blob: d93a7578cfd789c9a15b956fa51aea43fd8d7e79 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "RenderNode.h"
#include "BakedOpRenderer.h"
#include "DamageAccumulator.h"
#include "Debug.h"
#include "RecordedOp.h"
#include "TreeInfo.h"
#include "VectorDrawable.h"
#include "renderstate/RenderState.h"
#include "renderthread/CanvasContext.h"
#include "utils/FatVector.h"
#include "utils/MathUtils.h"
#include "utils/StringUtils.h"
#include "utils/TraceUtils.h"
#include "protos/ProtoHelpers.h"
#include "protos/hwui.pb.h"
#include <SkPathOps.h>
#include <algorithm>
#include <sstream>
#include <string>
namespace android {
namespace uirenderer {
// Used for tree mutations that are purely destructive.
// Generic tree mutations should use MarkAndSweepObserver instead
class ImmediateRemoved : public TreeObserver {
public:
explicit ImmediateRemoved(TreeInfo* info) : mTreeInfo(info) {}
void onMaybeRemovedFromTree(RenderNode* node) override { node->onRemovedFromTree(mTreeInfo); }
private:
TreeInfo* mTreeInfo;
};
RenderNode::RenderNode()
: mDirtyPropertyFields(0)
, mNeedsDisplayListSync(false)
, mDisplayList(nullptr)
, mStagingDisplayList(nullptr)
, mAnimatorManager(*this)
, mParentCount(0) {}
RenderNode::~RenderNode() {
ImmediateRemoved observer(nullptr);
deleteDisplayList(observer);
delete mStagingDisplayList;
LOG_ALWAYS_FATAL_IF(hasLayer(), "layer missed detachment!");
}
void RenderNode::setStagingDisplayList(DisplayList* displayList) {
mValid = (displayList != nullptr);
mNeedsDisplayListSync = true;
delete mStagingDisplayList;
mStagingDisplayList = displayList;
}
/**
* This function is a simplified version of replay(), where we simply retrieve and log the
* display list. This function should remain in sync with the replay() function.
*/
void RenderNode::output() {
LogcatStream strout;
strout << "Root";
output(strout, 0);
}
void RenderNode::output(std::ostream& output, uint32_t level) {
output << " (" << getName() << " " << this
<< (MathUtils::isZero(properties().getAlpha()) ? ", zero alpha" : "")
<< (properties().hasShadow() ? ", casting shadow" : "")
<< (isRenderable() ? "" : ", empty")
<< (properties().getProjectBackwards() ? ", projected" : "")
<< (hasLayer() ? ", on HW Layer" : "") << ")" << std::endl;
properties().debugOutputProperties(output, level + 1);
if (mDisplayList) {
mDisplayList->output(output, level);
}
output << std::string(level * 2, ' ') << "/RenderNode(" << getName() << " " << this << ")";
output << std::endl;
}
void RenderNode::copyTo(proto::RenderNode* pnode) {
pnode->set_id(static_cast<uint64_t>(reinterpret_cast<uintptr_t>(this)));
pnode->set_name(mName.string(), mName.length());
proto::RenderProperties* pprops = pnode->mutable_properties();
pprops->set_left(properties().getLeft());
pprops->set_top(properties().getTop());
pprops->set_right(properties().getRight());
pprops->set_bottom(properties().getBottom());
pprops->set_clip_flags(properties().getClippingFlags());
pprops->set_alpha(properties().getAlpha());
pprops->set_translation_x(properties().getTranslationX());
pprops->set_translation_y(properties().getTranslationY());
pprops->set_translation_z(properties().getTranslationZ());
pprops->set_elevation(properties().getElevation());
