blob: fbffc947aeb36f6c1ff7aa5b089102f97b070d4d [file] [log] [blame]
/*
* Copyright (C) 2005 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "EventHub"
// #define LOG_NDEBUG 0
#include "EventHub.h"
#include <hardware_legacy/power.h>
#include <cutils/properties.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <utils/Errors.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <memory.h>
#include <errno.h>
#include <assert.h>
#include <androidfw/KeyLayoutMap.h>
#include <androidfw/KeyCharacterMap.h>
#include <androidfw/VirtualKeyMap.h>
#include <sha1.h>
#include <string.h>
#include <stdint.h>
#include <dirent.h>
#include <sys/inotify.h>
#include <sys/epoll.h>
#include <sys/ioctl.h>
#include <sys/limits.h>
/* this macro is used to tell if "bit" is set in "array"
* it selects a byte from the array, and does a boolean AND
* operation with a byte that only has the relevant bit set.
* eg. to check for the 12th bit, we do (array[1] & 1<<4)
*/
#define test_bit(bit, array) (array[bit/8] & (1<<(bit%8)))
/* this macro computes the number of bytes needed to represent a bit array of the specified size */
#define sizeof_bit_array(bits) ((bits + 7) / 8)
#define INDENT " "
#define INDENT2 " "
#define INDENT3 " "
namespace android {
static const char *WAKE_LOCK_ID = "KeyEvents";
static const char *DEVICE_PATH = "/dev/input";
/* return the larger integer */
static inline int max(int v1, int v2)
{
return (v1 > v2) ? v1 : v2;
}
static inline const char* toString(bool value) {
return value ? "true" : "false";
}
static String8 sha1(const String8& in) {
SHA1_CTX ctx;
SHA1Init(&ctx);
SHA1Update(&ctx, reinterpret_cast<const u_char*>(in.string()), in.size());
u_char digest[SHA1_DIGEST_LENGTH];
SHA1Final(digest, &ctx);
String8 out;
for (size_t i = 0; i < SHA1_DIGEST_LENGTH; i++) {
out.appendFormat("%02x", digest[i]);
}
return out;
}
static void setDescriptor(InputDeviceIdentifier& identifier) {
// Compute a device descriptor that uniquely identifies the device.
// The descriptor is assumed to be a stable identifier. Its value should not
// change between reboots, reconnections, firmware updates or new releases of Android.
// Ideally, we also want the descriptor to be short and relatively opaque.
String8 rawDescriptor;
rawDescriptor.appendFormat(":%04x:%04x:", identifier.vendor, identifier.product);
if (!identifier.uniqueId.isEmpty()) {
rawDescriptor.append("uniqueId:");
rawDescriptor.append(identifier.uniqueId);
} if (identifier.vendor == 0 && identifier.product == 0) {
// If we don't know the vendor and product id, then the device is probably
// built-in so we need to rely on other information to uniquely identify
// the input device. Usually we try to avoid relying on the device name or
// location but for built-in input device, they are unlikely to ever change.
if (!identifier.name.isEmpty()) {
rawDescriptor.append("name:");
rawDescriptor.append(identifier.name);
} else if (!identifier.location.isEmpty()) {
rawDescriptor.append("location:");
rawDescriptor.append(identifier.location);
}
}
identifier.descriptor = sha1(rawDescriptor);
ALOGV("Created descriptor: raw=%s, cooked=%s", rawDescriptor.string(),
identifier.descriptor.string());
}
// --- Global Functions ---
uint32_t getAbsAxisUsage(int32_t axis, uint32_t deviceClasses) {
// Touch devices get dibs on touch-related axes.
if (deviceClasses & INPUT_DEVICE_CLASS_TOUCH) {
switch (axis) {
case ABS_X:
case ABS_Y:
case ABS_PRESSURE:
case ABS_TOOL_WIDTH:
case ABS_DISTANCE:
case ABS_TILT_X:
case ABS_TILT_Y:
case ABS_MT_SLOT:
case ABS_MT_TOUCH_MAJOR:
case ABS_MT_TOUCH_MINOR:
case ABS_MT_WIDTH_MAJOR:
case ABS_MT_WIDTH_MINOR:
case ABS_MT_ORIENTATION:
case ABS_MT_POSITION_X:
case ABS_MT_POSITION_Y:
case ABS_MT_TOOL_TYPE:
case ABS_MT_BLOB_ID:
case ABS_MT_TRACKING_ID:
case ABS_MT_PRESSURE:
case ABS_MT_DISTANCE:
return INPUT_DEVICE_CLASS_TOUCH;
}
}
// Joystick devices get the rest.
