } |
| |
| |
| // --- InputMapper --- |
| |
| InputMapper::InputMapper(InputDevice* device) : |
| mDevice(device), mContext(device->getContext()) { |
| } |
| |
| InputMapper::~InputMapper() { |
| } |
| |
| void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| info->addSource(getSources()); |
| } |
| |
| void InputMapper::dump(String8& dump) { |
| } |
| |
| void InputMapper::configure() { |
| } |
| |
| void InputMapper::reset() { |
| } |
| |
| int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| return false; |
| } |
| |
| int32_t InputMapper::getMetaState() { |
| return 0; |
| } |
| |
| |
| // --- SwitchInputMapper --- |
| |
| SwitchInputMapper::SwitchInputMapper(InputDevice* device) : |
| InputMapper(device) { |
| } |
| |
| SwitchInputMapper::~SwitchInputMapper() { |
| } |
| |
| uint32_t SwitchInputMapper::getSources() { |
| return 0; |
| } |
| |
| void SwitchInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_SW: |
| processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value); |
| break; |
| } |
| } |
| |
| void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) { |
| getDispatcher()->notifySwitch(when, switchCode, switchValue, 0); |
| } |
| |
| int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { |
| return getEventHub()->getSwitchState(getDeviceId(), switchCode); |
| } |
| |
| |
| // --- KeyboardInputMapper --- |
| |
| KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, int32_t associatedDisplayId, |
| uint32_t sources, int32_t keyboardType) : |
| InputMapper(device), mAssociatedDisplayId(associatedDisplayId), mSources(sources), |
| mKeyboardType(keyboardType) { |
| initializeLocked(); |
| } |
| |
| KeyboardInputMapper::~KeyboardInputMapper() { |
| } |
| |
| void KeyboardInputMapper::initializeLocked() { |
| mLocked.metaState = AMETA_NONE; |
| mLocked.downTime = 0; |
| } |
| |
| uint32_t KeyboardInputMapper::getSources() { |
| return mSources; |
| } |
| |
| void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| info->setKeyboardType(mKeyboardType); |
| } |
| |
| void KeyboardInputMapper::dump(String8& dump) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| dump.append(INDENT2 "Keyboard Input Mapper:\n"); |
| dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId); |
| dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType); |
| dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size()); |
| dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState); |
| dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime); |
| } // release lock |
| } |
| |
| void KeyboardInputMapper::reset() { |
| for (;;) { |
| int32_t keyCode, scanCode; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Synthesize key up event on reset if keys are currently down. |
| if (mLocked.keyDowns.isEmpty()) { |
| initializeLocked(); |
| break; // done |
| } |
| |
| const KeyDown& keyDown = mLocked.keyDowns.top(); |
| keyCode = keyDown.keyCode; |
| scanCode = keyDown.scanCode; |
| } // release lock |
| |
| nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); |
| processKey(when, false, keyCode, scanCode, 0); |
| } |
| |
| InputMapper::reset(); |
| getContext()->updateGlobalMetaState(); |
| } |
| |
| void KeyboardInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_KEY: { |
| int32_t scanCode = rawEvent->scanCode; |
| if (isKeyboardOrGamepadKey(scanCode)) { |
| processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode, |
| rawEvent->flags); |
| } |
| break; |
| } |
| } |
| } |
| |
| bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { |
| return scanCode < BTN_MOUSE |
| || scanCode >= KEY_OK |
| || (scanCode >= BTN_GAMEPAD && scanCode < BTN_DIGI); |
| } |
| |
| void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode, |
| int32_t scanCode, uint32_t policyFlags) { |
| int32_t newMetaState; |
| nsecs_t downTime; |
| bool metaStateChanged = false; |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (down) { |
| // Rotate key codes according to orientation if needed. |
| // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. |
| if (mAssociatedDisplayId >= 0) { |
| int32_t orientation; |
| if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) { |
| return; |
| } |
| |
| keyCode = rotateKeyCode(keyCode, orientation); |
| } |
| |
| // Add key down. |
| ssize_t keyDownIndex = findKeyDownLocked(scanCode); |
| if (keyDownIndex >= 0) { |
| // key repeat, be sure to use same keycode as before in case of rotation |
| keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode; |
| } else { |
| // key down |
| mLocked.keyDowns.push(); |
| KeyDown& keyDown = mLocked.keyDowns.editTop(); |
| keyDown.keyCode = keyCode; |
| keyDown.scanCode = scanCode; |
| } |
| |
| mLocked.downTime = when; |
| } else { |
| // Remove key down. |
| ssize_t keyDownIndex = findKeyDownLocked(scanCode); |
| if (keyDownIndex >= 0) { |
| // key up, be sure to use same keycode as before in case of rotation |
| keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode; |
| mLocked.keyDowns.removeAt(size_t(keyDownIndex)); |
| } else { |
| // key was not actually down |
| LOGI("Dropping key up from device %s because the key was not down. " |
| "keyCode=%d, scanCode=%d", |
| getDeviceName().string(), keyCode, scanCode); |
| return; |
| } |
| } |
| |
| int32_t oldMetaState = mLocked.metaState; |
| newMetaState = updateMetaState(keyCode, down, oldMetaState); |
| if (oldMetaState != newMetaState) { |
| mLocked.metaState = newMetaState; |
| metaStateChanged = true; |
| } |
| |
| downTime = mLocked.downTime; |
| } // release lock |
| |
| if (metaStateChanged) { |
| getContext()->updateGlobalMetaState(); |
| } |
| |
| getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, |
| down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, |
| AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime); |
| } |
| |
| ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) { |
| size_t n = mLocked.keyDowns.size(); |
| for (size_t i = 0; i < n; i++) { |
| if (mLocked.keyDowns[i].scanCode == scanCode) { |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); |
| } |
| |
| int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| return getEventHub()->getScanCodeState(getDeviceId(), scanCode); |
| } |
| |
| bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); |
| } |
| |
| int32_t KeyboardInputMapper::getMetaState() { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| return mLocked.metaState; |
| } // release lock |
| } |
| |
| |
| // --- TrackballInputMapper --- |
| |
| TrackballInputMapper::TrackballInputMapper(InputDevice* device, int32_t associatedDisplayId) : |
| InputMapper(device), mAssociatedDisplayId(associatedDisplayId) { |
| mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; |
| mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; |
| mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; |
| mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; |
| |
| initializeLocked(); |
| } |
| |
| TrackballInputMapper::~TrackballInputMapper() { |
| } |
| |
| uint32_t TrackballInputMapper::getSources() { |
| return AINPUT_SOURCE_TRACKBALL; |
| } |
| |
| void TrackballInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| info->addMotionRange(AINPUT_MOTION_RANGE_X, -1.0f, 1.0f, 0.0f, mXScale); |
| info->addMotionRange(AINPUT_MOTION_RANGE_Y, -1.0f, 1.0f, 0.0f, mYScale); |
| } |
| |
| void TrackballInputMapper::dump(String8& dump) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| dump.append(INDENT2 "Trackball Input Mapper:\n"); |
| dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId); |
| dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision); |
| dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision); |
| dump.appendFormat(INDENT3 "Down: %s\n", toString(mLocked.down)); |
| dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime); |
| } // release lock |
| } |
| |
| void TrackballInputMapper::initializeLocked() { |
| mAccumulator.clear(); |
| |
| mLocked.down = false; |
| mLocked.downTime = 0; |
| } |
| |
| void TrackballInputMapper::reset() { |
| for (;;) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (! mLocked.down) { |
| initializeLocked(); |
| break; // done |
| } |
| } // release lock |
| |
| // Synthesize trackball button up event on reset. |
| nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); |
| mAccumulator.fields = Accumulator::FIELD_BTN_MOUSE; |
| mAccumulator.btnMouse = false; |
| sync(when); |
| } |
| |
| InputMapper::reset(); |
| } |
| |
| void TrackballInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_KEY: |
| switch (rawEvent->scanCode) { |
| case BTN_MOUSE: |
| mAccumulator.fields |= Accumulator::FIELD_BTN_MOUSE; |
| mAccumulator.btnMouse = rawEvent->value != 0; |
| // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and |
| // we need to ensure that we report the up/down promptly. |
| sync(rawEvent->when); |
| break; |
| } |
| break; |
| |
| case EV_REL: |
| switch (rawEvent->scanCode) { |
| case REL_X: |
| mAccumulator.fields |= Accumulator::FIELD_REL_X; |
| mAccumulator.relX = rawEvent->value; |
| break; |
| case REL_Y: |
| mAccumulator.fields |= Accumulator::FIELD_REL_Y; |
| mAccumulator.relY = rawEvent->value; |
| break; |
| } |
| break; |
| |
| case EV_SYN: |
| switch (rawEvent->scanCode) { |
| case SYN_REPORT: |
| sync(rawEvent->when); |
| break; |
| } |
| break; |
| } |
| } |
| |
| void TrackballInputMapper::sync(nsecs_t when) { |
| uint32_t fields = mAccumulator.fields; |
| if (fields == 0) { |
| return; // no new state changes, so nothing to do |
| } |
| |
| int motionEventAction; |
| PointerCoords pointerCoords; |
| nsecs_t downTime; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| bool downChanged = fields & Accumulator::FIELD_BTN_MOUSE; |
| |
| if (downChanged) { |
| if (mAccumulator.btnMouse) { |
| mLocked.down = true; |
| mLocked.downTime = when; |
| } else { |
| mLocked.down = false; |
| } |
| } |
| |
| downTime = mLocked.downTime; |
| float x = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f; |
| float y = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f; |
| |
| if (downChanged) { |
| motionEventAction = mLocked.down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; |
| } else { |
| motionEventAction = AMOTION_EVENT_ACTION_MOVE; |
| } |
| |
| pointerCoords.x = x; |
| pointerCoords.y = y; |
| pointerCoords.pressure = mLocked.down ? 1.0f : 0.0f; |
| pointerCoords.size = 0; |
| pointerCoords.touchMajor = 0; |
| pointerCoords.touchMinor = 0; |
| pointerCoords.toolMajor = 0; |
| pointerCoords.toolMinor = 0; |
| pointerCoords.orientation = 0; |
