| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "OpenGLRenderer" |
| |
| // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z) |
| #define CASTER_Z_CAP_RATIO 0.95f |
| |
| // When there is no umbra, then just fake the umbra using |
| // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO |
| #define FAKE_UMBRA_SIZE_RATIO 0.05f |
| |
| // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays. |
| // That is consider pretty fine tessllated polygon so far. |
| // This is just to prevent using too much some memory when edge slicing is not |
| // needed any more. |
| #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270 |
| /** |
| * Extra vertices for the corner for smoother corner. |
| * Only for outer loop. |
| * Note that we use such extra memory to avoid an extra loop. |
| */ |
| // For half circle, we could add EXTRA_VERTEX_PER_PI vertices. |
| // Set to 1 if we don't want to have any. |
| #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18 |
| |
| // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI, |
| // therefore, the maximum number of extra vertices will be twice bigger. |
| #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI) |
| |
| // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals. |
| #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI) |
| |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <utils/Log.h> |
| |
| #include "ShadowTessellator.h" |
| #include "SpotShadow.h" |
| #include "Vertex.h" |
| #include "utils/MathUtils.h" |
| |
| // TODO: After we settle down the new algorithm, we can remove the old one and |
| // its utility functions. |
| // Right now, we still need to keep it for comparison purpose and future expansion. |
| namespace android { |
| namespace uirenderer { |
| |
| static const double EPSILON = 1e-7; |
| |
| /** |
| * For each polygon's vertex, the light center will project it to the receiver |
| * as one of the outline vertex. |
| * For each outline vertex, we need to store the position and normal. |
| * Normal here is defined against the edge by the current vertex and the next vertex. |
| */ |
| struct OutlineData { |
| Vector2 position; |
| Vector2 normal; |
| float radius; |
| }; |
| |
| /** |
| * For each vertex, we need to keep track of its angle, whether it is penumbra or |
| * umbra, and its corresponding vertex index. |
| */ |
| struct SpotShadow::VertexAngleData { |
| // The angle to the vertex from the centroid. |
| float mAngle; |
| // True is the vertex comes from penumbra, otherwise it comes from umbra. |
| bool mIsPenumbra; |
| // The index of the vertex described by this data. |
| int mVertexIndex; |
| void set(float angle, bool isPenumbra, int index) { |
| mAngle = angle; |
| mIsPenumbra = isPenumbra; |
| mVertexIndex = index; |
| } |
| }; |
| |
| /** |
| * Calculate the angle between and x and a y coordinate. |
| * The atan2 range from -PI to PI. |
| */ |
| static float angle(const Vector2& point, const Vector2& center) { |
| return atan2(point.y - center.y, point.x - center.x); |
| } |
| |
| /** |
| * Calculate the intersection of a ray with the line segment defined by two points. |
| * |
| * Returns a negative value in error conditions. |
| |
| * @param rayOrigin The start of the ray |
| * @param dx The x vector of the ray |
| * @param dy The y vector of the ray |
| * @param p1 The first point defining the line segment |
| * @param p2 The second point defining the line segment |
| * @return The distance along the ray if it intersects with the line segment, negative if otherwise |
| */ |
| static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, |
| const Vector2& p1, const Vector2& p2) { |
| // The math below is derived from solving this formula, basically the |
| // intersection point should stay on both the ray and the edge of (p1, p2). |
| // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); |
| |
| double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); |
| if (divisor == 0) return -1.0f; // error, invalid divisor |
| |
| #if DEBUG_SHADOW |
| double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; |
| if (interpVal < 0 || interpVal > 1) { |
| ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal); |
| } |
| #endif |
| |
| double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + |
| rayOrigin.x * (p2.y - p1.y)) / divisor; |
| |
| return distance; // may be negative in error cases |
| } |
| |
| /** |
| * Sort points by their X coordinates |
| * |
| * @param points the points as a Vector2 array. |
| * @param pointsLength the number of vertices of the polygon. |
| */ |
| void SpotShadow::xsort(Vector2* points, int pointsLength) { |
| quicksortX(points, 0, pointsLength - 1); |
| } |
| |
| /** |
| * compute the convex hull of a collection of Points |
| * |
| * @param points the points as a Vector2 array. |
| * @param pointsLength the number of vertices of the polygon. |
| * @param retPoly pre allocated array of floats to put the vertices |
| * @return the number of points in the polygon 0 if no intersection |
| */ |
| int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { |
| xsort(points, pointsLength); |
| int n = pointsLength; |
| Vector2 lUpper[n]; |
| lUpper[0] = points[0]; |
| lUpper[1] = points[1]; |
| |
| int lUpperSize = 2; |
| |