return deviceClasses & INPUT_DEVICE_CLASS_JOYSTICK;
}
// --- EventHub::Device ---
EventHub::Device::Device(int fd, int32_t id, const String8& path,
const InputDeviceIdentifier& identifier) :
next(NULL),
fd(fd), id(id), path(path), identifier(identifier),
classes(0), configuration(NULL), virtualKeyMap(NULL) {
memset(keyBitmask, 0, sizeof(keyBitmask));
memset(absBitmask, 0, sizeof(absBitmask));
memset(relBitmask, 0, sizeof(relBitmask));
memset(swBitmask, 0, sizeof(swBitmask));
memset(ledBitmask, 0, sizeof(ledBitmask));
memset(propBitmask, 0, sizeof(propBitmask));
}
EventHub::Device::~Device() {
close();
delete configuration;
delete virtualKeyMap;
}
void EventHub::Device::close() {
if (fd >= 0) {
::close(fd);
fd = -1;
}
}
// --- EventHub ---
const uint32_t EventHub::EPOLL_ID_INOTIFY;
const uint32_t EventHub::EPOLL_ID_WAKE;
const int EventHub::EPOLL_SIZE_HINT;
const int EventHub::EPOLL_MAX_EVENTS;
EventHub::EventHub(void) :
mBuiltInKeyboardId(NO_BUILT_IN_KEYBOARD), mNextDeviceId(1),
mOpeningDevices(0), mClosingDevices(0),
mNeedToSendFinishedDeviceScan(false),
mNeedToReopenDevices(false), mNeedToScanDevices(true),
mPendingEventCount(0), mPendingEventIndex(0), mPendingINotify(false) {
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
mEpollFd = epoll_create(EPOLL_SIZE_HINT);
LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance. errno=%d", errno);
mINotifyFd = inotify_init();
int result = inotify_add_watch(mINotifyFd, DEVICE_PATH, IN_DELETE | IN_CREATE);
LOG_ALWAYS_FATAL_IF(result < 0, "Could not register INotify for %s. errno=%d",
DEVICE_PATH, errno);
struct epoll_event eventItem;
memset(&eventItem, 0, sizeof(eventItem));
eventItem.events = EPOLLIN;
eventItem.data.u32 = EPOLL_ID_INOTIFY;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mINotifyFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add INotify to epoll instance. errno=%d", errno);
int wakeFds[2];
result = pipe(wakeFds);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not create wake pipe. errno=%d", errno);
mWakeReadPipeFd = wakeFds[0];
mWakeWritePipeFd = wakeFds[1];
result = fcntl(mWakeReadPipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake read pipe non-blocking. errno=%d",
errno);
result = fcntl(mWakeWritePipeFd, F_SETFL, O_NONBLOCK);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not make wake write pipe non-blocking. errno=%d",
errno);
eventItem.data.u32 = EPOLL_ID_WAKE;
result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeReadPipeFd, &eventItem);
LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake read pipe to epoll instance. errno=%d",
errno);
}
EventHub::~EventHub(void) {
closeAllDevicesLocked();
while (mClosingDevices) {
Device* device = mClosingDevices;
mClosingDevices = device->next;
delete device;
}
::close(mEpollFd);
::close(mINotifyFd);
::close(mWakeReadPipeFd);
::close(mWakeWritePipeFd);
release_wake_lock(WAKE_LOCK_ID);
}
InputDeviceIdentifier EventHub::getDeviceIdentifier(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return InputDeviceIdentifier();
return device->identifier;
}
uint32_t EventHub::getDeviceClasses(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device == NULL) return 0;
return device->classes;
}
void EventHub::getConfiguration(int32_t deviceId, PropertyMap* outConfiguration) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->configuration) {
*outConfiguration = *device->configuration;
} else {
outConfiguration->clear();
}
}
status_t EventHub::getAbsoluteAxisInfo(int32_t deviceId, int axis,
RawAbsoluteAxisInfo* outAxisInfo) const {
outAxisInfo->clear();
if (axis >= 0 && axis <= ABS_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
struct input_absinfo info;
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
axis, device->identifier.name.string(), device->fd, errno);
return -errno;
}
if (info.minimum != info.maximum) {
outAxisInfo->valid = true;
outAxisInfo->minValue = info.minimum;
outAxisInfo->maxValue = info.maximum;
outAxisInfo->flat = info.flat;
outAxisInfo->fuzz = info.fuzz;
outAxisInfo->resolution = info.resolution;
}
return OK;
}
}
return -1;
}
bool EventHub::hasRelativeAxis(int32_t deviceId, int axis) const {
if (axis >= 0 && axis <= REL_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return test_bit(axis, device->relBitmask);
}
}
return false;
}
bool EventHub::hasInputProperty(int32_t deviceId, int property) const {
if (property >= 0 && property <= INPUT_PROP_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return test_bit(property, device->propBitmask);
}
}
return false;
}
int32_t EventHub::getScanCodeState(int32_t deviceId, int32_t scanCode) const {
if (scanCode >= 0 && scanCode <= KEY_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && test_bit(scanCode, device->keyBitmask)) {
uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
memset(keyState, 0, sizeof(keyState));
if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
return test_bit(scanCode, keyState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getKeyCodeState(int32_t deviceId, int32_t keyCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && device->keyMap.haveKeyLayout()) {
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keyCode, &scanCodes);
if (scanCodes.size() != 0) {
uint8_t keyState[sizeof_bit_array(KEY_MAX + 1)];
memset(keyState, 0, sizeof(keyState));
if (ioctl(device->fd, EVIOCGKEY(sizeof(keyState)), keyState) >= 0) {
for (size_t i = 0; i < scanCodes.size(); i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, keyState)) {
return AKEY_STATE_DOWN;
}
}
return AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
int32_t EventHub::getSwitchState(int32_t deviceId, int32_t sw) const {
if (sw >= 0 && sw <= SW_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && test_bit(sw, device->swBitmask)) {