| |
| if (mAssociatedDisplayId >= 0 && (x != 0.0f || y != 0.0f)) { |
| // Rotate motion based on display orientation if needed. |
| // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. |
| int32_t orientation; |
| if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, NULL, NULL, & orientation)) { |
| return; |
| } |
| |
| float temp; |
| switch (orientation) { |
| case InputReaderPolicyInterface::ROTATION_90: |
| temp = pointerCoords.x; |
| pointerCoords.x = pointerCoords.y; |
| pointerCoords.y = - temp; |
| break; |
| |
| case InputReaderPolicyInterface::ROTATION_180: |
| pointerCoords.x = - pointerCoords.x; |
| pointerCoords.y = - pointerCoords.y; |
| break; |
| |
| case InputReaderPolicyInterface::ROTATION_270: |
| temp = pointerCoords.x; |
| pointerCoords.x = - pointerCoords.y; |
| pointerCoords.y = temp; |
| break; |
| } |
| } |
| } // release lock |
| |
| int32_t metaState = mContext->getGlobalMetaState(); |
| int32_t pointerId = 0; |
| getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_TRACKBALL, 0, |
| motionEventAction, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, |
| 1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime); |
| |
| mAccumulator.clear(); |
| } |
| |
| int32_t TrackballInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { |
| return getEventHub()->getScanCodeState(getDeviceId(), scanCode); |
| } else { |
| return AKEY_STATE_UNKNOWN; |
| } |
| } |
| |
| |
| // --- TouchInputMapper --- |
| |
| TouchInputMapper::TouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : |
| InputMapper(device), mAssociatedDisplayId(associatedDisplayId) { |
| mLocked.surfaceOrientation = -1; |
| mLocked.surfaceWidth = -1; |
| mLocked.surfaceHeight = -1; |
| |
| initializeLocked(); |
| } |
| |
| TouchInputMapper::~TouchInputMapper() { |
| } |
| |
| uint32_t TouchInputMapper::getSources() { |
| return mAssociatedDisplayId >= 0 ? AINPUT_SOURCE_TOUCHSCREEN : AINPUT_SOURCE_TOUCHPAD; |
| } |
| |
| void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { |
| InputMapper::populateDeviceInfo(info); |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Ensure surface information is up to date so that orientation changes are |
| // noticed immediately. |
| configureSurfaceLocked(); |
| |
| info->addMotionRange(AINPUT_MOTION_RANGE_X, mLocked.orientedRanges.x); |
| info->addMotionRange(AINPUT_MOTION_RANGE_Y, mLocked.orientedRanges.y); |
| |
| if (mLocked.orientedRanges.havePressure) { |
| info->addMotionRange(AINPUT_MOTION_RANGE_PRESSURE, |
| mLocked.orientedRanges.pressure); |
| } |
| |
| if (mLocked.orientedRanges.haveSize) { |
| info->addMotionRange(AINPUT_MOTION_RANGE_SIZE, |
| mLocked.orientedRanges.size); |
| } |
| |
| if (mLocked.orientedRanges.haveTouchSize) { |
| info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MAJOR, |
| mLocked.orientedRanges.touchMajor); |
| info->addMotionRange(AINPUT_MOTION_RANGE_TOUCH_MINOR, |
| mLocked.orientedRanges.touchMinor); |
| } |
| |
| if (mLocked.orientedRanges.haveToolSize) { |
| info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MAJOR, |
| mLocked.orientedRanges.toolMajor); |
| info->addMotionRange(AINPUT_MOTION_RANGE_TOOL_MINOR, |
| mLocked.orientedRanges.toolMinor); |
| } |
| |
| if (mLocked.orientedRanges.haveOrientation) { |
| info->addMotionRange(AINPUT_MOTION_RANGE_ORIENTATION, |
| mLocked.orientedRanges.orientation); |
| } |
| } // release lock |
| } |
| |
| void TouchInputMapper::dump(String8& dump) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| dump.append(INDENT2 "Touch Input Mapper:\n"); |
| dump.appendFormat(INDENT3 "AssociatedDisplayId: %d\n", mAssociatedDisplayId); |
| dumpParameters(dump); |
| dumpVirtualKeysLocked(dump); |
| dumpRawAxes(dump); |
| dumpCalibration(dump); |
| dumpSurfaceLocked(dump); |
| dump.appendFormat(INDENT3 "Translation and Scaling Factors:"); |
| dump.appendFormat(INDENT4 "XOrigin: %d\n", mLocked.xOrigin); |
| dump.appendFormat(INDENT4 "YOrigin: %d\n", mLocked.yOrigin); |
| dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale); |
| dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale); |
| dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision); |
| dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision); |
| dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale); |
| dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale); |
| dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias); |
| dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale); |
| dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias); |
| dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale); |
| dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale); |
| dump.appendFormat(INDENT4 "OrientationSCale: %0.3f\n", mLocked.orientationScale); |
| } // release lock |
| } |
| |
| void TouchInputMapper::initializeLocked() { |
| mCurrentTouch.clear(); |
| mLastTouch.clear(); |
| mDownTime = 0; |
| |
| for (uint32_t i = 0; i < MAX_POINTERS; i++) { |
| mAveragingTouchFilter.historyStart[i] = 0; |
| mAveragingTouchFilter.historyEnd[i] = 0; |
| } |
| |
| mJumpyTouchFilter.jumpyPointsDropped = 0; |
| |
| mLocked.currentVirtualKey.down = false; |
| |
| mLocked.orientedRanges.havePressure = false; |
| mLocked.orientedRanges.haveSize = false; |
| mLocked.orientedRanges.haveTouchSize = false; |
| mLocked.orientedRanges.haveToolSize = false; |
| mLocked.orientedRanges.haveOrientation = false; |
| } |
| |
| void TouchInputMapper::configure() { |
| InputMapper::configure(); |
| |
| // Configure basic parameters. |
| configureParameters(); |
| |
| // Configure absolute axis information. |
| configureRawAxes(); |
| |
| // Prepare input device calibration. |
| parseCalibration(); |
| resolveCalibration(); |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Configure surface dimensions and orientation. |
| configureSurfaceLocked(); |
| } // release lock |
| } |
| |
| void TouchInputMapper::configureParameters() { |
| mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents(); |
| mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents(); |
| mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents(); |
| } |
| |
| void TouchInputMapper::dumpParameters(String8& dump) { |
| dump.appendFormat(INDENT3 "UseBadTouchFilter: %s\n", |
| toString(mParameters.useBadTouchFilter)); |
| dump.appendFormat(INDENT3 "UseAveragingTouchFilter: %s\n", |
| toString(mParameters.useAveragingTouchFilter)); |
| dump.appendFormat(INDENT3 "UseJumpyTouchFilter: %s\n", |
| toString(mParameters.useJumpyTouchFilter)); |
| } |
| |
| void TouchInputMapper::configureRawAxes() { |
| mRawAxes.x.clear(); |
| mRawAxes.y.clear(); |
| mRawAxes.pressure.clear(); |
| mRawAxes.touchMajor.clear(); |
| mRawAxes.touchMinor.clear(); |
| mRawAxes.toolMajor.clear(); |
| mRawAxes.toolMinor.clear(); |
| mRawAxes.orientation.clear(); |
| } |
| |
| static void dumpAxisInfo(String8& dump, RawAbsoluteAxisInfo axis, const char* name) { |
| if (axis.valid) { |
| dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n", |
| name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz); |
| } else { |
| dump.appendFormat(INDENT4 "%s: unknown range\n", name); |
| } |
| } |
| |
| void TouchInputMapper::dumpRawAxes(String8& dump) { |
| dump.append(INDENT3 "Raw Axes:\n"); |
| dumpAxisInfo(dump, mRawAxes.x, "X"); |
| dumpAxisInfo(dump, mRawAxes.y, "Y"); |
| dumpAxisInfo(dump, mRawAxes.pressure, "Pressure"); |
| dumpAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor"); |
| dumpAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor"); |
| dumpAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor"); |
| dumpAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor"); |
| dumpAxisInfo(dump, mRawAxes.orientation, "Orientation"); |
| } |
| |
| bool TouchInputMapper::configureSurfaceLocked() { |
| // Update orientation and dimensions if needed. |
| int32_t orientation; |
| int32_t width, height; |
| if (mAssociatedDisplayId >= 0) { |
| // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. |
| if (! getPolicy()->getDisplayInfo(mAssociatedDisplayId, & width, & height, & orientation)) { |
| return false; |
| } |
| } else { |
| orientation = InputReaderPolicyInterface::ROTATION_0; |
| width = mRawAxes.x.getRange(); |
| height = mRawAxes.y.getRange(); |
| } |
| |
| bool orientationChanged = mLocked.surfaceOrientation != orientation; |
| if (orientationChanged) { |
| mLocked.surfaceOrientation = orientation; |
| } |
| |
| bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height; |
| if (sizeChanged) { |
| LOGI("Device reconfigured: id=0x%x, name=%s, display size is now %dx%d", |
| getDeviceId(), getDeviceName().string(), width, height); |
| |
| mLocked.surfaceWidth = width; |
| mLocked.surfaceHeight = height; |
| |
| // Configure X and Y factors. |
| if (mRawAxes.x.valid && mRawAxes.y.valid) { |
| mLocked.xOrigin = mRawAxes.x.minValue; |
| mLocked.yOrigin = mRawAxes.y.minValue; |
| mLocked.xScale = float(width) / mRawAxes.x.getRange(); |
| mLocked.yScale = float(height) / mRawAxes.y.getRange(); |
| mLocked.xPrecision = 1.0f / mLocked.xScale; |
| mLocked.yPrecision = 1.0f / mLocked.yScale; |
| |
| configureVirtualKeysLocked(); |
| } else { |
| LOGW(INDENT "Touch device did not report support for X or Y axis!"); |
| mLocked.xOrigin = 0; |
| mLocked.yOrigin = 0; |
| mLocked.xScale = 1.0f; |
| mLocked.yScale = 1.0f; |
| mLocked.xPrecision = 1.0f; |
| mLocked.yPrecision = 1.0f; |
| } |
| |
| // Scale factor for terms that are not oriented in a particular axis. |
| // If the pixels are square then xScale == yScale otherwise we fake it |
| // by choosing an average. |
| mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale); |
| |
| // Size of diagonal axis. |
| float diagonalSize = pythag(width, height); |
| |
| // TouchMajor and TouchMinor factors. |
| if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) { |
| mLocked.orientedRanges.haveTouchSize = true; |
| mLocked.orientedRanges.touchMajor.min = 0; |
| mLocked.orientedRanges.touchMajor.max = diagonalSize; |
| mLocked.orientedRanges.touchMajor.flat = 0; |
| mLocked.orientedRanges.touchMajor.fuzz = 0; |
| mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor; |
| } |
| |
| // ToolMajor and ToolMinor factors. |
| mLocked.toolSizeLinearScale = 0; |
| mLocked.toolSizeLinearBias = 0; |
| mLocked.toolSizeAreaScale = 0; |
| mLocked.toolSizeAreaBias = 0; |
| if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) { |
| if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) { |
| if (mCalibration.haveToolSizeLinearScale) { |
| mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale; |
| } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { |
| mLocked.toolSizeLinearScale = float(min(width, height)) |
| / mRawAxes.toolMajor.maxValue; |
| } |
| |
| if (mCalibration.haveToolSizeLinearBias) { |
| mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias; |
| } |
| } else if (mCalibration.toolSizeCalibration == |
| Calibration::TOOL_SIZE_CALIBRATION_AREA) { |
| if (mCalibration.haveToolSizeLinearScale) { |
| mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale; |
| } else { |
| mLocked.toolSizeLinearScale = min(width, height); |
| } |
| |
| if (mCalibration.haveToolSizeLinearBias) { |
| mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias; |
| } |
| |
| if (mCalibration.haveToolSizeAreaScale) { |
| mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale; |
| } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { |
| mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue; |
| } |
| |
| if (mCalibration.haveToolSizeAreaBias) { |
| mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias; |
| } |
| } |
| |
| mLocked.orientedRanges.haveToolSize = true; |
| mLocked.orientedRanges.toolMajor.min = 0; |
| mLocked.orientedRanges.toolMajor.max = diagonalSize; |
| mLocked.orientedRanges.toolMajor.flat = 0; |
| mLocked.orientedRanges.toolMajor.fuzz = 0; |
| mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor; |
| } |
| |
| // Pressure factors. |
| mLocked.pressureScale = 0; |
| if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) { |
| RawAbsoluteAxisInfo rawPressureAxis; |
| switch (mCalibration.pressureSource) { |
| case Calibration::PRESSURE_SOURCE_PRESSURE: |
| rawPressureAxis = mRawAxes.pressure; |
| break; |
| case Calibration::PRESSURE_SOURCE_TOUCH: |
| rawPressureAxis = mRawAxes.touchMajor; |
| break; |
| default: |
| rawPressureAxis.clear(); |
| } |
| |
| if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL |
| || mCalibration.pressureCalibration |
| == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { |
| if (mCalibration.havePressureScale) { |
| mLocked.pressureScale = mCalibration.pressureScale; |
| } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) { |
| mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue; |
| } |
| } |
| |
| mLocked.orientedRanges.havePressure = true; |
| mLocked.orientedRanges.pressure.min = 0; |
| mLocked.orientedRanges.pressure.max = 1.0; |
| mLocked.orientedRanges.pressure.flat = 0; |
| mLocked.orientedRanges.pressure.fuzz = 0; |
| } |
| |
| // Size factors. |
| mLocked.sizeScale = 0; |
| if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { |
| if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) { |
| if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { |
| mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue; |
| } |
| } |
| |
| mLocked.orientedRanges.haveSize = true; |
| mLocked.orientedRanges.size.min = 0; |
| mLocked.orientedRanges.size.max = 1.0; |
| mLocked.orientedRanges.size.flat = 0; |
| mLocked.orientedRanges.size.fuzz = 0; |
| } |
| |
| // Orientation |
| mLocked.orientationScale = 0; |
| if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) { |
| if (mCalibration.orientationCalibration |
| == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { |
| if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) { |
| mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue; |
| } |
| } |
| |
| mLocked.orientedRanges.orientation.min = - M_PI_2; |
| mLocked.orientedRanges.orientation.max = M_PI_2; |
| mLocked.orientedRanges.orientation.flat = 0; |
| mLocked.orientedRanges.orientation.fuzz = 0; |
| } |
| } |
| |
| if (orientationChanged || sizeChanged) { |
| // Compute oriented surface dimensions, precision, and scales. |
| float orientedXScale, orientedYScale; |
| switch (mLocked.surfaceOrientation) { |
| case InputReaderPolicyInterface::ROTATION_90: |
| case InputReaderPolicyInterface::ROTATION_270: |
| mLocked.orientedSurfaceWidth = mLocked.surfaceHeight; |
| mLocked.orientedSurfaceHeight = mLocked.surfaceWidth; |
| mLocked.orientedXPrecision = mLocked.yPrecision; |
| mLocked.orientedYPrecision = mLocked.xPrecision; |
| orientedXScale = mLocked.yScale; |
| orientedYScale = mLocked.xScale; |
| break; |
| default: |
| mLocked.orientedSurfaceWidth = mLocked.surfaceWidth; |
| mLocked.orientedSurfaceHeight = mLocked.surfaceHeight; |
| mLocked.orientedXPrecision = mLocked.xPrecision; |
| mLocked.orientedYPrecision = mLocked.yPrecision; |
| orientedXScale = mLocked.xScale; |
| orientedYScale = mLocked.yScale; |
| break; |
| } |
| |
| // Configure position ranges. |
| mLocked.orientedRanges.x.min = 0; |
| mLocked.orientedRanges.x.max = mLocked.orientedSurfaceWidth; |
| mLocked.orientedRanges.x.flat = 0; |
| mLocked.orientedRanges.x.fuzz = orientedXScale; |
| |
| mLocked.orientedRanges.y.min = 0; |
| mLocked.orientedRanges.y.max = mLocked.orientedSurfaceHeight; |
| mLocked.orientedRanges.y.flat = 0; |
| mLocked.orientedRanges.y.fuzz = orientedYScale; |
| } |
| |
| return true; |
| } |
| |
| void TouchInputMapper::dumpSurfaceLocked(String8& dump) { |
| dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth); |
| dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight); |
| dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation); |
| } |
| |
| void TouchInputMapper::configureVirtualKeysLocked() { |
| assert(mRawAxes.x.valid && mRawAxes.y.valid); |
| |
| // Note: getVirtualKeyDefinitions is non-reentrant so we can continue holding the lock. |
| Vector<VirtualKeyDefinition> virtualKeyDefinitions; |
| getPolicy()->getVirtualKeyDefinitions(getDeviceName(), virtualKeyDefinitions); |
| |
| mLocked.virtualKeys.clear(); |
| |
| if (virtualKeyDefinitions.size() == 0) { |
| return; |
| } |
| |
| mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size()); |
| |
| int32_t touchScreenLeft = mRawAxes.x.minValue; |
| int32_t touchScreenTop = mRawAxes.y.minValue; |
| int32_t touchScreenWidth = mRawAxes.x.getRange(); |
| int32_t touchScreenHeight = mRawAxes.y.getRange(); |
| |
| for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { |
| const VirtualKeyDefinition& virtualKeyDefinition = |
| virtualKeyDefinitions[i]; |
| |
| mLocked.virtualKeys.add(); |
| VirtualKey& virtualKey = mLocked.virtualKeys.editTop(); |
| |
| virtualKey.scanCode = virtualKeyDefinition.scanCode; |
| int32_t keyCode; |
| uint32_t flags; |
| if (getEventHub()->scancodeToKeycode(getDeviceId(), virtualKey.scanCode, |
| & keyCode, & flags)) { |
| LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", |
| virtualKey.scanCode); |
| mLocked.virtualKeys.pop(); // drop the key |
| continue; |
| } |
| |
| virtualKey.keyCode = keyCode; |
| virtualKey.flags = flags; |
| |
| // convert the key definition's display coordinates into touch coordinates for a hit box |
| int32_t halfWidth = virtualKeyDefinition.width / 2; |
| int32_t halfHeight = virtualKeyDefinition.height / 2; |
| |
| virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) |
| * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; |
| virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) |
| * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; |
| virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) |
| * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; |
| virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) |
| * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; |
| |
| } |
| } |
| |
| void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) { |
| if (!mLocked.virtualKeys.isEmpty()) { |
| dump.append(INDENT3 "Virtual Keys:\n"); |
| |
| for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) { |
| const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i); |
| dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, " |
| "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", |
| i, virtualKey.scanCode, virtualKey.keyCode, |
| virtualKey.hitLeft, virtualKey.hitRight, |
| virtualKey.hitTop, virtualKey.hitBottom); |
| } |
| } |
| } |
| |
| void TouchInputMapper::parseCalibration() { |
| const InputDeviceCalibration& in = getDevice()->getCalibration(); |
| Calibration& out = mCalibration; |
| |
| // Touch Size |
| out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT; |
| String8 touchSizeCalibrationString; |
| if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) { |
| if (touchSizeCalibrationString == "none") { |
| out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE; |
| } else if (touchSizeCalibrationString == "geometric") { |
| out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC; |
| } else if (touchSizeCalibrationString == "pressure") { |
| out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE; |
| } else if (touchSizeCalibrationString != "default") { |
| LOGW("Invalid value for touch.touchSize.calibration: '%s'", |
| touchSizeCalibrationString.string()); |
| } |
| } |
| |
| // Tool Size |
| out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT; |
| String8 toolSizeCalibrationString; |
| if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) { |
| if (toolSizeCalibrationString == "none") { |
| out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE; |
| } else if (toolSizeCalibrationString == "geometric") { |
| out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC; |
| } else if (toolSizeCalibrationString == "linear") { |
| out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR; |
| } else if (toolSizeCalibrationString == "area") { |
| out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA; |
| } else if (toolSizeCalibrationString != "default") { |
| LOGW("Invalid value for touch.toolSize.calibration: '%s'", |
| toolSizeCalibrationString.string()); |
| } |
| } |
| |
| out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"), |
| out.toolSizeLinearScale); |
| out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"), |
| out.toolSizeLinearBias); |
| out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"), |
| out.toolSizeAreaScale); |
| out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"), |
| out.toolSizeAreaBias); |
| out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"), |
| out.toolSizeIsSummed); |
| |
| // Pressure |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; |
| String8 pressureCalibrationString; |
| if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { |
| if (pressureCalibrationString == "none") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; |
| } else if (pressureCalibrationString == "physical") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; |