| for (int i = 2; i < n; i++) { |
| lUpper[lUpperSize] = points[i]; |
| lUpperSize++; |
| |
| while (lUpperSize > 2 && !ccw( |
| lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, |
| lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, |
| lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { |
| // Remove the middle point of the three last |
| lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; |
| lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; |
| lUpperSize--; |
| } |
| } |
| |
| Vector2 lLower[n]; |
| lLower[0] = points[n - 1]; |
| lLower[1] = points[n - 2]; |
| |
| int lLowerSize = 2; |
| |
| for (int i = n - 3; i >= 0; i--) { |
| lLower[lLowerSize] = points[i]; |
| lLowerSize++; |
| |
| while (lLowerSize > 2 && !ccw( |
| lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, |
| lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, |
| lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { |
| // Remove the middle point of the three last |
| lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; |
| lLowerSize--; |
| } |
| } |
| |
| // output points in CW ordering |
| const int total = lUpperSize + lLowerSize - 2; |
| int outIndex = total - 1; |
| for (int i = 0; i < lUpperSize; i++) { |
| retPoly[outIndex] = lUpper[i]; |
| outIndex--; |
| } |
| |
| for (int i = 1; i < lLowerSize - 1; i++) { |
| retPoly[outIndex] = lLower[i]; |
| outIndex--; |
| } |
| // TODO: Add test harness which verify that all the points are inside the hull. |
| return total; |
| } |
| |
| /** |
| * Test whether the 3 points form a counter clockwise turn. |
| * |
| * @return true if a right hand turn |
| */ |
| bool SpotShadow::ccw(double ax, double ay, double bx, double by, |
| double cx, double cy) { |
| return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; |
| } |
| |
| /** |
| * Calculates the intersection of poly1 with poly2 and put in poly2. |
| * Note that both poly1 and poly2 must be in CW order already! |
| * |
| * @param poly1 The 1st polygon, as a Vector2 array. |
| * @param poly1Length The number of vertices of 1st polygon. |
| * @param poly2 The 2nd and output polygon, as a Vector2 array. |
| * @param poly2Length The number of vertices of 2nd polygon. |
| * @return number of vertices in output polygon as poly2. |
| */ |
| int SpotShadow::intersection(const Vector2* poly1, int poly1Length, |
| Vector2* poly2, int poly2Length) { |
| #if DEBUG_SHADOW |
| if (!ShadowTessellator::isClockwise(poly1, poly1Length)) { |
| ALOGW("Poly1 is not clockwise! Intersection is wrong!"); |
| } |
| if (!ShadowTessellator::isClockwise(poly2, poly2Length)) { |
| ALOGW("Poly2 is not clockwise! Intersection is wrong!"); |
| } |
| #endif |
| Vector2 poly[poly1Length * poly2Length + 2]; |
| int count = 0; |
| int pcount = 0; |
| |
| // If one vertex from one polygon sits inside another polygon, add it and |
| // count them. |
| for (int i = 0; i < poly1Length; i++) { |
| if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { |
| poly[count] = poly1[i]; |
| count++; |
| pcount++; |
| |
| } |
| } |
| |
| int insidePoly2 = pcount; |
| for (int i = 0; i < poly2Length; i++) { |
| if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { |
| poly[count] = poly2[i]; |
| count++; |
| } |
| } |
| |
| int insidePoly1 = count - insidePoly2; |
| // If all vertices from poly1 are inside poly2, then just return poly1. |
| if (insidePoly2 == poly1Length) { |
| memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); |
| return poly1Length; |
| } |
| |
| // If all vertices from poly2 are inside poly1, then just return poly2. |
| if (insidePoly1 == poly2Length) { |
| return poly2Length; |
| } |
| |
| // Since neither polygon fully contain the other one, we need to add all the |
| // intersection points. |
| Vector2 intersection = {0, 0}; |
| for (int i = 0; i < poly2Length; i++) { |
| for (int j = 0; j < poly1Length; j++) { |
| int poly2LineStart = i; |
| int poly2LineEnd = ((i + 1) % poly2Length); |
| int poly1LineStart = j; |
| int poly1LineEnd = ((j + 1) % poly1Length); |
| bool found = lineIntersection( |
| poly2[poly2LineStart].x, poly2[poly2LineStart].y, |
| poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, |
| poly1[poly1LineStart].x, poly1[poly1LineStart].y, |
| poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, |
| intersection); |
| if (found) { |
| poly[count].x = intersection.x; |
| poly[count].y = intersection.y; |
| count++; |
| } else { |
| Vector2 delta = poly2[i] - poly1[j]; |
| if (delta.lengthSquared() < EPSILON) { |
| poly[count] = poly2[i]; |
| count++; |
| } |
| } |
| } |
| } |
| |
| if (count == 0) { |
| return 0; |
| } |
| |
| // Sort the result polygon around the center. |
| Vector2 center = {0.0f, 0.0f}; |
| for (int i = 0; i < count; i++) { |
| center += poly[i]; |
| } |
| center /= count; |
| sort(poly, count, center); |
| |
| #if DEBUG_SHADOW |
| // Since poly2 is overwritten as the result, we need to save a copy to do |
| // our verification. |
| Vector2 oldPoly2[poly2Length]; |
| int oldPoly2Length = poly2Length; |
| memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length); |
| #endif |
| |
| // Filter the result out from poly and put it into poly2. |
| poly2[0] = poly[0]; |
| int lastOutputIndex = 0; |
| for (int i = 1; i < count; i++) { |