pprops->set_rotation(properties().getRotation());
pprops->set_rotation_x(properties().getRotationX());
pprops->set_rotation_y(properties().getRotationY());
pprops->set_scale_x(properties().getScaleX());
pprops->set_scale_y(properties().getScaleY());
pprops->set_pivot_x(properties().getPivotX());
pprops->set_pivot_y(properties().getPivotY());
pprops->set_has_overlapping_rendering(properties().getHasOverlappingRendering());
pprops->set_pivot_explicitly_set(properties().isPivotExplicitlySet());
pprops->set_project_backwards(properties().getProjectBackwards());
pprops->set_projection_receiver(properties().isProjectionReceiver());
set(pprops->mutable_clip_bounds(), properties().getClipBounds());
const Outline& outline = properties().getOutline();
if (outline.getType() != Outline::Type::None) {
proto::Outline* poutline = pprops->mutable_outline();
poutline->clear_path();
if (outline.getType() == Outline::Type::Empty) {
poutline->set_type(proto::Outline_Type_Empty);
} else if (outline.getType() == Outline::Type::ConvexPath) {
poutline->set_type(proto::Outline_Type_ConvexPath);
if (const SkPath* path = outline.getPath()) {
set(poutline->mutable_path(), *path);
}
} else if (outline.getType() == Outline::Type::RoundRect) {
poutline->set_type(proto::Outline_Type_RoundRect);
} else {
ALOGW("Uknown outline type! %d", static_cast<int>(outline.getType()));
poutline->set_type(proto::Outline_Type_None);
}
poutline->set_should_clip(outline.getShouldClip());
poutline->set_alpha(outline.getAlpha());
poutline->set_radius(outline.getRadius());
set(poutline->mutable_bounds(), outline.getBounds());
} else {
pprops->clear_outline();
}
const RevealClip& revealClip = properties().getRevealClip();
if (revealClip.willClip()) {
proto::RevealClip* prevealClip = pprops->mutable_reveal_clip();
prevealClip->set_x(revealClip.getX());
prevealClip->set_y(revealClip.getY());
prevealClip->set_radius(revealClip.getRadius());
} else {
pprops->clear_reveal_clip();
}
pnode->clear_children();
if (mDisplayList) {
for (auto&& child : mDisplayList->getChildren()) {
child->renderNode->copyTo(pnode->add_children());
}
}
}
int RenderNode::getDebugSize() {
int size = sizeof(RenderNode);
if (mStagingDisplayList) {
size += mStagingDisplayList->getUsedSize();
}
if (mDisplayList && mDisplayList != mStagingDisplayList) {
size += mDisplayList->getUsedSize();
}
return size;
}
void RenderNode::prepareTree(TreeInfo& info) {
ATRACE_CALL();
LOG_ALWAYS_FATAL_IF(!info.damageAccumulator, "DamageAccumulator missing");
MarkAndSweepRemoved observer(&info);
// The OpenGL renderer reserves the stencil buffer for overdraw debugging. Functors
// will need to be drawn in a layer.
bool functorsNeedLayer = Properties::debugOverdraw && !Properties::isSkiaEnabled();
prepareTreeImpl(observer, info, functorsNeedLayer);
}
void RenderNode::addAnimator(const sp<BaseRenderNodeAnimator>& animator) {
mAnimatorManager.addAnimator(animator);
}
void RenderNode::removeAnimator(const sp<BaseRenderNodeAnimator>& animator) {
mAnimatorManager.removeAnimator(animator);
}
void RenderNode::damageSelf(TreeInfo& info) {
if (isRenderable()) {
if (properties().getClipDamageToBounds()) {
info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight());
} else {
// Hope this is big enough?