| } else if (pressureCalibrationString == "amplitude") { |
| out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; |
| } else if (pressureCalibrationString != "default") { |
| LOGW("Invalid value for touch.pressure.calibration: '%s'", |
| pressureCalibrationString.string()); |
| } |
| } |
| |
| out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT; |
| String8 pressureSourceString; |
| if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) { |
| if (pressureSourceString == "pressure") { |
| out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; |
| } else if (pressureSourceString == "touch") { |
| out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; |
| } else if (pressureSourceString != "default") { |
| LOGW("Invalid value for touch.pressure.source: '%s'", |
| pressureSourceString.string()); |
| } |
| } |
| |
| out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), |
| out.pressureScale); |
| |
| // Size |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; |
| String8 sizeCalibrationString; |
| if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { |
| if (sizeCalibrationString == "none") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; |
| } else if (sizeCalibrationString == "normalized") { |
| out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; |
| } else if (sizeCalibrationString != "default") { |
| LOGW("Invalid value for touch.size.calibration: '%s'", |
| sizeCalibrationString.string()); |
| } |
| } |
| |
| // Orientation |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; |
| String8 orientationCalibrationString; |
| if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { |
| if (orientationCalibrationString == "none") { |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; |
| } else if (orientationCalibrationString == "interpolated") { |
| out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; |
| } else if (orientationCalibrationString != "default") { |
| LOGW("Invalid value for touch.orientation.calibration: '%s'", |
| orientationCalibrationString.string()); |
| } |
| } |
| } |
| |
| void TouchInputMapper::resolveCalibration() { |
| // Pressure |
| switch (mCalibration.pressureSource) { |
| case Calibration::PRESSURE_SOURCE_DEFAULT: |
| if (mRawAxes.pressure.valid) { |
| mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; |
| } else if (mRawAxes.touchMajor.valid) { |
| mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; |
| } |
| break; |
| |
| case Calibration::PRESSURE_SOURCE_PRESSURE: |
| if (! mRawAxes.pressure.valid) { |
| LOGW("Calibration property touch.pressure.source is 'pressure' but " |
| "the pressure axis is not available."); |
| } |
| break; |
| |
| case Calibration::PRESSURE_SOURCE_TOUCH: |
| if (! mRawAxes.touchMajor.valid) { |
| LOGW("Calibration property touch.pressure.source is 'touch' but " |
| "the touchMajor axis is not available."); |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PRESSURE_CALIBRATION_DEFAULT: |
| if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) { |
| mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; |
| } else { |
| mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Tool Size |
| switch (mCalibration.toolSizeCalibration) { |
| case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT: |
| if (mRawAxes.toolMajor.valid) { |
| mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR; |
| } else { |
| mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Touch Size |
| switch (mCalibration.touchSizeCalibration) { |
| case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT: |
| if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE |
| && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) { |
| mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE; |
| } else { |
| mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Size |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SIZE_CALIBRATION_DEFAULT: |
| if (mRawAxes.toolMajor.valid) { |
| mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; |
| } else { |
| mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // Orientation |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::ORIENTATION_CALIBRATION_DEFAULT: |
| if (mRawAxes.orientation.valid) { |
| mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; |
| } else { |
| mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| void TouchInputMapper::dumpCalibration(String8& dump) { |
| dump.append(INDENT3 "Calibration:\n"); |
| |
| // Touch Size |
| switch (mCalibration.touchSizeCalibration) { |
| case Calibration::TOUCH_SIZE_CALIBRATION_NONE: |
| dump.append(INDENT4 "touch.touchSize.calibration: none\n"); |
| break; |
| case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC: |
| dump.append(INDENT4 "touch.touchSize.calibration: geometric\n"); |
| break; |
| case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE: |
| dump.append(INDENT4 "touch.touchSize.calibration: pressure\n"); |
| break; |
| default: |
| assert(false); |
| } |
| |
| // Tool Size |
| switch (mCalibration.toolSizeCalibration) { |
| case Calibration::TOOL_SIZE_CALIBRATION_NONE: |
| dump.append(INDENT4 "touch.toolSize.calibration: none\n"); |
| break; |
| case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC: |
| dump.append(INDENT4 "touch.toolSize.calibration: geometric\n"); |
| break; |
| case Calibration::TOOL_SIZE_CALIBRATION_LINEAR: |
| dump.append(INDENT4 "touch.toolSize.calibration: linear\n"); |
| break; |
| case Calibration::TOOL_SIZE_CALIBRATION_AREA: |
| dump.append(INDENT4 "touch.toolSize.calibration: area\n"); |
| break; |
| default: |
| assert(false); |
| } |
| |
| if (mCalibration.haveToolSizeLinearScale) { |
| dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n", |
| mCalibration.toolSizeLinearScale); |
| } |
| |
| if (mCalibration.haveToolSizeLinearBias) { |
| dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n", |
| mCalibration.toolSizeLinearBias); |
| } |
| |
| if (mCalibration.haveToolSizeAreaScale) { |
| dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n", |
| mCalibration.toolSizeAreaScale); |
| } |
| |
| if (mCalibration.haveToolSizeAreaBias) { |
| dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n", |
| mCalibration.toolSizeAreaBias); |
| } |
| |
| if (mCalibration.haveToolSizeIsSummed) { |
| dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %d\n", |
| mCalibration.toolSizeIsSummed); |
| } |
| |
| // Pressure |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PRESSURE_CALIBRATION_NONE: |
| dump.append(INDENT4 "touch.pressure.calibration: none\n"); |
| break; |
| case Calibration::PRESSURE_CALIBRATION_PHYSICAL: |
| dump.append(INDENT4 "touch.pressure.calibration: physical\n"); |
| break; |
| case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: |
| dump.append(INDENT4 "touch.pressure.calibration: amplitude\n"); |
| break; |
| default: |
| assert(false); |
| } |
| |
| switch (mCalibration.pressureSource) { |
| case Calibration::PRESSURE_SOURCE_PRESSURE: |
| dump.append(INDENT4 "touch.pressure.source: pressure\n"); |
| break; |
| case Calibration::PRESSURE_SOURCE_TOUCH: |
| dump.append(INDENT4 "touch.pressure.source: touch\n"); |
| break; |
| case Calibration::PRESSURE_SOURCE_DEFAULT: |
| break; |
| default: |
| assert(false); |
| } |
| |
| if (mCalibration.havePressureScale) { |
| dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n", |
| mCalibration.pressureScale); |
| } |
| |
| // Size |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SIZE_CALIBRATION_NONE: |
| dump.append(INDENT4 "touch.size.calibration: none\n"); |
| break; |
| case Calibration::SIZE_CALIBRATION_NORMALIZED: |
| dump.append(INDENT4 "touch.size.calibration: normalized\n"); |
| break; |
| default: |
| assert(false); |
| } |
| |
| // Orientation |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::ORIENTATION_CALIBRATION_NONE: |
| dump.append(INDENT4 "touch.orientation.calibration: none\n"); |
| break; |
| case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: |
| dump.append(INDENT4 "touch.orientation.calibration: interpolated\n"); |
| break; |
| default: |
| assert(false); |
| } |
| } |
| |
| void TouchInputMapper::reset() { |
| // Synthesize touch up event if touch is currently down. |
| // This will also take care of finishing virtual key processing if needed. |
| if (mLastTouch.pointerCount != 0) { |
| nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); |
| mCurrentTouch.clear(); |
| syncTouch(when, true); |
| } |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| initializeLocked(); |
| } // release lock |
| |
| InputMapper::reset(); |
| } |
| |
| void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) { |
| uint32_t policyFlags = 0; |
| |
| // Preprocess pointer data. |
| |
| if (mParameters.useBadTouchFilter) { |
| if (applyBadTouchFilter()) { |
| havePointerIds = false; |
| } |
| } |
| |
| if (mParameters.useJumpyTouchFilter) { |
| if (applyJumpyTouchFilter()) { |
| havePointerIds = false; |
| } |
| } |
| |
| if (! havePointerIds) { |
| calculatePointerIds(); |
| } |
| |
| TouchData temp; |
| TouchData* savedTouch; |
| if (mParameters.useAveragingTouchFilter) { |
| temp.copyFrom(mCurrentTouch); |
| savedTouch = & temp; |
| |
| applyAveragingTouchFilter(); |
| } else { |
| savedTouch = & mCurrentTouch; |
| } |
| |
| // Process touches and virtual keys. |
| |
| TouchResult touchResult = consumeOffScreenTouches(when, policyFlags); |
| if (touchResult == DISPATCH_TOUCH) { |
| dispatchTouches(when, policyFlags); |
| } |
| |
| // Copy current touch to last touch in preparation for the next cycle. |
| |
| if (touchResult == DROP_STROKE) { |
| mLastTouch.clear(); |
| } else { |
| mLastTouch.copyFrom(*savedTouch); |
| } |
| } |
| |
| TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches( |
| nsecs_t when, uint32_t policyFlags) { |
| int32_t keyEventAction, keyEventFlags; |
| int32_t keyCode, scanCode, downTime; |
| TouchResult touchResult; |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Update surface size and orientation, including virtual key positions. |
| if (! configureSurfaceLocked()) { |
| return DROP_STROKE; |
| } |
| |
| // Check for virtual key press. |
| if (mLocked.currentVirtualKey.down) { |
| if (mCurrentTouch.pointerCount == 0) { |
| // Pointer went up while virtual key was down. |
| mLocked.currentVirtualKey.down = false; |
| #if DEBUG_VIRTUAL_KEYS |
| LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", |
| mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode); |
| #endif |