uint8_t swState[sizeof_bit_array(SW_MAX + 1)];
memset(swState, 0, sizeof(swState));
if (ioctl(device->fd, EVIOCGSW(sizeof(swState)), swState) >= 0) {
return test_bit(sw, swState) ? AKEY_STATE_DOWN : AKEY_STATE_UP;
}
}
}
return AKEY_STATE_UNKNOWN;
}
status_t EventHub::getAbsoluteAxisValue(int32_t deviceId, int32_t axis, int32_t* outValue) const {
*outValue = 0;
if (axis >= 0 && axis <= ABS_MAX) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && test_bit(axis, device->absBitmask)) {
struct input_absinfo info;
if(ioctl(device->fd, EVIOCGABS(axis), &info)) {
ALOGW("Error reading absolute controller %d for device %s fd %d, errno=%d",
axis, device->identifier.name.string(), device->fd, errno);
return -errno;
}
*outValue = info.value;
return OK;
}
}
return -1;
}
bool EventHub::markSupportedKeyCodes(int32_t deviceId, size_t numCodes,
const int32_t* keyCodes, uint8_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
Vector<int32_t> scanCodes;
for (size_t codeIndex = 0; codeIndex < numCodes; codeIndex++) {
scanCodes.clear();
status_t err = device->keyMap.keyLayoutMap->findScanCodesForKey(
keyCodes[codeIndex], &scanCodes);
if (! err) {
// check the possible scan codes identified by the layout map against the
// map of codes actually emitted by the driver
for (size_t sc = 0; sc < scanCodes.size(); sc++) {
if (test_bit(scanCodes[sc], device->keyBitmask)) {
outFlags[codeIndex] = 1;
break;
}
}
}
}
return true;
}
return false;
}
status_t EventHub::mapKey(int32_t deviceId, int32_t scanCode, int32_t usageCode,
int32_t* outKeycode, uint32_t* outFlags) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapKey(
scanCode, usageCode, outKeycode, outFlags);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
*outKeycode = 0;
*outFlags = 0;
return NAME_NOT_FOUND;
}
status_t EventHub::mapAxis(int32_t deviceId, int32_t scanCode, AxisInfo* outAxisInfo) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->keyMap.haveKeyLayout()) {
status_t err = device->keyMap.keyLayoutMap->mapAxis(scanCode, outAxisInfo);
if (err == NO_ERROR) {
return NO_ERROR;
}
}
return NAME_NOT_FOUND;
}
void EventHub::setExcludedDevices(const Vector<String8>& devices) {
AutoMutex _l(mLock);
mExcludedDevices = devices;
}
bool EventHub::hasScanCode(int32_t deviceId, int32_t scanCode) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && scanCode >= 0 && scanCode <= KEY_MAX) {
if (test_bit(scanCode, device->keyBitmask)) {
return true;
}
}
return false;
}
bool EventHub::hasLed(int32_t deviceId, int32_t led) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && led >= 0 && led <= LED_MAX) {
if (test_bit(led, device->ledBitmask)) {
return true;
}
}
return false;
}
void EventHub::setLedState(int32_t deviceId, int32_t led, bool on) {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && !device->isVirtual() && led >= 0 && led <= LED_MAX) {
struct input_event ev;
ev.time.tv_sec = 0;
ev.time.tv_usec = 0;
ev.type = EV_LED;
ev.code = led;
ev.value = on ? 1 : 0;
ssize_t nWrite;
do {
nWrite = write(device->fd, &ev, sizeof(struct input_event));
} while (nWrite == -1 && errno == EINTR);
}
}
void EventHub::getVirtualKeyDefinitions(int32_t deviceId,
Vector<VirtualKeyDefinition>& outVirtualKeys) const {
outVirtualKeys.clear();
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device && device->virtualKeyMap) {
outVirtualKeys.appendVector(device->virtualKeyMap->getVirtualKeys());
}
}
sp<KeyCharacterMap> EventHub::getKeyCharacterMap(int32_t deviceId) const {
AutoMutex _l(mLock);
Device* device = getDeviceLocked(deviceId);
if (device) {
return device->keyMap.keyCharacterMap;
}
return NULL;
}
EventHub::Device* EventHub::getDeviceLocked(int32_t deviceId) const {
if (deviceId == BUILT_IN_KEYBOARD_ID) {
deviceId = mBuiltInKeyboardId;
}
ssize_t index = mDevices.indexOfKey(deviceId);
return index >= 0 ? mDevices.valueAt(index) : NULL;
}
EventHub::Device* EventHub::getDeviceByPathLocked(const char* devicePath) const {
for (size_t i = 0; i < mDevices.size(); i++) {
Device* device = mDevices.valueAt(i);
if (device->path == devicePath) {
return device;
}
}
return NULL;
}
size_t EventHub::getEvents(int timeoutMillis, RawEvent* buffer, size_t bufferSize) {
ALOG_ASSERT(bufferSize >= 1);
AutoMutex _l(mLock);
struct input_event readBuffer[bufferSize];
RawEvent* event = buffer;
size_t capacity = bufferSize;
bool awoken = false;
for (;;) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
// Reopen input devices if needed.
if (mNeedToReopenDevices) {
mNeedToReopenDevices = false;
ALOGI("Reopening all input devices due to a configuration change.");
closeAllDevicesLocked();
mNeedToScanDevices = true;
break; // return to the caller before we actually rescan
}
// Report any devices that had last been added/removed.
while (mClosingDevices) {
Device* device = mClosingDevices;
ALOGV("Reporting device closed: id=%d, name=%s\n",
device->id, device->path.string());
mClosingDevices = device->next;
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? BUILT_IN_KEYBOARD_ID : device->id;
event->type = DEVICE_REMOVED;
event += 1;
delete device;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToScanDevices) {
mNeedToScanDevices = false;
scanDevicesLocked();
mNeedToSendFinishedDeviceScan = true;
}
while (mOpeningDevices != NULL) {
Device* device = mOpeningDevices;
ALOGV("Reporting device opened: id=%d, name=%s\n",
device->id, device->path.string());
mOpeningDevices = device->next;
event->when = now;
event->deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
event->type = DEVICE_ADDED;
event += 1;
mNeedToSendFinishedDeviceScan = true;
if (--capacity == 0) {
break;
}
}
if (mNeedToSendFinishedDeviceScan) {
mNeedToSendFinishedDeviceScan = false;
event->when = now;
event->type = FINISHED_DEVICE_SCAN;
event += 1;
if (--capacity == 0) {
break;
}
}
// Grab the next input event.