// TODO: Get this from the display list ops or something
info.damageAccumulator->dirty(DIRTY_MIN, DIRTY_MIN, DIRTY_MAX, DIRTY_MAX);
}
}
}
void RenderNode::prepareLayer(TreeInfo& info, uint32_t dirtyMask) {
LayerType layerType = properties().effectiveLayerType();
if (CC_UNLIKELY(layerType == LayerType::RenderLayer)) {
// Damage applied so far needs to affect our parent, but does not require
// the layer to be updated. So we pop/push here to clear out the current
// damage and get a clean state for display list or children updates to
// affect, which will require the layer to be updated
info.damageAccumulator->popTransform();
info.damageAccumulator->pushTransform(this);
if (dirtyMask & DISPLAY_LIST) {
damageSelf(info);
}
}
}
void RenderNode::pushLayerUpdate(TreeInfo& info) {
LayerType layerType = properties().effectiveLayerType();
// If we are not a layer OR we cannot be rendered (eg, view was detached)
// we need to destroy any Layers we may have had previously
if (CC_LIKELY(layerType != LayerType::RenderLayer) || CC_UNLIKELY(!isRenderable()) ||
CC_UNLIKELY(properties().getWidth() == 0) || CC_UNLIKELY(properties().getHeight() == 0) ||
CC_UNLIKELY(!properties().fitsOnLayer())) {
if (CC_UNLIKELY(hasLayer())) {
renderthread::CanvasContext::destroyLayer(this);
}
return;
}
if (info.canvasContext.createOrUpdateLayer(this, *info.damageAccumulator, info.errorHandler)) {
damageSelf(info);
}
if (!hasLayer()) {
return;
}
SkRect dirty;
info.damageAccumulator->peekAtDirty(&dirty);
info.layerUpdateQueue->enqueueLayerWithDamage(this, dirty);
// There might be prefetched layers that need to be accounted for.
// That might be us, so tell CanvasContext that this layer is in the
// tree and should not be destroyed.
info.canvasContext.markLayerInUse(this);
}
/**
* Traverse down the the draw tree to prepare for a frame.
*
* MODE_FULL = UI Thread-driven (thus properties must be synced), otherwise RT driven
*
* While traversing down the tree, functorsNeedLayer flag is set to true if anything that uses the
* stencil buffer may be needed. Views that use a functor to draw will be forced onto a layer.
*/
void RenderNode::prepareTreeImpl(TreeObserver& observer, TreeInfo& info, bool functorsNeedLayer) {
info.damageAccumulator->pushTransform(this);
if (info.mode == TreeInfo::MODE_FULL) {
pushStagingPropertiesChanges(info);
}
uint32_t animatorDirtyMask = 0;
if (CC_LIKELY(info.runAnimations)) {
animatorDirtyMask = mAnimatorManager.animate(info);
}
bool willHaveFunctor = false;
if (info.mode == TreeInfo::MODE_FULL && mStagingDisplayList) {
willHaveFunctor = mStagingDisplayList->hasFunctor();
} else if (mDisplayList) {
willHaveFunctor = mDisplayList->hasFunctor();
}
bool childFunctorsNeedLayer =
mProperties.prepareForFunctorPresence(willHaveFunctor, functorsNeedLayer);
if (CC_UNLIKELY(mPositionListener.get())) {
mPositionListener->onPositionUpdated(*this, info);
}
prepareLayer(info, animatorDirtyMask);
if (info.mode == TreeInfo::MODE_FULL) {
pushStagingDisplayListChanges(observer, info);
}
if (mDisplayList) {
info.out.hasFunctors |= mDisplayList->hasFunctor();
bool isDirty = mDisplayList->prepareListAndChildren(
observer, info, childFunctorsNeedLayer,
[](RenderNode* child, TreeObserver& observer, TreeInfo& info,
bool functorsNeedLayer) {
child->prepareTreeImpl(observer, info, functorsNeedLayer);
});
if (isDirty) {
damageSelf(info);
}
}
pushLayerUpdate(info);
info.damageAccumulator->popTransform();
}
void RenderNode::syncProperties() {
mProperties = mStagingProperties;
}
void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) {
// Push the animators first so that setupStartValueIfNecessary() is called
// before properties() is trampled by stagingProperties(), as they are
// required by some animators.
if (CC_LIKELY(info.runAnimations)) {
mAnimatorManager.pushStaging();
}
if (mDirtyPropertyFields) {
mDirtyPropertyFields = 0;
damageSelf(info);
info.damageAccumulator->popTransform();
syncProperties();
// We could try to be clever and only re-damage if the matrix changed.