| keyEventAction = AKEY_EVENT_ACTION_UP; |
| keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; |
| touchResult = SKIP_TOUCH; |
| goto DispatchVirtualKey; |
| } |
| |
| if (mCurrentTouch.pointerCount == 1) { |
| int32_t x = mCurrentTouch.pointers[0].x; |
| int32_t y = mCurrentTouch.pointers[0].y; |
| const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); |
| if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) { |
| // Pointer is still within the space of the virtual key. |
| return SKIP_TOUCH; |
| } |
| } |
| |
| // Pointer left virtual key area or another pointer also went down. |
| // Send key cancellation and drop the stroke so subsequent motions will be |
| // considered fresh downs. This is useful when the user swipes away from the |
| // virtual key area into the main display surface. |
| mLocked.currentVirtualKey.down = false; |
| #if DEBUG_VIRTUAL_KEYS |
| LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", |
| mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode); |
| #endif |
| keyEventAction = AKEY_EVENT_ACTION_UP; |
| keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY |
| | AKEY_EVENT_FLAG_CANCELED; |
| |
| // Check whether the pointer moved inside the display area where we should |
| // start a new stroke. |
| int32_t x = mCurrentTouch.pointers[0].x; |
| int32_t y = mCurrentTouch.pointers[0].y; |
| if (isPointInsideSurfaceLocked(x, y)) { |
| mLastTouch.clear(); |
| touchResult = DISPATCH_TOUCH; |
| } else { |
| touchResult = DROP_STROKE; |
| } |
| } else { |
| if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) { |
| // Pointer just went down. Handle off-screen touches, if needed. |
| int32_t x = mCurrentTouch.pointers[0].x; |
| int32_t y = mCurrentTouch.pointers[0].y; |
| if (! isPointInsideSurfaceLocked(x, y)) { |
| // If exactly one pointer went down, check for virtual key hit. |
| // Otherwise we will drop the entire stroke. |
| if (mCurrentTouch.pointerCount == 1) { |
| const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); |
| if (virtualKey) { |
| mLocked.currentVirtualKey.down = true; |
| mLocked.currentVirtualKey.downTime = when; |
| mLocked.currentVirtualKey.keyCode = virtualKey->keyCode; |
| mLocked.currentVirtualKey.scanCode = virtualKey->scanCode; |
| #if DEBUG_VIRTUAL_KEYS |
| LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", |
| mLocked.currentVirtualKey.keyCode, |
| mLocked.currentVirtualKey.scanCode); |
| #endif |
| keyEventAction = AKEY_EVENT_ACTION_DOWN; |
| keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM |
| | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; |
| touchResult = SKIP_TOUCH; |
| goto DispatchVirtualKey; |
| } |
| } |
| return DROP_STROKE; |
| } |
| } |
| return DISPATCH_TOUCH; |
| } |
| |
| DispatchVirtualKey: |
| // Collect remaining state needed to dispatch virtual key. |
| keyCode = mLocked.currentVirtualKey.keyCode; |
| scanCode = mLocked.currentVirtualKey.scanCode; |
| downTime = mLocked.currentVirtualKey.downTime; |
| } // release lock |
| |
| // Dispatch virtual key. |
| int32_t metaState = mContext->getGlobalMetaState(); |
| policyFlags |= POLICY_FLAG_VIRTUAL; |
| getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, |
| keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); |
| return touchResult; |
| } |
| |
| void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { |
| uint32_t currentPointerCount = mCurrentTouch.pointerCount; |
| uint32_t lastPointerCount = mLastTouch.pointerCount; |
| if (currentPointerCount == 0 && lastPointerCount == 0) { |
| return; // nothing to do! |
| } |
| |
| BitSet32 currentIdBits = mCurrentTouch.idBits; |
| BitSet32 lastIdBits = mLastTouch.idBits; |
| |
| if (currentIdBits == lastIdBits) { |
| // No pointer id changes so this is a move event. |
| // The dispatcher takes care of batching moves so we don't have to deal with that here. |
| int32_t motionEventAction = AMOTION_EVENT_ACTION_MOVE; |
| dispatchTouch(when, policyFlags, & mCurrentTouch, |
| currentIdBits, -1, currentPointerCount, motionEventAction); |
| } else { |
| // There may be pointers going up and pointers going down and pointers moving |
| // all at the same time. |
| BitSet32 upIdBits(lastIdBits.value & ~ currentIdBits.value); |
| BitSet32 downIdBits(currentIdBits.value & ~ lastIdBits.value); |
| BitSet32 activeIdBits(lastIdBits.value); |
| uint32_t pointerCount = lastPointerCount; |
| |
| // Produce an intermediate representation of the touch data that consists of the |
| // old location of pointers that have just gone up and the new location of pointers that |
| // have just moved but omits the location of pointers that have just gone down. |
| TouchData interimTouch; |
| interimTouch.copyFrom(mLastTouch); |
| |
| BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); |
| bool moveNeeded = false; |
| while (!moveIdBits.isEmpty()) { |
| uint32_t moveId = moveIdBits.firstMarkedBit(); |
| moveIdBits.clearBit(moveId); |
| |
| int32_t oldIndex = mLastTouch.idToIndex[moveId]; |
| int32_t newIndex = mCurrentTouch.idToIndex[moveId]; |
| if (mLastTouch.pointers[oldIndex] != mCurrentTouch.pointers[newIndex]) { |
| interimTouch.pointers[oldIndex] = mCurrentTouch.pointers[newIndex]; |
| moveNeeded = true; |
| } |
| } |
| |
| // Dispatch pointer up events using the interim pointer locations. |
| while (!upIdBits.isEmpty()) { |
| uint32_t upId = upIdBits.firstMarkedBit(); |
| upIdBits.clearBit(upId); |
| BitSet32 oldActiveIdBits = activeIdBits; |
| activeIdBits.clearBit(upId); |
| |
| int32_t motionEventAction; |
| if (activeIdBits.isEmpty()) { |
| motionEventAction = AMOTION_EVENT_ACTION_UP; |
| } else { |
| motionEventAction = AMOTION_EVENT_ACTION_POINTER_UP; |
| } |
| |
| dispatchTouch(when, policyFlags, &interimTouch, |
| oldActiveIdBits, upId, pointerCount, motionEventAction); |
| pointerCount -= 1; |
| } |
| |
| // Dispatch move events if any of the remaining pointers moved from their old locations. |
| // Although applications receive new locations as part of individual pointer up |
| // events, they do not generally handle them except when presented in a move event. |
| if (moveNeeded) { |
| dispatchTouch(when, policyFlags, &mCurrentTouch, |
| activeIdBits, -1, pointerCount, AMOTION_EVENT_ACTION_MOVE); |
| } |
| |
| // Dispatch pointer down events using the new pointer locations. |
| while (!downIdBits.isEmpty()) { |
| uint32_t downId = downIdBits.firstMarkedBit(); |
| downIdBits.clearBit(downId); |
| BitSet32 oldActiveIdBits = activeIdBits; |
| activeIdBits.markBit(downId); |
| |
| int32_t motionEventAction; |
| if (oldActiveIdBits.isEmpty()) { |
| motionEventAction = AMOTION_EVENT_ACTION_DOWN; |
| mDownTime = when; |
| } else { |
| motionEventAction = AMOTION_EVENT_ACTION_POINTER_DOWN; |
| } |
| |
| pointerCount += 1; |
| dispatchTouch(when, policyFlags, &mCurrentTouch, |
| activeIdBits, downId, pointerCount, motionEventAction); |
| } |
| } |
| } |
| |
| void TouchInputMapper::dispatchTouch(nsecs_t when, uint32_t policyFlags, |
| TouchData* touch, BitSet32 idBits, uint32_t changedId, uint32_t pointerCount, |
| int32_t motionEventAction) { |
| int32_t pointerIds[MAX_POINTERS]; |
| PointerCoords pointerCoords[MAX_POINTERS]; |
| int32_t motionEventEdgeFlags = 0; |
| float xPrecision, yPrecision; |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Walk through the the active pointers and map touch screen coordinates (TouchData) into |
| // display coordinates (PointerCoords) and adjust for display orientation. |
| for (uint32_t outIndex = 0; ! idBits.isEmpty(); outIndex++) { |
| uint32_t id = idBits.firstMarkedBit(); |
| idBits.clearBit(id); |
| uint32_t inIndex = touch->idToIndex[id]; |
| |
| const PointerData& in = touch->pointers[inIndex]; |
| |
| // X and Y |
| float x = float(in.x - mLocked.xOrigin) * mLocked.xScale; |
| float y = float(in.y - mLocked.yOrigin) * mLocked.yScale; |
| |
| // ToolMajor and ToolMinor |
| float toolMajor, toolMinor; |
| switch (mCalibration.toolSizeCalibration) { |
| case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC: |
| toolMajor = in.toolMajor * mLocked.geometricScale; |
| if (mRawAxes.toolMinor.valid) { |
| toolMinor = in.toolMinor * mLocked.geometricScale; |
| } else { |
| toolMinor = toolMajor; |
| } |
| break; |
| case Calibration::TOOL_SIZE_CALIBRATION_LINEAR: |
| toolMajor = in.toolMajor != 0 |
| ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias |
| : 0; |
| if (mRawAxes.toolMinor.valid) { |
| toolMinor = in.toolMinor != 0 |
| ? in.toolMinor * mLocked.toolSizeLinearScale |
| + mLocked.toolSizeLinearBias |
| : 0; |
| } else { |
| toolMinor = toolMajor; |
| } |
| break; |
| case Calibration::TOOL_SIZE_CALIBRATION_AREA: |
| if (in.toolMajor != 0) { |
| float diameter = sqrtf(in.toolMajor |
| * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias); |
| toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias; |
| } else { |
| toolMajor = 0; |
| } |
| toolMinor = toolMajor; |
| break; |
| default: |
| toolMajor = 0; |
| toolMinor = 0; |
| break; |
| } |
| |
| if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) { |
| toolMajor /= pointerCount; |
| toolMinor /= pointerCount; |
| } |
| |
| // Pressure |
| float rawPressure; |
| switch (mCalibration.pressureSource) { |
| case Calibration::PRESSURE_SOURCE_PRESSURE: |
| rawPressure = in.pressure; |
| break; |
| case Calibration::PRESSURE_SOURCE_TOUCH: |
| rawPressure = in.touchMajor; |
| break; |
| default: |
| rawPressure = 0; |
| } |
| |
| float pressure; |
| switch (mCalibration.pressureCalibration) { |
| case Calibration::PRESSURE_CALIBRATION_PHYSICAL: |
| case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: |
| pressure = rawPressure * mLocked.pressureScale; |
| break; |
| default: |
| pressure = 1; |
| break; |
| } |
| |
| // TouchMajor and TouchMinor |
| float touchMajor, touchMinor; |
| switch (mCalibration.touchSizeCalibration) { |
| case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC: |
| touchMajor = in.touchMajor * mLocked.geometricScale; |
| if (mRawAxes.touchMinor.valid) { |
| touchMinor = in.touchMinor * mLocked.geometricScale; |
| } else { |
| touchMinor = touchMajor; |
| } |
| break; |
| case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE: |
| touchMajor = toolMajor * pressure; |
| touchMinor = toolMinor * pressure; |
| break; |
| default: |
| touchMajor = 0; |
| touchMinor = 0; |
| break; |
| } |
| |
| if (touchMajor > toolMajor) { |
| touchMajor = toolMajor; |
| } |
| if (touchMinor > toolMinor) { |
| touchMinor = toolMinor; |
| } |
| |
| // Size |
| float size; |