| Vector2 delta = poly[i] - poly2[lastOutputIndex]; |
| if (delta.lengthSquared() >= EPSILON) { |
| poly2[++lastOutputIndex] = poly[i]; |
| } else { |
| // If the vertices are too close, pick the inner one, because the |
| // inner one is more likely to be an intersection point. |
| Vector2 delta1 = poly[i] - center; |
| Vector2 delta2 = poly2[lastOutputIndex] - center; |
| if (delta1.lengthSquared() < delta2.lengthSquared()) { |
| poly2[lastOutputIndex] = poly[i]; |
| } |
| } |
| } |
| int resultLength = lastOutputIndex + 1; |
| |
| #if DEBUG_SHADOW |
| testConvex(poly2, resultLength, "intersection"); |
| testConvex(poly1, poly1Length, "input poly1"); |
| testConvex(oldPoly2, oldPoly2Length, "input poly2"); |
| |
| testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength); |
| #endif |
| |
| return resultLength; |
| } |
| |
| /** |
| * Sort points about a center point |
| * |
| * @param poly The in and out polyogon as a Vector2 array. |
| * @param polyLength The number of vertices of the polygon. |
| * @param center the center ctr[0] = x , ctr[1] = y to sort around. |
| */ |
| void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { |
| quicksortCirc(poly, 0, polyLength - 1, center); |
| } |
| |
| /** |
| * Swap points pointed to by i and j |
| */ |
| void SpotShadow::swap(Vector2* points, int i, int j) { |
| Vector2 temp = points[i]; |
| points[i] = points[j]; |
| points[j] = temp; |
| } |
| |
| /** |
| * quick sort implementation about the center. |
| */ |
| void SpotShadow::quicksortCirc(Vector2* points, int low, int high, |
| const Vector2& center) { |
| int i = low, j = high; |
| int p = low + (high - low) / 2; |
| float pivot = angle(points[p], center); |
| while (i <= j) { |
| while (angle(points[i], center) > pivot) { |
| i++; |
| } |
| while (angle(points[j], center) < pivot) { |
| j--; |
| } |
| |
| if (i <= j) { |
| swap(points, i, j); |
| i++; |
| j--; |
| } |
| } |
| if (low < j) quicksortCirc(points, low, j, center); |
| if (i < high) quicksortCirc(points, i, high, center); |
| } |
| |
| /** |
| * Sort points by x axis |
| * |
| * @param points points to sort |
| * @param low start index |
| * @param high end index |
| */ |
| void SpotShadow::quicksortX(Vector2* points, int low, int high) { |
| int i = low, j = high; |
| int p = low + (high - low) / 2; |
| float pivot = points[p].x; |
| while (i <= j) { |
| while (points[i].x < pivot) { |
| i++; |
| } |
| while (points[j].x > pivot) { |
| j--; |
| } |
| |
| if (i <= j) { |
| swap(points, i, j); |
| i++; |
| j--; |
| } |
| } |
| if (low < j) quicksortX(points, low, j); |
| if (i < high) quicksortX(points, i, high); |
| } |
| |
| /** |
| * Test whether a point is inside the polygon. |
| * |
| * @param testPoint the point to test |
| * @param poly the polygon |
| * @return true if the testPoint is inside the poly. |
| */ |
| bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, |
| const Vector2* poly, int len) { |
| bool c = false; |
| double testx = testPoint.x; |
| double testy = testPoint.y; |
| for (int i = 0, j = len - 1; i < len; j = i++) { |
| double startX = poly[j].x; |
| double startY = poly[j].y; |
| double endX = poly[i].x; |
| double endY = poly[i].y; |
| |
| if (((endY > testy) != (startY > testy)) |
| && (testx < (startX - endX) * (testy - endY) |
| / (startY - endY) + endX)) { |
| c = !c; |
| } |
| } |
| return c; |
| } |
| |
| /** |
| * Make the polygon turn clockwise. |
| * |
| * @param polygon the polygon as a Vector2 array. |
| * @param len the number of points of the polygon |
| */ |
| void SpotShadow::makeClockwise(Vector2* polygon, int len) { |
| if (polygon == 0 || len == 0) { |
| return; |
| } |
| if (!ShadowTessellator::isClockwise(polygon, len)) { |
| reverse(polygon, len); |
| } |
| } |
| |
| /** |
| * Reverse the polygon |
| * |
| * @param polygon the polygon as a Vector2 array |
| * @param len the number of points of the polygon |
| */ |
| void SpotShadow::reverse(Vector2* polygon, int len) { |
| int n = len / 2; |
| for (int i = 0; i < n; i++) { |
| Vector2 tmp = polygon[i]; |
| int k = len - 1 - i; |
| polygon[i] = polygon[k]; |
| polygon[k] = tmp; |
| } |
| } |
| |
| /** |
| * Intersects two lines in parametric form. This function is called in a tight |
| * loop, and we need double precision to get things right. |
| * |
| * @param x1 the x coordinate point 1 of line 1 |
| * @param y1 the y coordinate point 1 of line 1 |
| * @param x2 the x coordinate point 2 of line 1 |
| * @param y2 the y coordinate point 2 of line 1 |
| * @param x3 the x coordinate point 1 of line 2 |
| * @param y3 the y coordinate point 1 of line 2 |
| * @param x4 the x coordinate point 2 of line 2 |
| * @param y4 the y coordinate point 2 of line 2 |
| * @param ret the x,y location of the intersection |
| * @return true if it found an intersection |
| */ |
| inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, |
| double x3, double y3, double x4, double y4, Vector2& ret) { |
| double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); |
| if (d == 0.0) return false; |
| |
| double dx = (x1 * y2 - y1 * x2); |
| double dy = (x3 * y4 - y3 * x4); |
| double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; |
| double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; |