bool deviceChanged = false;
while (mPendingEventIndex < mPendingEventCount) {
const struct epoll_event& eventItem = mPendingEventItems[mPendingEventIndex++];
if (eventItem.data.u32 == EPOLL_ID_INOTIFY) {
if (eventItem.events & EPOLLIN) {
mPendingINotify = true;
} else {
ALOGW("Received unexpected epoll event 0x%08x for INotify.", eventItem.events);
}
continue;
}
if (eventItem.data.u32 == EPOLL_ID_WAKE) {
if (eventItem.events & EPOLLIN) {
ALOGV("awoken after wake()");
awoken = true;
char buffer[16];
ssize_t nRead;
do {
nRead = read(mWakeReadPipeFd, buffer, sizeof(buffer));
} while ((nRead == -1 && errno == EINTR) || nRead == sizeof(buffer));
} else {
ALOGW("Received unexpected epoll event 0x%08x for wake read pipe.",
eventItem.events);
}
continue;
}
ssize_t deviceIndex = mDevices.indexOfKey(eventItem.data.u32);
if (deviceIndex < 0) {
ALOGW("Received unexpected epoll event 0x%08x for unknown device id %d.",
eventItem.events, eventItem.data.u32);
continue;
}
Device* device = mDevices.valueAt(deviceIndex);
if (eventItem.events & EPOLLIN) {
int32_t readSize = read(device->fd, readBuffer,
sizeof(struct input_event) * capacity);
if (readSize == 0 || (readSize < 0 && errno == ENODEV)) {
// Device was removed before INotify noticed.
ALOGW("could not get event, removed? (fd: %d size: %d bufferSize: %d "
"capacity: %d errno: %d)\n",
device->fd, readSize, bufferSize, capacity, errno);
deviceChanged = true;
closeDeviceLocked(device);
} else if (readSize < 0) {
if (errno != EAGAIN && errno != EINTR) {
ALOGW("could not get event (errno=%d)", errno);
}
} else if ((readSize % sizeof(struct input_event)) != 0) {
ALOGE("could not get event (wrong size: %d)", readSize);
} else {
int32_t deviceId = device->id == mBuiltInKeyboardId ? 0 : device->id;
size_t count = size_t(readSize) / sizeof(struct input_event);
for (size_t i = 0; i < count; i++) {
const struct input_event& iev = readBuffer[i];
ALOGV("%s got: t0=%d, t1=%d, type=%d, code=%d, value=%d",
device->path.string(),
(int) iev.time.tv_sec, (int) iev.time.tv_usec,
iev.type, iev.code, iev.value);
#ifdef HAVE_POSIX_CLOCKS
// Use the time specified in the event instead of the current time
// so that downstream code can get more accurate estimates of
// event dispatch latency from the time the event is enqueued onto
// the evdev client buffer.
//
// The event's timestamp fortuitously uses the same monotonic clock
// time base as the rest of Android. The kernel event device driver
// (drivers/input/evdev.c) obtains timestamps using ktime_get_ts().
// The systemTime(SYSTEM_TIME_MONOTONIC) function we use everywhere
// calls clock_gettime(CLOCK_MONOTONIC) which is implemented as a
// system call that also queries ktime_get_ts().
event->when = nsecs_t(iev.time.tv_sec) * 1000000000LL
+ nsecs_t(iev.time.tv_usec) * 1000LL;
ALOGV("event time %lld, now %lld", event->when, now);
#else
event->when = now;
#endif
event->deviceId = deviceId;
event->type = iev.type;
event->code = iev.code;
event->value = iev.value;
event += 1;
}
capacity -= count;
if (capacity == 0) {
// The result buffer is full. Reset the pending event index
// so we will try to read the device again on the next iteration.
mPendingEventIndex -= 1;
break;
}
}
} else if (eventItem.events & EPOLLHUP) {
ALOGI("Removing device %s due to epoll hang-up event.",
device->identifier.name.string());
deviceChanged = true;
closeDeviceLocked(device);
} else {
ALOGW("Received unexpected epoll event 0x%08x for device %s.",
eventItem.events, device->identifier.name.string());
}
}
// readNotify() will modify the list of devices so this must be done after
// processing all other events to ensure that we read all remaining events
// before closing the devices.
if (mPendingINotify && mPendingEventIndex >= mPendingEventCount) {
mPendingINotify = false;
readNotifyLocked();
deviceChanged = true;
}
// Report added or removed devices immediately.
if (deviceChanged) {
continue;
}
// Return now if we have collected any events or if we were explicitly awoken.
if (event != buffer || awoken) {
break;
}
// Poll for events. Mind the wake lock dance!
// We hold a wake lock at all times except during epoll_wait(). This works due to some
// subtle choreography. When a device driver has pending (unread) events, it acquires
// a kernel wake lock. However, once the last pending event has been read, the device
// driver will release the kernel wake lock. To prevent the system from going to sleep
// when this happens, the EventHub holds onto its own user wake lock while the client
// is processing events. Thus the system can only sleep if there are no events
// pending or currently being processed.