| switch (mCalibration.sizeCalibration) { |
| case Calibration::SIZE_CALIBRATION_NORMALIZED: { |
| float rawSize = mRawAxes.toolMinor.valid |
| ? avg(in.toolMajor, in.toolMinor) |
| : in.toolMajor; |
| size = rawSize * mLocked.sizeScale; |
| break; |
| } |
| default: |
| size = 0; |
| break; |
| } |
| |
| // Orientation |
| float orientation; |
| switch (mCalibration.orientationCalibration) { |
| case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: |
| orientation = in.orientation * mLocked.orientationScale; |
| break; |
| default: |
| orientation = 0; |
| } |
| |
| // Adjust coords for orientation. |
| switch (mLocked.surfaceOrientation) { |
| case InputReaderPolicyInterface::ROTATION_90: { |
| float xTemp = x; |
| x = y; |
| y = mLocked.surfaceWidth - xTemp; |
| orientation -= M_PI_2; |
| if (orientation < - M_PI_2) { |
| orientation += M_PI; |
| } |
| break; |
| } |
| case InputReaderPolicyInterface::ROTATION_180: { |
| x = mLocked.surfaceWidth - x; |
| y = mLocked.surfaceHeight - y; |
| orientation = - orientation; |
| break; |
| } |
| case InputReaderPolicyInterface::ROTATION_270: { |
| float xTemp = x; |
| x = mLocked.surfaceHeight - y; |
| y = xTemp; |
| orientation += M_PI_2; |
| if (orientation > M_PI_2) { |
| orientation -= M_PI; |
| } |
| break; |
| } |
| } |
| |
| // Write output coords. |
| PointerCoords& out = pointerCoords[outIndex]; |
| out.x = x; |
| out.y = y; |
| out.pressure = pressure; |
| out.size = size; |
| out.touchMajor = touchMajor; |
| out.touchMinor = touchMinor; |
| out.toolMajor = toolMajor; |
| out.toolMinor = toolMinor; |
| out.orientation = orientation; |
| |
| pointerIds[outIndex] = int32_t(id); |
| |
| if (id == changedId) { |
| motionEventAction |= outIndex << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; |
| } |
| } |
| |
| // Check edge flags by looking only at the first pointer since the flags are |
| // global to the event. |
| if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) { |
| if (pointerCoords[0].x <= 0) { |
| motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT; |
| } else if (pointerCoords[0].x >= mLocked.orientedSurfaceWidth) { |
| motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT; |
| } |
| if (pointerCoords[0].y <= 0) { |
| motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP; |
| } else if (pointerCoords[0].y >= mLocked.orientedSurfaceHeight) { |
| motionEventEdgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM; |
| } |
| } |
| |
| xPrecision = mLocked.orientedXPrecision; |
| yPrecision = mLocked.orientedYPrecision; |
| } // release lock |
| |
| getDispatcher()->notifyMotion(when, getDeviceId(), getSources(), policyFlags, |
| motionEventAction, 0, getContext()->getGlobalMetaState(), motionEventEdgeFlags, |
| pointerCount, pointerIds, pointerCoords, |
| xPrecision, yPrecision, mDownTime); |
| } |
| |
| bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) { |
| if (mRawAxes.x.valid && mRawAxes.y.valid) { |
| return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue |
| && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue; |
| } |
| return true; |
| } |
| |
| const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked( |
| int32_t x, int32_t y) { |
| size_t numVirtualKeys = mLocked.virtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mLocked.virtualKeys[i]; |
| |
| #if DEBUG_VIRTUAL_KEYS |
| LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " |
| "left=%d, top=%d, right=%d, bottom=%d", |
| x, y, |
| virtualKey.keyCode, virtualKey.scanCode, |
| virtualKey.hitLeft, virtualKey.hitTop, |
| virtualKey.hitRight, virtualKey.hitBottom); |
| #endif |
| |
| if (virtualKey.isHit(x, y)) { |
| return & virtualKey; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void TouchInputMapper::calculatePointerIds() { |
| uint32_t currentPointerCount = mCurrentTouch.pointerCount; |
| uint32_t lastPointerCount = mLastTouch.pointerCount; |
| |
| if (currentPointerCount == 0) { |
| // No pointers to assign. |
| mCurrentTouch.idBits.clear(); |
| } else if (lastPointerCount == 0) { |
| // All pointers are new. |
| mCurrentTouch.idBits.clear(); |
| for (uint32_t i = 0; i < currentPointerCount; i++) { |
| mCurrentTouch.pointers[i].id = i; |
| mCurrentTouch.idToIndex[i] = i; |
| mCurrentTouch.idBits.markBit(i); |
| } |
| } else if (currentPointerCount == 1 && lastPointerCount == 1) { |
| // Only one pointer and no change in count so it must have the same id as before. |
| uint32_t id = mLastTouch.pointers[0].id; |
| mCurrentTouch.pointers[0].id = id; |
| mCurrentTouch.idToIndex[id] = 0; |
| mCurrentTouch.idBits.value = BitSet32::valueForBit(id); |
| } else { |
| // General case. |
| // We build a heap of squared euclidean distances between current and last pointers |
| // associated with the current and last pointer indices. Then, we find the best |
| // match (by distance) for each current pointer. |
| PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; |
| |
| uint32_t heapSize = 0; |
| for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; |
| currentPointerIndex++) { |
| for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; |
| lastPointerIndex++) { |
| int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x |
| - mLastTouch.pointers[lastPointerIndex].x; |
| int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y |
| - mLastTouch.pointers[lastPointerIndex].y; |
| |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| // Insert new element into the heap (sift up). |
| heap[heapSize].currentPointerIndex = currentPointerIndex; |
| heap[heapSize].lastPointerIndex = lastPointerIndex; |
| heap[heapSize].distance = distance; |
| heapSize += 1; |
| } |
| } |
| |
| // Heapify |
| for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { |
| startIndex -= 1; |
| for (uint32_t parentIndex = startIndex; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| |
| // Pull matches out by increasing order of distance. |
| // To avoid reassigning pointers that have already been matched, the loop keeps track |
| // of which last and current pointers have been matched using the matchedXXXBits variables. |
| // It also tracks the used pointer id bits. |
| BitSet32 matchedLastBits(0); |
| BitSet32 matchedCurrentBits(0); |
| BitSet32 usedIdBits(0); |
| bool first = true; |
| for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) { |
| for (;;) { |
| if (first) { |
| // The first time through the loop, we just consume the root element of |
| // the heap (the one with smallest distance). |
| first = false; |
| } else { |
| // Previous iterations consumed the root element of the heap. |
| // Pop root element off of the heap (sift down). |
| heapSize -= 1; |
| assert(heapSize > 0); |
| |
| // Sift down. |
| heap[0] = heap[heapSize]; |
| for (uint32_t parentIndex = 0; ;) { |
| uint32_t childIndex = parentIndex * 2 + 1; |
| if (childIndex >= heapSize) { |
| break; |
| } |
| |
| if (childIndex + 1 < heapSize |
| && heap[childIndex + 1].distance < heap[childIndex].distance) { |
| childIndex += 1; |
| } |
| |
| if (heap[parentIndex].distance <= heap[childIndex].distance) { |
| break; |
| } |
| |
| swap(heap[parentIndex], heap[childIndex]); |
| parentIndex = childIndex; |
| } |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize); |
| for (size_t i = 0; i < heapSize; i++) { |
| LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", |
| i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, |
| heap[i].distance); |
| } |
| #endif |
| } |
| |
| uint32_t currentPointerIndex = heap[0].currentPointerIndex; |
| if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched |
| |
| uint32_t lastPointerIndex = heap[0].lastPointerIndex; |
| if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched |
| |
| matchedCurrentBits.markBit(currentPointerIndex); |
| matchedLastBits.markBit(lastPointerIndex); |
| |
| uint32_t id = mLastTouch.pointers[lastPointerIndex].id; |
| mCurrentTouch.pointers[currentPointerIndex].id = id; |
| mCurrentTouch.idToIndex[id] = currentPointerIndex; |
| usedIdBits.markBit(id); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", |
| lastPointerIndex, currentPointerIndex, id, heap[0].distance); |
| #endif |
| break; |
| } |
| } |
| |
| // Assign fresh ids to new pointers. |
| if (currentPointerCount > lastPointerCount) { |
| for (uint32_t i = currentPointerCount - lastPointerCount; ;) { |
| uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit(); |
| uint32_t id = usedIdBits.firstUnmarkedBit(); |
| |
| mCurrentTouch.pointers[currentPointerIndex].id = id; |
| mCurrentTouch.idToIndex[id] = currentPointerIndex; |
| usedIdBits.markBit(id); |
| |
| #if DEBUG_POINTER_ASSIGNMENT |
| LOGD("calculatePointerIds - assigned: cur=%d, id=%d", |
| currentPointerIndex, id); |
| #endif |
| |
| if (--i == 0) break; // done |
| matchedCurrentBits.markBit(currentPointerIndex); |
| } |
| } |
| |
| // Fix id bits. |
| mCurrentTouch.idBits = usedIdBits; |
| } |
| } |
| |
| /* Special hack for devices that have bad screen data: if one of the |
| * points has moved more than a screen height from the last position, |
| * then drop it. */ |
| bool TouchInputMapper::applyBadTouchFilter() { |
| // This hack requires valid axis parameters. |
| if (! mRawAxes.y.valid) { |
| return false; |
| } |
| |
| uint32_t pointerCount = mCurrentTouch.pointerCount; |
| |
| // Nothing to do if there are no points. |
| if (pointerCount == 0) { |
| return false; |
| } |
| |
| // Don't do anything if a finger is going down or up. We run |
| // here before assigning pointer IDs, so there isn't a good |
| // way to do per-finger matching. |
| if (pointerCount != mLastTouch.pointerCount) { |
| return false; |
| } |
| |
| // We consider a single movement across more than a 7/16 of |
| // the long size of the screen to be bad. This was a magic value |
| // determined by looking at the maximum distance it is feasible |
| // to actually move in one sample. |
| int32_t maxDeltaY = mRawAxes.y.getRange() * 7 / 16; |
| |
| // XXX The original code in InputDevice.java included commented out |
| // code for testing the X axis. Note that when we drop a point |
| // we don't actually restore the old X either. Strange. |
| // The old code also tries to track when bad points were previously |
| // detected but it turns out that due to the placement of a "break" |
| // at the end of the loop, we never set mDroppedBadPoint to true |
| // so it is effectively dead code. |
| // Need to figure out if the old code is busted or just overcomplicated |
| // but working as intended. |
| |