| |
| // The intersection should be in the middle of the point 1 and point 2, |
| // likewise point 3 and point 4. |
| if (((x - x1) * (x - x2) > EPSILON) |
| || ((x - x3) * (x - x4) > EPSILON) |
| || ((y - y1) * (y - y2) > EPSILON) |
| || ((y - y3) * (y - y4) > EPSILON)) { |
| // Not interesected |
| return false; |
| } |
| ret.x = x; |
| ret.y = y; |
| return true; |
| |
| } |
| |
| /** |
| * Compute a horizontal circular polygon about point (x , y , height) of radius |
| * (size) |
| * |
| * @param points number of the points of the output polygon. |
| * @param lightCenter the center of the light. |
| * @param size the light size. |
| * @param ret result polygon. |
| */ |
| void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, |
| float size, Vector3* ret) { |
| // TODO: Caching all the sin / cos values and store them in a look up table. |
| for (int i = 0; i < points; i++) { |
| double angle = 2 * i * M_PI / points; |
| ret[i].x = cosf(angle) * size + lightCenter.x; |
| ret[i].y = sinf(angle) * size + lightCenter.y; |
| ret[i].z = lightCenter.z; |
| } |
| } |
| |
| /** |
| * From light center, project one vertex to the z=0 surface and get the outline. |
| * |
| * @param outline The result which is the outline position. |
| * @param lightCenter The center of light. |
| * @param polyVertex The input polygon's vertex. |
| * |
| * @return float The ratio of (polygon.z / light.z - polygon.z) |
| */ |
| float SpotShadow::projectCasterToOutline(Vector2& outline, |
| const Vector3& lightCenter, const Vector3& polyVertex) { |
| float lightToPolyZ = lightCenter.z - polyVertex.z; |
| float ratioZ = CASTER_Z_CAP_RATIO; |
| if (lightToPolyZ != 0) { |
| // If any caster's vertex is almost above the light, we just keep it as 95% |
| // of the height of the light. |
| ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO); |
| } |
| |
| outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x); |
| outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y); |
| return ratioZ; |
| } |
| |
| /** |
| * Generate the shadow spot light of shape lightPoly and a object poly |
| * |
| * @param isCasterOpaque whether the caster is opaque |
| * @param lightCenter the center of the light |
| * @param lightSize the radius of the light |
| * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| * @param polyLength number of vertexes of the occluding polygon |
| * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| * empty strip if error. |
| */ |
| void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, |
| float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid, |
| VertexBuffer& shadowTriangleStrip) { |
| if (CC_UNLIKELY(lightCenter.z <= 0)) { |
| ALOGW("Relative Light Z is not positive. No spot shadow!"); |
| return; |
| } |
| if (CC_UNLIKELY(polyLength < 3)) { |
| #if DEBUG_SHADOW |
| ALOGW("Invalid polygon length. No spot shadow!"); |
| #endif |
| return; |
| } |
| OutlineData outlineData[polyLength]; |
| Vector2 outlineCentroid; |
| // Calculate the projected outline for each polygon's vertices from the light center. |
| // |
| // O Light |
| // / |
| // / |
| // . Polygon vertex |
| // / |
| // / |
| // O Outline vertices |
| // |
| // Ratio = (Poly - Outline) / (Light - Poly) |
| // Outline.x = Poly.x - Ratio * (Light.x - Poly.x) |
| // Outline's radius / Light's radius = Ratio |
| |
| // Compute the last outline vertex to make sure we can get the normal and outline |
| // in one single loop. |
| projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, |
| poly[polyLength - 1]); |
| |
| // Take the outline's polygon, calculate the normal for each outline edge. |
| int currentNormalIndex = polyLength - 1; |
| int nextNormalIndex = 0; |
| |
| for (int i = 0; i < polyLength; i++) { |
| float ratioZ = projectCasterToOutline(outlineData[i].position, |
| lightCenter, poly[i]); |
| outlineData[i].radius = ratioZ * lightSize; |
| |
| outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal( |
| outlineData[currentNormalIndex].position, |
| outlineData[nextNormalIndex].position); |
| currentNormalIndex = (currentNormalIndex + 1) % polyLength; |
| nextNormalIndex++; |
| } |
| |
| projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid); |
| |
| int penumbraIndex = 0; |
| // Then each polygon's vertex produce at minmal 2 penumbra vertices. |
| // Since the size can be dynamic here, we keep track of the size and update |
| // the real size at the end. |
| int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER; |
| Vector2 penumbra[allocatedPenumbraLength]; |
| int totalExtraCornerSliceNumber = 0; |
| |
| Vector2 umbra[polyLength]; |
| |
| // When centroid is covered by all circles from outline, then we consider |
| // the umbra is invalid, and we will tune down the shadow strength. |
| bool hasValidUmbra = true; |
| // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly. |
| float minRaitoVI = FLT_MAX; |
| |
| for (int i = 0; i < polyLength; i++) { |
| // Generate all the penumbra's vertices only using the (outline vertex + normal * radius) |
| // There is no guarantee that the penumbra is still convex, but for |
| // each outline vertex, it will connect to all its corresponding penumbra vertices as |
| // triangle fans. And for neighber penumbra vertex, it will be a trapezoid. |