//
// The timeout is advisory only. If the device is asleep, it will not wake just to
// service the timeout.
mPendingEventIndex = 0;
mLock.unlock(); // release lock before poll, must be before release_wake_lock
release_wake_lock(WAKE_LOCK_ID);
int pollResult = epoll_wait(mEpollFd, mPendingEventItems, EPOLL_MAX_EVENTS, timeoutMillis);
acquire_wake_lock(PARTIAL_WAKE_LOCK, WAKE_LOCK_ID);
mLock.lock(); // reacquire lock after poll, must be after acquire_wake_lock
if (pollResult == 0) {
// Timed out.
mPendingEventCount = 0;
break;
}
if (pollResult < 0) {
// An error occurred.
mPendingEventCount = 0;
// Sleep after errors to avoid locking up the system.
// Hopefully the error is transient.
if (errno != EINTR) {
ALOGW("poll failed (errno=%d)\n", errno);
usleep(100000);
}
} else {
// Some events occurred.
mPendingEventCount = size_t(pollResult);
}
}
// All done, return the number of events we read.
return event - buffer;
}
void EventHub::wake() {
ALOGV("wake() called");
ssize_t nWrite;
do {
nWrite = write(mWakeWritePipeFd, "W", 1);
} while (nWrite == -1 && errno == EINTR);
if (nWrite != 1 && errno != EAGAIN) {
ALOGW("Could not write wake signal, errno=%d", errno);
}
}
void EventHub::scanDevicesLocked() {
status_t res = scanDirLocked(DEVICE_PATH);
if(res < 0) {
ALOGE("scan dir failed for %s\n", DEVICE_PATH);
}
if (mDevices.indexOfKey(VIRTUAL_KEYBOARD_ID) < 0) {
createVirtualKeyboardLocked();
}
}
// ----------------------------------------------------------------------------
static bool containsNonZeroByte(const uint8_t* array, uint32_t startIndex, uint32_t endIndex) {
const uint8_t* end = array + endIndex;
array += startIndex;
while (array != end) {
if (*(array++) != 0) {
return true;
}
}
return false;
}
static const int32_t GAMEPAD_KEYCODES[] = {
AKEYCODE_BUTTON_A, AKEYCODE_BUTTON_B, AKEYCODE_BUTTON_C,
AKEYCODE_BUTTON_X, AKEYCODE_BUTTON_Y, AKEYCODE_BUTTON_Z,
AKEYCODE_BUTTON_L1, AKEYCODE_BUTTON_R1,
AKEYCODE_BUTTON_L2, AKEYCODE_BUTTON_R2,
AKEYCODE_BUTTON_THUMBL, AKEYCODE_BUTTON_THUMBR,
AKEYCODE_BUTTON_START, AKEYCODE_BUTTON_SELECT, AKEYCODE_BUTTON_MODE,
AKEYCODE_BUTTON_1, AKEYCODE_BUTTON_2, AKEYCODE_BUTTON_3, AKEYCODE_BUTTON_4,
AKEYCODE_BUTTON_5, AKEYCODE_BUTTON_6, AKEYCODE_BUTTON_7, AKEYCODE_BUTTON_8,
AKEYCODE_BUTTON_9, AKEYCODE_BUTTON_10, AKEYCODE_BUTTON_11, AKEYCODE_BUTTON_12,
AKEYCODE_BUTTON_13, AKEYCODE_BUTTON_14, AKEYCODE_BUTTON_15, AKEYCODE_BUTTON_16,
};
status_t EventHub::openDeviceLocked(const char *devicePath) {
char buffer[80];
ALOGV("Opening device: %s", devicePath);
int fd = open(devicePath, O_RDWR | O_CLOEXEC);
if(fd < 0) {
ALOGE("could not open %s, %s\n", devicePath, strerror(errno));
return -1;
}
InputDeviceIdentifier identifier;
// Get device name.
if(ioctl(fd, EVIOCGNAME(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get device name for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.name.setTo(buffer);
}
// Check to see if the device is on our excluded list
for (size_t i = 0; i < mExcludedDevices.size(); i++) {
const String8& item = mExcludedDevices.itemAt(i);
if (identifier.name == item) {
ALOGI("ignoring event id %s driver %s\n", devicePath, item.string());
close(fd);
return -1;
}
}
// Get device driver version.
int driverVersion;
if(ioctl(fd, EVIOCGVERSION, &driverVersion)) {
ALOGE("could not get driver version for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
// Get device identifier.
struct input_id inputId;
if(ioctl(fd, EVIOCGID, &inputId)) {
ALOGE("could not get device input id for %s, %s\n", devicePath, strerror(errno));
close(fd);
return -1;
}
identifier.bus = inputId.bustype;
identifier.product = inputId.product;
identifier.vendor = inputId.vendor;
identifier.version = inputId.version;
// Get device physical location.
if(ioctl(fd, EVIOCGPHYS(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get location for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.location.setTo(buffer);
}
// Get device unique id.
if(ioctl(fd, EVIOCGUNIQ(sizeof(buffer) - 1), &buffer) < 1) {
//fprintf(stderr, "could not get idstring for %s, %s\n", devicePath, strerror(errno));
} else {
buffer[sizeof(buffer) - 1] = '\0';
identifier.uniqueId.setTo(buffer);
}
// Fill in the descriptor.
setDescriptor(identifier);
// Make file descriptor non-blocking for use with poll().
if (fcntl(fd, F_SETFL, O_NONBLOCK)) {
ALOGE("Error %d making device file descriptor non-blocking.", errno);
close(fd);
return -1;
}
// Allocate device. (The device object takes ownership of the fd at this point.)
int32_t deviceId = mNextDeviceId++;
Device* device = new Device(fd, deviceId, String8(devicePath), identifier);
ALOGV("add device %d: %s\n", deviceId, devicePath);
ALOGV(" bus: %04x\n"
" vendor %04x\n"
" product %04x\n"
" version %04x\n",
identifier.bus, identifier.vendor, identifier.product, identifier.version);
ALOGV(" name: \"%s\"\n", identifier.name.string());
ALOGV(" location: \"%s\"\n", identifier.location.string());
ALOGV(" unique id: \"%s\"\n", identifier.uniqueId.string());
ALOGV(" descriptor: \"%s\"\n", identifier.descriptor.string());
ALOGV(" driver: v%d.%d.%d\n",
driverVersion >> 16, (driverVersion >> 8) & 0xff, driverVersion & 0xff);
// Load the configuration file for the device.
loadConfigurationLocked(device);
// Figure out the kinds of events the device reports.
ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(device->keyBitmask)), device->keyBitmask);
ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(device->absBitmask)), device->absBitmask);
ioctl(fd, EVIOCGBIT(EV_REL, sizeof(device->relBitmask)), device->relBitmask);
ioctl(fd, EVIOCGBIT(EV_SW, sizeof(device->swBitmask)), device->swBitmask);
ioctl(fd, EVIOCGBIT(EV_LED, sizeof(device->ledBitmask)), device->ledBitmask);
ioctl(fd, EVIOCGPROP(sizeof(device->propBitmask)), device->propBitmask);
// See if this is a keyboard. Ignore everything in the button range except for
// joystick and gamepad buttons which are handled like keyboards for the most part.
bool haveKeyboardKeys = containsNonZeroByte(device->keyBitmask, 0, sizeof_bit_array(BTN_MISC))
|| containsNonZeroByte(device->keyBitmask, sizeof_bit_array(KEY_OK),
sizeof_bit_array(KEY_MAX + 1));
bool haveGamepadButtons = containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_MISC),
sizeof_bit_array(BTN_MOUSE))
|| containsNonZeroByte(device->keyBitmask, sizeof_bit_array(BTN_JOYSTICK),
sizeof_bit_array(BTN_DIGI));
if (haveKeyboardKeys || haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
// See if this is a cursor device such as a trackball or mouse.
if (test_bit(BTN_MOUSE, device->keyBitmask)
&& test_bit(REL_X, device->relBitmask)
&& test_bit(REL_Y, device->relBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_CURSOR;
}
// See if this is a touch pad.
// Is this a new modern multi-touch driver?
if (test_bit(ABS_MT_POSITION_X, device->absBitmask)
&& test_bit(ABS_MT_POSITION_Y, device->absBitmask)) {
// Some joysticks such as the PS3 controller report axes that conflict
// with the ABS_MT range. Try to confirm that the device really is
// a touch screen.
if (test_bit(BTN_TOUCH, device->keyBitmask) || !haveGamepadButtons) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH | INPUT_DEVICE_CLASS_TOUCH_MT;
}
// Is this an old style single-touch driver?
} else if (test_bit(BTN_TOUCH, device->keyBitmask)
&& test_bit(ABS_X, device->absBitmask)
&& test_bit(ABS_Y, device->absBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_TOUCH;
}
// See if this device is a joystick.
// Assumes that joysticks always have gamepad buttons in order to distinguish them
// from other devices such as accelerometers that also have absolute axes.
if (haveGamepadButtons) {
uint32_t assumedClasses = device->classes | INPUT_DEVICE_CLASS_JOYSTICK;
for (int i = 0; i <= ABS_MAX; i++) {
if (test_bit(i, device->absBitmask)
&& (getAbsAxisUsage(i, assumedClasses) & INPUT_DEVICE_CLASS_JOYSTICK)) {
device->classes = assumedClasses;
break;
}
}
}
// Check whether this device has switches.
for (int i = 0; i <= SW_MAX; i++) {
if (test_bit(i, device->swBitmask)) {
device->classes |= INPUT_DEVICE_CLASS_SWITCH;
break;
}
}
// Configure virtual keys.
if ((device->classes & INPUT_DEVICE_CLASS_TOUCH)) {
// Load the virtual keys for the touch screen, if any.
// We do this now so that we can make sure to load the keymap if necessary.
status_t status = loadVirtualKeyMapLocked(device);
if (!status) {
device->classes |= INPUT_DEVICE_CLASS_KEYBOARD;
}
}
// Load the key map.
// We need to do this for joysticks too because the key layout may specify axes.
status_t keyMapStatus = NAME_NOT_FOUND;
if (device->classes & (INPUT_DEVICE_CLASS_KEYBOARD | INPUT_DEVICE_CLASS_JOYSTICK)) {
// Load the keymap for the device.
keyMapStatus = loadKeyMapLocked(device);
}
// Configure the keyboard, gamepad or virtual keyboard.
if (device->classes & INPUT_DEVICE_CLASS_KEYBOARD) {
// Register the keyboard as a built-in keyboard if it is eligible.
if (!keyMapStatus
&& mBuiltInKeyboardId == NO_BUILT_IN_KEYBOARD
&& isEligibleBuiltInKeyboard(device->identifier,
device->configuration, &device->keyMap)) {
mBuiltInKeyboardId = device->id;
}
// 'Q' key support = cheap test of whether this is an alpha-capable kbd
if (hasKeycodeLocked(device, AKEYCODE_Q)) {
device->classes |= INPUT_DEVICE_CLASS_ALPHAKEY;
}
// See if this device has a DPAD.
if (hasKeycodeLocked(device, AKEYCODE_DPAD_UP) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_DOWN) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_LEFT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_RIGHT) &&
hasKeycodeLocked(device, AKEYCODE_DPAD_CENTER)) {
device->classes |= INPUT_DEVICE_CLASS_DPAD;
}
// See if this device has a gamepad.