| // Look through all new points and see if any are farther than |
| // acceptable from all previous points. |
| for (uint32_t i = pointerCount; i-- > 0; ) { |
| int32_t y = mCurrentTouch.pointers[i].y; |
| int32_t closestY = INT_MAX; |
| int32_t closestDeltaY = 0; |
| |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y); |
| #endif |
| |
| for (uint32_t j = pointerCount; j-- > 0; ) { |
| int32_t lastY = mLastTouch.pointers[j].y; |
| int32_t deltaY = abs(y - lastY); |
| |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d", |
| j, lastY, deltaY); |
| #endif |
| |
| if (deltaY < maxDeltaY) { |
| goto SkipSufficientlyClosePoint; |
| } |
| if (deltaY < closestDeltaY) { |
| closestDeltaY = deltaY; |
| closestY = lastY; |
| } |
| } |
| |
| // Must not have found a close enough match. |
| #if DEBUG_HACKS |
| LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d", |
| i, y, closestY, closestDeltaY, maxDeltaY); |
| #endif |
| |
| mCurrentTouch.pointers[i].y = closestY; |
| return true; // XXX original code only corrects one point |
| |
| SkipSufficientlyClosePoint: ; |
| } |
| |
| // No change. |
| return false; |
| } |
| |
| /* Special hack for devices that have bad screen data: drop points where |
| * the coordinate value for one axis has jumped to the other pointer's location. |
| */ |
| bool TouchInputMapper::applyJumpyTouchFilter() { |
| // This hack requires valid axis parameters. |
| if (! mRawAxes.y.valid) { |
| return false; |
| } |
| |
| uint32_t pointerCount = mCurrentTouch.pointerCount; |
| if (mLastTouch.pointerCount != pointerCount) { |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Different pointer count %d -> %d", |
| mLastTouch.pointerCount, pointerCount); |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| LOGD(" Pointer %d (%d, %d)", i, |
| mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); |
| } |
| #endif |
| |
| if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) { |
| if (mLastTouch.pointerCount == 1 && pointerCount == 2) { |
| // Just drop the first few events going from 1 to 2 pointers. |
| // They're bad often enough that they're not worth considering. |
| mCurrentTouch.pointerCount = 1; |
| mJumpyTouchFilter.jumpyPointsDropped += 1; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Pointer 2 dropped"); |
| #endif |
| return true; |
| } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) { |
| // The event when we go from 2 -> 1 tends to be messed up too |
| mCurrentTouch.pointerCount = 2; |
| mCurrentTouch.pointers[0] = mLastTouch.pointers[0]; |
| mCurrentTouch.pointers[1] = mLastTouch.pointers[1]; |
| mJumpyTouchFilter.jumpyPointsDropped += 1; |
| |
| #if DEBUG_HACKS |
| for (int32_t i = 0; i < 2; i++) { |
| LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i, |
| mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); |
| } |
| #endif |
| return true; |
| } |
| } |
| // Reset jumpy points dropped on other transitions or if limit exceeded. |
| mJumpyTouchFilter.jumpyPointsDropped = 0; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Transition - drop limit reset"); |
| #endif |
| return false; |
| } |
| |
| // We have the same number of pointers as last time. |
| // A 'jumpy' point is one where the coordinate value for one axis |
| // has jumped to the other pointer's location. No need to do anything |
| // else if we only have one pointer. |
| if (pointerCount < 2) { |
| return false; |
| } |
| |
| if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) { |
| int jumpyEpsilon = mRawAxes.y.getRange() / JUMPY_EPSILON_DIVISOR; |
| |
| // We only replace the single worst jumpy point as characterized by pointer distance |
| // in a single axis. |
| int32_t badPointerIndex = -1; |
| int32_t badPointerReplacementIndex = -1; |
| int32_t badPointerDistance = INT_MIN; // distance to be corrected |
| |
| for (uint32_t i = pointerCount; i-- > 0; ) { |
| int32_t x = mCurrentTouch.pointers[i].x; |
| int32_t y = mCurrentTouch.pointers[i].y; |
| |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y); |
| #endif |
| |
| // Check if a touch point is too close to another's coordinates |
| bool dropX = false, dropY = false; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| if (i == j) { |
| continue; |
| } |
| |
| if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) { |
| dropX = true; |
| break; |
| } |
| |
| if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) { |
| dropY = true; |
| break; |
| } |
| } |
| if (! dropX && ! dropY) { |
| continue; // not jumpy |
| } |
| |
| // Find a replacement candidate by comparing with older points on the |
| // complementary (non-jumpy) axis. |
| int32_t distance = INT_MIN; // distance to be corrected |
| int32_t replacementIndex = -1; |
| |
| if (dropX) { |
| // X looks too close. Find an older replacement point with a close Y. |
| int32_t smallestDeltaY = INT_MAX; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| int32_t deltaY = abs(y - mLastTouch.pointers[j].y); |
| if (deltaY < smallestDeltaY) { |
| smallestDeltaY = deltaY; |
| replacementIndex = j; |
| } |
| } |
| distance = abs(x - mLastTouch.pointers[replacementIndex].x); |
| } else { |
| // Y looks too close. Find an older replacement point with a close X. |
| int32_t smallestDeltaX = INT_MAX; |
| for (uint32_t j = 0; j < pointerCount; j++) { |
| int32_t deltaX = abs(x - mLastTouch.pointers[j].x); |
| if (deltaX < smallestDeltaX) { |
| smallestDeltaX = deltaX; |
| replacementIndex = j; |
| } |
| } |
| distance = abs(y - mLastTouch.pointers[replacementIndex].y); |
| } |
| |
| // If replacing this pointer would correct a worse error than the previous ones |
| // considered, then use this replacement instead. |
| if (distance > badPointerDistance) { |
| badPointerIndex = i; |
| badPointerReplacementIndex = replacementIndex; |
| badPointerDistance = distance; |
| } |
| } |
| |
| // Correct the jumpy pointer if one was found. |
| if (badPointerIndex >= 0) { |
| #if DEBUG_HACKS |
| LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)", |
| badPointerIndex, |
| mLastTouch.pointers[badPointerReplacementIndex].x, |
| mLastTouch.pointers[badPointerReplacementIndex].y); |
| #endif |
| |
| mCurrentTouch.pointers[badPointerIndex].x = |
| mLastTouch.pointers[badPointerReplacementIndex].x; |
| mCurrentTouch.pointers[badPointerIndex].y = |
| mLastTouch.pointers[badPointerReplacementIndex].y; |
| mJumpyTouchFilter.jumpyPointsDropped += 1; |
| return true; |
| } |
| } |
| |
| mJumpyTouchFilter.jumpyPointsDropped = 0; |
| return false; |
| } |
| |
| /* Special hack for devices that have bad screen data: aggregate and |
| * compute averages of the coordinate data, to reduce the amount of |
| * jitter seen by applications. */ |
| void TouchInputMapper::applyAveragingTouchFilter() { |
| for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) { |
| uint32_t id = mCurrentTouch.pointers[currentIndex].id; |
| int32_t x = mCurrentTouch.pointers[currentIndex].x; |
| int32_t y = mCurrentTouch.pointers[currentIndex].y; |
| int32_t pressure; |
| switch (mCalibration.pressureSource) { |
| case Calibration::PRESSURE_SOURCE_PRESSURE: |
| pressure = mCurrentTouch.pointers[currentIndex].pressure; |
| break; |
| case Calibration::PRESSURE_SOURCE_TOUCH: |
| pressure = mCurrentTouch.pointers[currentIndex].touchMajor; |
| break; |
| default: |
| pressure = 1; |
| break; |
| } |
| |
| if (mLastTouch.idBits.hasBit(id)) { |
| // Pointer was down before and is still down now. |
| // Compute average over history trace. |
| uint32_t start = mAveragingTouchFilter.historyStart[id]; |
| uint32_t end = mAveragingTouchFilter.historyEnd[id]; |
| |
| int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x; |
| int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y; |
| uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); |
| |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld", |
| id, distance); |
| #endif |
| |
| if (distance < AVERAGING_DISTANCE_LIMIT) { |
| // Increment end index in preparation for recording new historical data. |
| end += 1; |
| if (end > AVERAGING_HISTORY_SIZE) { |
| end = 0; |
| } |
| |
| // If the end index has looped back to the start index then we have filled |
| // the historical trace up to the desired size so we drop the historical |
| // data at the start of the trace. |
| if (end == start) { |
| start += 1; |
| if (start > AVERAGING_HISTORY_SIZE) { |
| start = 0; |
| } |
| } |
| |
| // Add the raw data to the historical trace. |
| mAveragingTouchFilter.historyStart[id] = start; |
| mAveragingTouchFilter.historyEnd[id] = end; |
| mAveragingTouchFilter.historyData[end].pointers[id].x = x; |
| mAveragingTouchFilter.historyData[end].pointers[id].y = y; |
| mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure; |
| |
| // Average over all historical positions in the trace by total pressure. |
| int32_t averagedX = 0; |
| int32_t averagedY = 0; |
| int32_t totalPressure = 0; |
| for (;;) { |
| int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x; |
| int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y; |
| int32_t historicalPressure = mAveragingTouchFilter.historyData[start] |
| .pointers[id].pressure; |
| |
| averagedX += historicalX * historicalPressure; |
| averagedY += historicalY * historicalPressure; |
| totalPressure += historicalPressure; |
| |
| if (start == end) { |
| break; |
| } |
| |
| start += 1; |
| if (start > AVERAGING_HISTORY_SIZE) { |
| start = 0; |
| } |
| } |
| |
| if (totalPressure != 0) { |
| averagedX /= totalPressure; |
| averagedY /= totalPressure; |
| |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - " |
| "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure, |
| averagedX, averagedY); |
| #endif |
| |
| mCurrentTouch.pointers[currentIndex].x = averagedX; |
| mCurrentTouch.pointers[currentIndex].y = averagedY; |
| } |
| } else { |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id); |
| #endif |
| } |
| } else { |
| #if DEBUG_HACKS |
| LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id); |
| #endif |
| } |
| |
| // Reset pointer history. |
| mAveragingTouchFilter.historyStart[id] = 0; |
| mAveragingTouchFilter.historyEnd[id] = 0; |
| mAveragingTouchFilter.historyData[0].pointers[id].x = x; |
| mAveragingTouchFilter.historyData[0].pointers[id].y = y; |
| mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure; |
| } |
| } |
| |
| int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| size_t numVirtualKeys = mLocked.virtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mLocked.virtualKeys[i]; |