| // |
| // Penumbra Vertices marked as Pi |
| // Outline Vertices marked as Vi |
| // (P3) |
| // (P2) | ' (P4) |
| // (P1)' | | ' |
| // ' | | ' |
| // (P0) ------------------------------------------------(P5) |
| // | (V0) |(V1) |
| // | | |
| // | | |
| // | | |
| // | | |
| // | | |
| // | | |
| // | | |
| // | | |
| // (V3)-----------------------------------(V2) |
| int preNormalIndex = (i + polyLength - 1) % polyLength; |
| |
| const Vector2& previousNormal = outlineData[preNormalIndex].normal; |
| const Vector2& currentNormal = outlineData[i].normal; |
| |
| // Depending on how roundness we want for each corner, we can subdivide |
| // further here and/or introduce some heuristic to decide how much the |
| // subdivision should be. |
| int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber( |
| previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR); |
| |
| int currentCornerSliceNumber = 1 + currentExtraSliceNumber; |
| totalExtraCornerSliceNumber += currentExtraSliceNumber; |
| #if DEBUG_SHADOW |
| ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber); |
| ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber); |
| ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber); |
| #endif |
| if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) { |
| currentCornerSliceNumber = 1; |
| } |
| for (int k = 0; k <= currentCornerSliceNumber; k++) { |
| Vector2 avgNormal = |
| (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) / |
| currentCornerSliceNumber; |
| avgNormal.normalize(); |
| penumbra[penumbraIndex++] = outlineData[i].position + |
| avgNormal * outlineData[i].radius; |
| } |
| |
| |
| // Compute the umbra by the intersection from the outline's centroid! |
| // |
| // (V) ------------------------------------ |
| // | ' | |
| // | ' | |
| // | ' (I) | |
| // | ' | |
| // | ' (C) | |
| // | | |
| // | | |
| // | | |
| // | | |
| // ------------------------------------ |
| // |
| // Connect a line b/t the outline vertex (V) and the centroid (C), it will |
| // intersect with the outline vertex's circle at point (I). |
| // Now, ratioVI = VI / VC, ratioIC = IC / VC |
| // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI; |
| // |
| // When all of the outline circles cover the the outline centroid, (like I is |
| // on the other side of C), there is no real umbra any more, so we just fake |
| // a small area around the centroid as the umbra, and tune down the spot |
| // shadow's umbra strength to simulate the effect the whole shadow will |
| // become lighter in this case. |
| // The ratio can be simulated by using the inverse of maximum of ratioVI for |
| // all (V). |
| float distOutline = (outlineData[i].position - outlineCentroid).length(); |
| if (CC_UNLIKELY(distOutline == 0)) { |
| // If the outline has 0 area, then there is no spot shadow anyway. |
| ALOGW("Outline has 0 area, no spot shadow!"); |
| return; |
| } |
| |
| float ratioVI = outlineData[i].radius / distOutline; |
| minRaitoVI = MathUtils::min(minRaitoVI, ratioVI); |
| if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) { |
| ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO); |
| } |
| // When we know we don't have valid umbra, don't bother to compute the |
| // values below. But we can't skip the loop yet since we want to know the |
| // maximum ratio. |
| float ratioIC = 1 - ratioVI; |
| umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI; |
| } |
| |
| hasValidUmbra = (minRaitoVI <= 1.0); |
| float shadowStrengthScale = 1.0; |
| if (!hasValidUmbra) { |
| #if DEBUG_SHADOW |
| ALOGW("The object is too close to the light or too small, no real umbra!"); |
| #endif |
| for (int i = 0; i < polyLength; i++) { |
| umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO + |
| outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO); |
| } |
| shadowStrengthScale = 1.0 / minRaitoVI; |
| } |
| |
| int penumbraLength = penumbraIndex; |
| int umbraLength = polyLength; |
| |
| #if DEBUG_SHADOW |
| ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength); |
| dumpPolygon(poly, polyLength, "input poly"); |
| dumpPolygon(penumbra, penumbraLength, "penumbra"); |
| dumpPolygon(umbra, umbraLength, "umbra"); |
| ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale); |
| #endif |
| |
| // The penumbra and umbra needs to be in convex shape to keep consistency |
| // and quality. |
| // Since we are still shooting rays to penumbra, it needs to be convex. |
| // Umbra can be represented as a fan from the centroid, but visually umbra |
| // looks nicer when it is convex. |
| Vector2 finalUmbra[umbraLength]; |
| Vector2 finalPenumbra[penumbraLength]; |
| int finalUmbraLength = hull(umbra, umbraLength, finalUmbra); |
| int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra); |
| |
| generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, |
| finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength, |
| shadowTriangleStrip, outlineCentroid); |
| |
| } |
| |
| /** |
| * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. |
| * |
| * Returns false in error conditions |
| * |
| * @param poly Array of vertices. Note that these *must* be CW. |
| * @param polyLength The number of vertices in the polygon. |