for (size_t i = 0; i < sizeof(GAMEPAD_KEYCODES)/sizeof(GAMEPAD_KEYCODES[0]); i++) {
if (hasKeycodeLocked(device, GAMEPAD_KEYCODES[i])) {
device->classes |= INPUT_DEVICE_CLASS_GAMEPAD;
break;
}
}
}
// If the device isn't recognized as something we handle, don't monitor it.
if (device->classes == 0) {
ALOGV("Dropping device: id=%d, path='%s', name='%s'",
deviceId, devicePath, device->identifier.name.string());
delete device;
return -1;
}
// Determine whether the device is external or internal.
if (isExternalDeviceLocked(device)) {
device->classes |= INPUT_DEVICE_CLASS_EXTERNAL;
}
// Register with epoll.
struct epoll_event eventItem;
memset(&eventItem, 0, sizeof(eventItem));
eventItem.events = EPOLLIN;
eventItem.data.u32 = deviceId;
if (epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, &eventItem)) {
ALOGE("Could not add device fd to epoll instance. errno=%d", errno);
delete device;
return -1;
}
// Enable wake-lock behavior on kernels that support it.
// TODO: Only need this for devices that can really wake the system.
bool usingSuspendBlockIoctl = !ioctl(fd, EVIOCSSUSPENDBLOCK, 1);
// Tell the kernel that we want to use the monotonic clock for reporting timestamps
// associated with input events. This is important because the input system
// uses the timestamps extensively and assumes they were recorded using the monotonic
// clock.
//
// In older kernel, before Linux 3.4, there was no way to tell the kernel which
// clock to use to input event timestamps. The standard kernel behavior was to
// record a real time timestamp, which isn't what we want. Android kernels therefore
// contained a patch to the evdev_event() function in drivers/input/evdev.c to
// replace the call to do_gettimeofday() with ktime_get_ts() to cause the monotonic
// clock to be used instead of the real time clock.
//
// As of Linux 3.4, there is a new EVIOCSCLOCKID ioctl to set the desired clock.
// Therefore, we no longer require the Android-specific kernel patch described above
// as long as we make sure to set select the monotonic clock. We do that here.
bool usingClockIoctl = !ioctl(fd, EVIOCSCLOCKID, CLOCK_MONOTONIC);
ALOGI("New device: id=%d, fd=%d, path='%s', name='%s', classes=0x%x, "
"configuration='%s', keyLayout='%s', keyCharacterMap='%s', builtinKeyboard=%s, "
"usingSuspendBlockIoctl=%s, usingClockIoctl=%s",
deviceId, fd, devicePath, device->identifier.name.string(),
device->classes,
device->configurationFile.string(),
device->keyMap.keyLayoutFile.string(),
device->keyMap.keyCharacterMapFile.string(),
toString(mBuiltInKeyboardId == deviceId),
toString(usingSuspendBlockIoctl), toString(usingClockIoctl));
addDeviceLocked(device);
return 0;
}
void EventHub::createVirtualKeyboardLocked() {
InputDeviceIdentifier identifier;
identifier.name = "Virtual";
identifier.uniqueId = "<virtual>";
setDescriptor(identifier);
Device* device = new Device(-1, VIRTUAL_KEYBOARD_ID, String8("<virtual>"), identifier);
device->classes = INPUT_DEVICE_CLASS_KEYBOARD
| INPUT_DEVICE_CLASS_ALPHAKEY
| INPUT_DEVICE_CLASS_DPAD
| INPUT_DEVICE_CLASS_VIRTUAL;
loadKeyMapLocked(device);
addDeviceLocked(device);
}
void EventHub::addDeviceLocked(Device* device) {
mDevices.add(device->id, device);
device->next = mOpeningDevices;
mOpeningDevices = device;
}
void EventHub::loadConfigurationLocked(Device* device) {
device->configurationFile = getInputDeviceConfigurationFilePathByDeviceIdentifier(
device->identifier, INPUT_DEVICE_CONFIGURATION_FILE_TYPE_CONFIGURATION);
if (device->configurationFile.isEmpty()) {
ALOGD("No input device configuration file found for device '%s'.",
device->identifier.name.string());
} else {
status_t status = PropertyMap::load(device->configurationFile,
&device->configuration);
if (status) {
ALOGE("Error loading input device configuration file for device '%s'. "
"Using default configuration.",
device->identifier.name.string());
}
}
}
status_t EventHub::loadVirtualKeyMapLocked(Device* device) {
// The virtual key map is supplied by the kernel as a system board property file.