// However, we don't need to worry about that. The cost of over-damaging
// here is only going to be a single additional map rect of this node
// plus a rect join(). The parent's transform (and up) will only be
// performed once.
info.damageAccumulator->pushTransform(this);
damageSelf(info);
}
}
void RenderNode::syncDisplayList(TreeObserver& observer, TreeInfo* info) {
// Make sure we inc first so that we don't fluctuate between 0 and 1,
// which would thrash the layer cache
if (mStagingDisplayList) {
mStagingDisplayList->updateChildren([](RenderNode* child) { child->incParentRefCount(); });
}
deleteDisplayList(observer, info);
mDisplayList = mStagingDisplayList;
mStagingDisplayList = nullptr;
if (mDisplayList) {
mDisplayList->syncContents();
}
}
void RenderNode::pushStagingDisplayListChanges(TreeObserver& observer, TreeInfo& info) {
if (mNeedsDisplayListSync) {
mNeedsDisplayListSync = false;
// Damage with the old display list first then the new one to catch any
// changes in isRenderable or, in the future, bounds
damageSelf(info);
syncDisplayList(observer, &info);
damageSelf(info);
}
}
void RenderNode::deleteDisplayList(TreeObserver& observer, TreeInfo* info) {
if (mDisplayList) {
mDisplayList->updateChildren(
[&observer, info](RenderNode* child) { child->decParentRefCount(observer, info); });
if (!mDisplayList->reuseDisplayList(this, info ? &info->canvasContext : nullptr)) {
delete mDisplayList;
}
}
mDisplayList = nullptr;
}
void RenderNode::destroyHardwareResources(TreeInfo* info) {
if (hasLayer()) {
renderthread::CanvasContext::destroyLayer(this);
}
setStagingDisplayList(nullptr);
ImmediateRemoved observer(info);
deleteDisplayList(observer, info);
}
void RenderNode::destroyLayers() {
if (hasLayer()) {
renderthread::CanvasContext::destroyLayer(this);
}
if (mDisplayList) {
mDisplayList->updateChildren([](RenderNode* child) { child->destroyLayers(); });
}
}
void RenderNode::decParentRefCount(TreeObserver& observer, TreeInfo* info) {
LOG_ALWAYS_FATAL_IF(!mParentCount, "already 0!");
mParentCount--;
if (!mParentCount) {
observer.onMaybeRemovedFromTree(this);
if (CC_UNLIKELY(mPositionListener.get())) {
mPositionListener->onPositionLost(*this, info);
}
}
}
void RenderNode::onRemovedFromTree(TreeInfo* info) {
destroyHardwareResources(info);
}
void RenderNode::clearRoot() {
ImmediateRemoved observer(nullptr);
decParentRefCount(observer);
}
/**
* Apply property-based transformations to input matrix
*
* If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4
* matrix computation instead of the Skia 3x3 matrix + camera hackery.
*/
void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) const {
if (properties().getLeft() != 0 || properties().getTop() != 0) {
matrix.translate(properties().getLeft(), properties().getTop());
}
if (properties().getStaticMatrix()) {
mat4 stat(*properties().getStaticMatrix());
matrix.multiply(stat);
} else if (properties().getAnimationMatrix()) {
mat4 anim(*properties().getAnimationMatrix());
matrix.multiply(anim);
}
bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ());
if (properties().hasTransformMatrix() || applyTranslationZ) {
if (properties().isTransformTranslateOnly()) {
matrix.translate(properties().getTranslationX(), properties().getTranslationY(),
true3dTransform ? properties().getZ() : 0.0f);
} else {
if (!true3dTransform) {
matrix.multiply(*properties().getTransformMatrix());
} else {
mat4 true3dMat;
true3dMat.loadTranslate(properties().getPivotX() + properties().getTranslationX(),
properties().getPivotY() + properties().getTranslationY(),
properties().getZ());
true3dMat.rotate(properties().getRotationX(), 1, 0, 0);
true3dMat.rotate(properties().getRotationY(), 0, 1, 0);
true3dMat.rotate(properties().getRotation(), 0, 0, 1);
true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1);
true3dMat.translate(-properties().getPivotX(), -properties().getPivotY());
matrix.multiply(true3dMat);
}
}
}
}
/**
* Organizes the DisplayList hierarchy to prepare for background projection reordering.