| * @param polyCentroid The centroid of the polygon, from which rays will be cast |
| * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size |
| */ |
| bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, |
| float* rayDist) { |
| const int rays = SHADOW_RAY_COUNT; |
| const float step = M_PI * 2 / rays; |
| |
| const Vector2* lastVertex = &(poly[polyLength - 1]); |
| float startAngle = angle(*lastVertex, polyCentroid); |
| |
| // Start with the ray that's closest to and less than startAngle |
| int rayIndex = floor((startAngle - EPSILON) / step); |
| rayIndex = (rayIndex + rays) % rays; // ensure positive |
| |
| for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { |
| /* |
| * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that |
| * intersect these will be those that are between the two angles from the centroid that the |
| * vertices define. |
| * |
| * Because the polygon vertices are stored clockwise, the closest ray with an angle |
| * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does |
| * not intersect with poly[i-1], poly[i]. |
| */ |
| float currentAngle = angle(poly[polyIndex], polyCentroid); |
| |
| // find first ray that will not intersect the line segment poly[i-1] & poly[i] |
| int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); |
| firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive |
| |
| // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. |
| // This may be 0 rays. |
| while (rayIndex != firstRayIndexOnNextSegment) { |
| float distanceToIntersect = rayIntersectPoints(polyCentroid, |
| cos(rayIndex * step), |
| sin(rayIndex * step), |
| *lastVertex, poly[polyIndex]); |
| if (distanceToIntersect < 0) { |
| #if DEBUG_SHADOW |
| ALOGW("ERROR: convertPolyToRayDist failed"); |
| #endif |
| return false; // error case, abort |
| } |
| |
| rayDist[rayIndex] = distanceToIntersect; |
| |
| rayIndex = (rayIndex - 1 + rays) % rays; |
| } |
| lastVertex = &poly[polyIndex]; |
| } |
| |
| return true; |
| } |
| |
| int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength, |
| const Vector3* poly, int polyLength, Vector2* occludedUmbra) { |
| // Occluded umbra area is computed as the intersection of the projected 2D |
| // poly and umbra. |
| for (int i = 0; i < polyLength; i++) { |
| occludedUmbra[i].x = poly[i].x; |
| occludedUmbra[i].y = poly[i].y; |
| } |
| |
| // Both umbra and incoming polygon are guaranteed to be CW, so we can call |
| // intersection() directly. |
| return intersection(umbra, umbraLength, |
| occludedUmbra, polyLength); |
| } |
| |
| /** |
| * This is only for experimental purpose. |
| * After intersections are calculated, we could smooth the polygon if needed. |
| * So far, we don't think it is more appealing yet. |
| * |
| * @param level The level of smoothness. |
| * @param rays The total number of rays. |
| * @param rayDist (In and Out) The distance for each ray. |
| * |
| */ |
| void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { |
| for (int k = 0; k < level; k++) { |
| for (int i = 0; i < rays; i++) { |
| float p1 = rayDist[(rays - 1 + i) % rays]; |
| float p2 = rayDist[i]; |
| float p3 = rayDist[(i + 1) % rays]; |
| rayDist[i] = (p1 + p2 * 2 + p3) / 4; |
| } |
| } |
| } |
| |
| /** |
| * Generate a array of the angleData for either umbra or penumbra vertices. |
| * |
| * This array will be merged and used to guide where to shoot the rays, in clockwise order. |
| * |
| * @param angleDataList The result array of angle data. |
| * |
| * @return int The maximum angle's index in the array. |
| */ |
| int SpotShadow::setupAngleList(VertexAngleData* angleDataList, |
| int polyLength, const Vector2* polygon, const Vector2& centroid, |
| bool isPenumbra, const char* name) { |
| float maxAngle = FLT_MIN; |
| int maxAngleIndex = 0; |
| for (int i = 0; i < polyLength; i++) { |
| float currentAngle = angle(polygon[i], centroid); |
| if (currentAngle > maxAngle) { |
| maxAngle = currentAngle; |
| maxAngleIndex = i; |
| } |
| angleDataList[i].set(currentAngle, isPenumbra, i); |
| #if DEBUG_SHADOW |
| ALOGD("%s AngleList i %d %f", name, i, currentAngle); |
| #endif |
| } |
| return maxAngleIndex; |
| } |
| |
| /** |
| * Make sure the polygons are indeed in clockwise order. |
| * |
| * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull |
| * algorithm is not able to generate it properly. |
| * |
| * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error |
| * situation is found, we need to detect it and early return without corrupting the memory. |
| * |
| * @return bool True if the angle list is actually from big to small. |
| */ |
| bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList, |
| const char* name) { |
| int currentIndex = indexOfMaxAngle; |
| #if DEBUG_SHADOW |
| ALOGD("max index %d", currentIndex); |
| #endif |
| for (int i = 0; i < listLength - 1; i++) { |
| // TODO: Cache the last angle. |
| float currentAngle = angleList[currentIndex].mAngle; |
| float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle; |
| if (currentAngle < nextAngle) { |
| #if DEBUG_SHADOW |
| ALOGE("%s, is not CW, at index %d", name, currentIndex); |
| #endif |
| return false; |
| } |
| currentIndex = (currentIndex + 1) % listLength; |
| } |
| return true; |
| } |
| |
| /** |
| * Check the polygon is clockwise. |