String8 path;
path.append("/sys/board_properties/virtualkeys.");
path.append(device->identifier.name);
if (access(path.string(), R_OK)) {
return NAME_NOT_FOUND;
}
return VirtualKeyMap::load(path, &device->virtualKeyMap);
}
status_t EventHub::loadKeyMapLocked(Device* device) {
return device->keyMap.load(device->identifier, device->configuration);
}
bool EventHub::isExternalDeviceLocked(Device* device) {
if (device->configuration) {
bool value;
if (device->configuration->tryGetProperty(String8("device.internal"), value)) {
return !value;
}
}
return device->identifier.bus == BUS_USB || device->identifier.bus == BUS_BLUETOOTH;
}
bool EventHub::hasKeycodeLocked(Device* device, int keycode) const {
if (!device->keyMap.haveKeyLayout() || !device->keyBitmask) {
return false;
}
Vector<int32_t> scanCodes;
device->keyMap.keyLayoutMap->findScanCodesForKey(keycode, &scanCodes);
const size_t N = scanCodes.size();
for (size_t i=0; i<N && i<=KEY_MAX; i++) {
int32_t sc = scanCodes.itemAt(i);
if (sc >= 0 && sc <= KEY_MAX && test_bit(sc, device->keyBitmask)) {
return true;
}
}
return false;
}
status_t EventHub::closeDeviceByPathLocked(const char *devicePath) {
Device* device = getDeviceByPathLocked(devicePath);
if (device) {
closeDeviceLocked(device);
return 0;
}
ALOGV("Remove device: %s not found, device may already have been removed.", devicePath);
return -1;
}
void EventHub::closeAllDevicesLocked() {
while (mDevices.size() > 0) {
closeDeviceLocked(mDevices.valueAt(mDevices.size() - 1));
}
}
void EventHub::closeDeviceLocked(Device* device) {
ALOGI("Removed device: path=%s name=%s id=%d fd=%d classes=0x%x\n",
device->path.string(), device->identifier.name.string(), device->id,
device->fd, device->classes);
if (device->id == mBuiltInKeyboardId) {
ALOGW("built-in keyboard device %s (id=%d) is closing! the apps will not like this",
device->path.string(), mBuiltInKeyboardId);
mBuiltInKeyboardId = NO_BUILT_IN_KEYBOARD;
}
if (!device->isVirtual()) {
if (epoll_ctl(mEpollFd, EPOLL_CTL_DEL, device->fd, NULL)) {
ALOGW("Could not remove device fd from epoll instance. errno=%d", errno);
}
}
mDevices.removeItem(device->id);
device->close();
// Unlink for opening devices list if it is present.
Device* pred = NULL;
bool found = false;
for (Device* entry = mOpeningDevices; entry != NULL; ) {
if (entry == device) {
found = true;
break;
}
pred = entry;
entry = entry->next;
}
if (found) {
// Unlink the device from the opening devices list then delete it.
// We don't need to tell the client that the device was closed because
// it does not even know it was opened in the first place.
ALOGI("Device %s was immediately closed after opening.", device->path.string());
if (pred) {
pred->next = device->next;
} else {
mOpeningDevices = device->next;
}
delete device;
} else {
// Link into closing devices list.
// The device will be deleted later after we have informed the client.
device->next = mClosingDevices;
mClosingDevices = device;
}
}
status_t EventHub::readNotifyLocked() {
int res;
char devname[PATH_MAX];
char *filename;
char event_buf[512];
int event_size;
int event_pos = 0;
struct inotify_event *event;
ALOGV("EventHub::readNotify nfd: %d\n", mINotifyFd);
res = read(mINotifyFd, event_buf, sizeof(event_buf));
if(res < (int)sizeof(*event)) {
if(errno == EINTR)
return 0;
ALOGW("could not get event, %s\n", strerror(errno));
return -1;
}
//printf("got %d bytes of event information\n", res);
strcpy(devname, DEVICE_PATH);
filename = devname + strlen(devname);
*filename++ = '/';
while(res >= (int)sizeof(*event)) {
event = (struct inotify_event *)(event_buf + event_pos);
//printf("%d: %08x \"%s\"\n", event->wd, event->mask, event->len ? event->name : "");
if(event->len) {
strcpy(filename, event->name);
if(event->mask & IN_CREATE) {
openDeviceLocked(devname);
} else {
ALOGI("Removing device '%s' due to inotify event\n", devname);
closeDeviceByPathLocked(devname);
}
}
event_size = sizeof(*event) + event->len;
res -= event_size;
event_pos += event_size;
}
return 0;
}
status_t EventHub::scanDirLocked(const char *dirname)
{
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
openDeviceLocked(devname);
}
closedir(dir);
return 0;
}
void EventHub::requestReopenDevices() {
ALOGV("requestReopenDevices() called");
AutoMutex _l(mLock);
mNeedToReopenDevices = true;
}
void EventHub::dump(String8& dump) {
dump.append("Event Hub State:\n");
{ // acquire lock
AutoMutex _l(mLock);
dump.appendFormat(INDENT "BuiltInKeyboardId: %d\n", mBuiltInKeyboardId);
dump.append(INDENT "Devices:\n");
for (size_t i = 0; i < mDevices.size(); i++) {
const Device* device = mDevices.valueAt(i);
if (mBuiltInKeyboardId == device->id) {
dump.appendFormat(INDENT2 "%d: %s (aka device 0 - built-in keyboard)\n",
device->id, device->identifier.name.string());
} else {
dump.appendFormat(INDENT2 "%d: %s\n", device->id,
device->identifier.name.string());
}
dump.appendFormat(INDENT3 "Classes: 0x%08x\n", device->classes);
dump.appendFormat(INDENT3 "Path: %s\n", device->path.string());
dump.appendFormat(INDENT3 "Descriptor: %s\n", device->identifier.descriptor.string());
dump.appendFormat(INDENT3 "Location: %s\n", device->identifier.location.string());
dump.appendFormat(INDENT3 "UniqueId: %s\n", device->identifier.uniqueId.string());
dump.appendFormat(INDENT3 "Identifier: bus=0x%04x, vendor=0x%04x, "
"product=0x%04x, version=0x%04x\n",
device->identifier.bus, device->identifier.vendor,
device->identifier.product, device->identifier.version);
dump.appendFormat(INDENT3 "KeyLayoutFile: %s\n",
device->keyMap.keyLayoutFile.string());
dump.appendFormat(INDENT3 "KeyCharacterMapFile: %s\n",
device->keyMap.keyCharacterMapFile.string());
dump.appendFormat(INDENT3 "ConfigurationFile: %s\n",
device->configurationFile.string());
}
} // release lock
}
void EventHub::monitor() {
// Acquire and release the lock to ensure that the event hub has not deadlocked.
mLock.lock();
mLock.unlock();
}
}; // namespace android