| if (virtualKey.keyCode == keyCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| } // release lock |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) { |
| return AKEY_STATE_VIRTUAL; |
| } |
| |
| size_t numVirtualKeys = mLocked.virtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mLocked.virtualKeys[i]; |
| if (virtualKey.scanCode == scanCode) { |
| return AKEY_STATE_UP; |
| } |
| } |
| } // release lock |
| |
| return AKEY_STATE_UNKNOWN; |
| } |
| |
| bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, |
| const int32_t* keyCodes, uint8_t* outFlags) { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| size_t numVirtualKeys = mLocked.virtualKeys.size(); |
| for (size_t i = 0; i < numVirtualKeys; i++) { |
| const VirtualKey& virtualKey = mLocked.virtualKeys[i]; |
| |
| for (size_t i = 0; i < numCodes; i++) { |
| if (virtualKey.keyCode == keyCodes[i]) { |
| outFlags[i] = 1; |
| } |
| } |
| } |
| } // release lock |
| |
| return true; |
| } |
| |
| |
| // --- SingleTouchInputMapper --- |
| |
| SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : |
| TouchInputMapper(device, associatedDisplayId) { |
| initialize(); |
| } |
| |
| SingleTouchInputMapper::~SingleTouchInputMapper() { |
| } |
| |
| void SingleTouchInputMapper::initialize() { |
| mAccumulator.clear(); |
| |
| mDown = false; |
| mX = 0; |
| mY = 0; |
| mPressure = 0; // default to 0 for devices that don't report pressure |
| mToolWidth = 0; // default to 0 for devices that don't report tool width |
| } |
| |
| void SingleTouchInputMapper::reset() { |
| TouchInputMapper::reset(); |
| |
| initialize(); |
| } |
| |
| void SingleTouchInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_KEY: |
| switch (rawEvent->scanCode) { |
| case BTN_TOUCH: |
| mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH; |
| mAccumulator.btnTouch = rawEvent->value != 0; |
| // Don't sync immediately. Wait until the next SYN_REPORT since we might |
| // not have received valid position information yet. This logic assumes that |
| // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet. |
| break; |
| } |
| break; |
| |
| case EV_ABS: |
| switch (rawEvent->scanCode) { |
| case ABS_X: |
| mAccumulator.fields |= Accumulator::FIELD_ABS_X; |
| mAccumulator.absX = rawEvent->value; |
| break; |
| case ABS_Y: |
| mAccumulator.fields |= Accumulator::FIELD_ABS_Y; |
| mAccumulator.absY = rawEvent->value; |
| break; |
| case ABS_PRESSURE: |
| mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE; |
| mAccumulator.absPressure = rawEvent->value; |
| break; |
| case ABS_TOOL_WIDTH: |
| mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH; |
| mAccumulator.absToolWidth = rawEvent->value; |
| break; |
| } |
| break; |
| |
| case EV_SYN: |
| switch (rawEvent->scanCode) { |
| case SYN_REPORT: |
| sync(rawEvent->when); |
| break; |
| } |
| break; |
| } |
| } |
| |
| void SingleTouchInputMapper::sync(nsecs_t when) { |
| uint32_t fields = mAccumulator.fields; |
| if (fields == 0) { |
| return; // no new state changes, so nothing to do |
| } |
| |
| if (fields & Accumulator::FIELD_BTN_TOUCH) { |
| mDown = mAccumulator.btnTouch; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_X) { |
| mX = mAccumulator.absX; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_Y) { |
| mY = mAccumulator.absY; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_PRESSURE) { |
| mPressure = mAccumulator.absPressure; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) { |
| mToolWidth = mAccumulator.absToolWidth; |
| } |
| |
| mCurrentTouch.clear(); |
| |
| if (mDown) { |
| mCurrentTouch.pointerCount = 1; |
| mCurrentTouch.pointers[0].id = 0; |
| mCurrentTouch.pointers[0].x = mX; |
| mCurrentTouch.pointers[0].y = mY; |
| mCurrentTouch.pointers[0].pressure = mPressure; |
| mCurrentTouch.pointers[0].touchMajor = 0; |
| mCurrentTouch.pointers[0].touchMinor = 0; |
| mCurrentTouch.pointers[0].toolMajor = mToolWidth; |
| mCurrentTouch.pointers[0].toolMinor = mToolWidth; |
| mCurrentTouch.pointers[0].orientation = 0; |
| mCurrentTouch.idToIndex[0] = 0; |
| mCurrentTouch.idBits.markBit(0); |
| } |
| |
| syncTouch(when, true); |
| |
| mAccumulator.clear(); |
| } |
| |
| void SingleTouchInputMapper::configureRawAxes() { |
| TouchInputMapper::configureRawAxes(); |
| |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor); |
| } |
| |
| |
| // --- MultiTouchInputMapper --- |
| |
| MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device, int32_t associatedDisplayId) : |
| TouchInputMapper(device, associatedDisplayId) { |
| initialize(); |
| } |
| |
| MultiTouchInputMapper::~MultiTouchInputMapper() { |
| } |
| |
| void MultiTouchInputMapper::initialize() { |
| mAccumulator.clear(); |
| } |
| |
| void MultiTouchInputMapper::reset() { |
| TouchInputMapper::reset(); |
| |
| initialize(); |
| } |
| |
| void MultiTouchInputMapper::process(const RawEvent* rawEvent) { |
| switch (rawEvent->type) { |
| case EV_ABS: { |
| uint32_t pointerIndex = mAccumulator.pointerCount; |
| Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex]; |
| |
| switch (rawEvent->scanCode) { |
| case ABS_MT_POSITION_X: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X; |
| pointer->absMTPositionX = rawEvent->value; |
| break; |
| case ABS_MT_POSITION_Y: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y; |
| pointer->absMTPositionY = rawEvent->value; |
| break; |
| case ABS_MT_TOUCH_MAJOR: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR; |
| pointer->absMTTouchMajor = rawEvent->value; |
| break; |
| case ABS_MT_TOUCH_MINOR: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR; |
| pointer->absMTTouchMinor = rawEvent->value; |
| break; |
| case ABS_MT_WIDTH_MAJOR: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR; |
| pointer->absMTWidthMajor = rawEvent->value; |
| break; |
| case ABS_MT_WIDTH_MINOR: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR; |
| pointer->absMTWidthMinor = rawEvent->value; |
| break; |
| case ABS_MT_ORIENTATION: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION; |
| pointer->absMTOrientation = rawEvent->value; |
| break; |
| case ABS_MT_TRACKING_ID: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID; |
| pointer->absMTTrackingId = rawEvent->value; |
| break; |
| case ABS_MT_PRESSURE: |
| pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE; |
| pointer->absMTPressure = rawEvent->value; |
| break; |
| } |
| break; |
| } |
| |
| case EV_SYN: |
| switch (rawEvent->scanCode) { |
| case SYN_MT_REPORT: { |
| // MultiTouch Sync: The driver has returned all data for *one* of the pointers. |
| uint32_t pointerIndex = mAccumulator.pointerCount; |
| |
| if (mAccumulator.pointers[pointerIndex].fields) { |
| if (pointerIndex == MAX_POINTERS) { |
| LOGW("MultiTouch device driver returned more than maximum of %d pointers.", |
| MAX_POINTERS); |
| } else { |
| pointerIndex += 1; |
| mAccumulator.pointerCount = pointerIndex; |
| } |
| } |
| |
| mAccumulator.pointers[pointerIndex].clear(); |
| break; |
| } |
| |
| case SYN_REPORT: |
| sync(rawEvent->when); |
| break; |
| } |
| break; |
| } |
| } |
| |
| void MultiTouchInputMapper::sync(nsecs_t when) { |
| static const uint32_t REQUIRED_FIELDS = |
| Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y; |
| |
| uint32_t inCount = mAccumulator.pointerCount; |
| uint32_t outCount = 0; |
| bool havePointerIds = true; |
| |
| mCurrentTouch.clear(); |
| |
| for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) { |
| const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex]; |
| uint32_t fields = inPointer.fields; |
| |
| if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) { |
| // Some drivers send empty MT sync packets without X / Y to indicate a pointer up. |
| // Drop this finger. |
| continue; |
| } |
| |
| PointerData& outPointer = mCurrentTouch.pointers[outCount]; |
| outPointer.x = inPointer.absMTPositionX; |
| outPointer.y = inPointer.absMTPositionY; |
| |
| if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) { |
| if (inPointer.absMTPressure <= 0) { |
| // Some devices send sync packets with X / Y but with a 0 pressure to indicate |
| // a pointer going up. Drop this finger. |
| continue; |
| } |
| outPointer.pressure = inPointer.absMTPressure; |
| } else { |
| // Default pressure to 0 if absent. |
| outPointer.pressure = 0; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) { |
| if (inPointer.absMTTouchMajor <= 0) { |
| // Some devices send sync packets with X / Y but with a 0 touch major to indicate |
| // a pointer going up. Drop this finger. |
| continue; |
| } |
| outPointer.touchMajor = inPointer.absMTTouchMajor; |
| } else { |
| // Default touch area to 0 if absent. |
| outPointer.touchMajor = 0; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) { |
| outPointer.touchMinor = inPointer.absMTTouchMinor; |
| } else { |
| // Assume touch area is circular. |
| outPointer.touchMinor = outPointer.touchMajor; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) { |
| outPointer.toolMajor = inPointer.absMTWidthMajor; |
| } else { |
| // Default tool area to 0 if absent. |
| outPointer.toolMajor = 0; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) { |
| outPointer.toolMinor = inPointer.absMTWidthMinor; |
| } else { |
| // Assume tool area is circular. |
| outPointer.toolMinor = outPointer.toolMajor; |
| } |
| |
| if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) { |
| outPointer.orientation = inPointer.absMTOrientation; |
| } else { |
| // Default orientation to vertical if absent. |
| outPointer.orientation = 0; |
| } |
| |
| // Assign pointer id using tracking id if available. |
| if (havePointerIds) { |
| if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) { |
| uint32_t id = uint32_t(inPointer.absMTTrackingId); |
| |
| if (id > MAX_POINTER_ID) { |
| #if DEBUG_POINTERS |
| LOGD("Pointers: Ignoring driver provided pointer id %d because " |
| "it is larger than max supported id %d", |
| id, MAX_POINTER_ID); |
| #endif |
| havePointerIds = false; |
| } |
| else { |
| outPointer.id = id; |
| mCurrentTouch.idToIndex[id] = outCount; |
| mCurrentTouch.idBits.markBit(id); |
| } |
| } else { |
| havePointerIds = false; |
| } |
| } |
| |
| outCount += 1; |
| } |
| |
| mCurrentTouch.pointerCount = outCount; |
| |
| syncTouch(when, havePointerIds); |
| |
| mAccumulator.clear(); |
| } |
| |
| void MultiTouchInputMapper::configureRawAxes() { |
| TouchInputMapper::configureRawAxes(); |
| |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation); |
| getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure); |
| } |
| |
| |
| } // namespace android |