| * |
| * @return bool True is the polygon is clockwise. |
| */ |
| bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex, |
| const float* polyAngleList) { |
| bool isPolyCW = true; |
| // Starting from maxPolyAngleIndex , check around to make sure angle decrease. |
| for (int i = 0; i < polyAngleLength - 1; i++) { |
| float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength]; |
| float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength]; |
| if (currentAngle < nextAngle) { |
| isPolyCW = false; |
| } |
| } |
| return isPolyCW; |
| } |
| |
| /** |
| * Given the sorted array of all the vertices angle data, calculate for each |
| * vertices, the offset value to array element which represent the start edge |
| * of the polygon we need to shoot the ray at. |
| * |
| * TODO: Calculate this for umbra and penumbra in one loop using one single array. |
| * |
| * @param distances The result of the array distance counter. |
| */ |
| void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength, |
| const VertexAngleData* allVerticesAngleData, int* distances) { |
| |
| bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra; |
| // If we want distance to inner, then we just set to 0 when we see inner. |
| bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; |
| int distanceCounter = 0; |
| if (needsSearch) { |
| int foundIndex = -1; |
| for (int i = (angleLength - 1); i >= 0; i--) { |
| bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra; |
| // If we need distance to inner, then we need to find a inner vertex. |
| if (currentIsOuter != firstVertexIsPenumbra) { |
| foundIndex = i; |
| break; |
| } |
| } |
| LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either" |
| " umbra or penumbra's length is 0"); |
| distanceCounter = angleLength - foundIndex; |
| } |
| #if DEBUG_SHADOW |
| ALOGD("distances[0] is %d", distanceCounter); |
| #endif |
| |
| distances[0] = distanceCounter; // means never see a target poly |
| |
| for (int i = 1; i < angleLength; i++) { |
| bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra; |
| // When we needs for distance for each outer vertex to inner, then we |
| // increase the distance when seeing outer vertices. Otherwise, we clear |
| // to 0. |
| bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra; |
| // If counter is not -1, that means we have seen an other polygon's vertex. |
| if (needsIncrement && distanceCounter != -1) { |
| distanceCounter++; |
| } else { |
| distanceCounter = 0; |
| } |
| distances[i] = distanceCounter; |
| } |
| } |
| |
| /** |
| * Given umbra and penumbra angle data list, merge them by sorting the angle |
| * from the biggest to smallest. |
| * |
| * @param allVerticesAngleData The result array of merged angle data. |
| */ |
| void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex, |
| const VertexAngleData* umbraAngleList, int umbraLength, |
| const VertexAngleData* penumbraAngleList, int penumbraLength, |
| VertexAngleData* allVerticesAngleData) { |
| |
| int totalRayNumber = umbraLength + penumbraLength; |
| int umbraIndex = maxUmbraAngleIndex; |
| int penumbraIndex = maxPenumbraAngleIndex; |
| |
| float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; |
| float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; |
| |
| // TODO: Clean this up using a while loop with 2 iterators. |
| for (int i = 0; i < totalRayNumber; i++) { |
| if (currentUmbraAngle > currentPenumbraAngle) { |
| allVerticesAngleData[i] = umbraAngleList[umbraIndex]; |
| umbraIndex = (umbraIndex + 1) % umbraLength; |
| |
| // If umbraIndex round back, that means we are running out of |
| // umbra vertices to merge, so just copy all the penumbra leftover. |
| // Otherwise, we update the currentUmbraAngle. |
| if (umbraIndex != maxUmbraAngleIndex) { |
| currentUmbraAngle = umbraAngleList[umbraIndex].mAngle; |
| } else { |
| for (int j = i + 1; j < totalRayNumber; j++) { |
| allVerticesAngleData[j] = penumbraAngleList[penumbraIndex]; |
| penumbraIndex = (penumbraIndex + 1) % penumbraLength; |
| } |
| break; |
| } |
| } else { |
| allVerticesAngleData[i] = penumbraAngleList[penumbraIndex]; |
| penumbraIndex = (penumbraIndex + 1) % penumbraLength; |
| // If penumbraIndex round back, that means we are running out of |
| // penumbra vertices to merge, so just copy all the umbra leftover. |
| // Otherwise, we update the currentPenumbraAngle. |
| if (penumbraIndex != maxPenumbraAngleIndex) { |
| currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle; |
| } else { |
| for (int j = i + 1; j < totalRayNumber; j++) { |
| allVerticesAngleData[j] = umbraAngleList[umbraIndex]; |
| umbraIndex = (umbraIndex + 1) % umbraLength; |
| } |
| break; |
| } |
| } |
| } |
| } |
| |
| #if DEBUG_SHADOW |
| /** |
| * DEBUG ONLY: Verify all the offset compuation is correctly done by examining |
| * each vertex and its neighbor. |
| */ |
| static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData, |
| const int* distances, int angleLength, const char* name) { |
| int currentDistance = distances[0]; |
| for (int i = 1; i < angleLength; i++) { |
| if (distances[i] != INT_MIN) { |
| if (!((currentDistance + 1) == distances[i] |
| || distances[i] == 0)) { |
| ALOGE("Wrong distance found at i %d name %s", i, name); |