*
* This should be called before a call to defer() or drawDisplayList()
*
* Each DisplayList that serves as a 3d root builds its list of composited children,
* which are flagged to not draw in the standard draw loop.
*/
void RenderNode::computeOrdering() {
ATRACE_CALL();
mProjectedNodes.clear();
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
// transform properties are applied correctly to top level children
if (mDisplayList == nullptr) return;
for (unsigned int i = 0; i < mDisplayList->getChildren().size(); i++) {
RenderNodeOp* childOp = mDisplayList->getChildren()[i];
childOp->renderNode->computeOrderingImpl(childOp, &mProjectedNodes, &mat4::identity());
}
}
void RenderNode::computeOrderingImpl(
RenderNodeOp* opState, std::vector<RenderNodeOp*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface) {
mProjectedNodes.clear();
if (mDisplayList == nullptr || mDisplayList->isEmpty()) return;
// TODO: should avoid this calculation in most cases
// TODO: just calculate single matrix, down to all leaf composited elements
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
localTransformFromProjectionSurface.multiply(opState->localMatrix);
if (properties().getProjectBackwards()) {
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
opState->skipInOrderDraw = true;
opState->transformFromCompositingAncestor = localTransformFromProjectionSurface;
compositedChildrenOfProjectionSurface->push_back(opState);
} else {
// standard in order draw
opState->skipInOrderDraw = false;
}
if (mDisplayList->getChildren().size() > 0) {
const bool isProjectionReceiver = mDisplayList->projectionReceiveIndex >= 0;
bool haveAppliedPropertiesToProjection = false;
for (unsigned int i = 0; i < mDisplayList->getChildren().size(); i++) {
RenderNodeOp* childOp = mDisplayList->getChildren()[i];
RenderNode* child = childOp->renderNode;
std::vector<RenderNodeOp*>* projectionChildren = nullptr;
const mat4* projectionTransform = nullptr;
if (isProjectionReceiver && !child->properties().getProjectBackwards()) {
// if receiving projections, collect projecting descendant
// Note that if a direct descendant is projecting backwards, we pass its
// grandparent projection collection, since it shouldn't project onto its
// parent, where it will already be drawing.
projectionChildren = &mProjectedNodes;
projectionTransform = &mat4::identity();
} else {
if (!haveAppliedPropertiesToProjection) {
applyViewPropertyTransforms(localTransformFromProjectionSurface);
haveAppliedPropertiesToProjection = true;
}
projectionChildren = compositedChildrenOfProjectionSurface;
projectionTransform = &localTransformFromProjectionSurface;
}
child->computeOrderingImpl(childOp, projectionChildren, projectionTransform);
}
}
}
const SkPath* RenderNode::getClippedOutline(const SkRect& clipRect) const {
const SkPath* outlinePath = properties().getOutline().getPath();
const uint32_t outlineID = outlinePath->getGenerationID();
if (outlineID != mClippedOutlineCache.outlineID || clipRect != mClippedOutlineCache.clipRect) {
// update the cache keys
mClippedOutlineCache.outlineID = outlineID;
mClippedOutlineCache.clipRect = clipRect;
// update the cache value by recomputing a new path
SkPath clipPath;
clipPath.addRect(clipRect);
Op(*outlinePath, clipPath, kIntersect_SkPathOp, &mClippedOutlineCache.clippedOutline);
}
return &mClippedOutlineCache.clippedOutline;
}
} /* namespace uirenderer */
} /* namespace android */