| } |
| currentDistance = distances[i]; |
| if (currentDistance != 0) { |
| bool currentOuter = allVerticesAngleData[i].mIsPenumbra; |
| for (int j = 1; j <= (currentDistance - 1); j++) { |
| bool neigborOuter = |
| allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra; |
| if (neigborOuter != currentOuter) { |
| ALOGE("Wrong distance found at i %d name %s", i, name); |
| } |
| } |
| bool oppositeOuter = |
| allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra; |
| if (oppositeOuter == currentOuter) { |
| ALOGE("Wrong distance found at i %d name %s", i, name); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * DEBUG ONLY: Verify all the angle data compuated are is correctly done |
| */ |
| static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData, |
| const int* distancesToInner, const int* distancesToOuter, |
| const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength, |
| const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex, |
| int penumbraLength) { |
| for (int i = 0; i < totalRayNumber; i++) { |
| ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner" |
| " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle, |
| !allVerticesAngleData[i].mIsPenumbra, |
| allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]); |
| } |
| |
| verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner"); |
| verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter"); |
| |
| for (int i = 0; i < totalRayNumber; i++) { |
| if ((distancesToInner[i] * distancesToOuter[i]) != 0) { |
| ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d," |
| " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]); |
| } |
| } |
| int currentUmbraVertexIndex = |
| umbraAngleList[maxUmbraAngleIndex].mVertexIndex; |
| int currentPenumbraVertexIndex = |
| penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex; |
| for (int i = 0; i < totalRayNumber; i++) { |
| if (allVerticesAngleData[i].mIsPenumbra == true) { |
| if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) { |
| ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " |
| "currentpenumbraVertexIndex %d", i, |
| allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex); |
| } |
| currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength; |
| } else { |
| if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) { |
| ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d " |
| "currentUmbraVertexIndex %d", i, |
| allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex); |
| } |
| currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength; |
| } |
| } |
| for (int i = 0; i < totalRayNumber - 1; i++) { |
| float currentAngle = allVerticesAngleData[i].mAngle; |
| float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle; |
| if (currentAngle < nextAngle) { |
| ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle); |
| } |
| } |
| } |
| #endif |
| |
| /** |
| * In order to compute the occluded umbra, we need to setup the angle data list |
| * for the polygon data. Since we only store one poly vertex per polygon vertex, |
| * this array only needs to be a float array which are the angles for each vertex. |
| * |
| * @param polyAngleList The result list |
| * |
| * @return int The index for the maximum angle in this array. |
| */ |
| int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength, |
| const Vector2* poly2d, const Vector2& centroid) { |
| int maxPolyAngleIndex = -1; |
| float maxPolyAngle = -FLT_MAX; |
| for (int i = 0; i < polyAngleLength; i++) { |
| polyAngleList[i] = angle(poly2d[i], centroid); |
| if (polyAngleList[i] > maxPolyAngle) { |
| maxPolyAngle = polyAngleList[i]; |
| maxPolyAngleIndex = i; |
| } |
| } |
| return maxPolyAngleIndex; |
| } |
| |
| /** |
| * For umbra and penumbra, given the offset info and the current ray number, |
| * find the right edge index (the (starting vertex) for the ray to shoot at. |
| * |
| * @return int The index of the starting vertex of the edge. |
| */ |
| inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber, |
| const VertexAngleData* allVerticesAngleData) { |
| int tempOffset = offsets[rayIndex]; |
| int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber; |
| return allVerticesAngleData[targetRayIndex].mVertexIndex; |
| } |
| |
| /** |
| * For the occluded umbra, given the array of angles, find the index of the |
| * starting vertex of the edge, for the ray to shoo at. |
| * |
| * TODO: Save the last result to shorten the search distance. |
| * |
| * @return int The index of the starting vertex of the edge. |
| */ |
| inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength, |
| const float* polyAngleList, float rayAngle) { |
| int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength; |
| int resultIndex = -1; |
| if (rayAngle > polyAngleList[maxPolyAngleIndex] |
| || rayAngle <= polyAngleList[minPolyAngleIndex]) { |
| resultIndex = minPolyAngleIndex; |
| } else { |
| for (int i = 0; i < polyLength - 1; i++) { |
| int currentIndex = (maxPolyAngleIndex + i) % polyLength; |
| int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength; |
| if (rayAngle <= polyAngleList[currentIndex] |
| && rayAngle > polyAngleList[nextIndex]) { |
| resultIndex = currentIndex; |
| } |
| } |
| } |
| if (CC_UNLIKELY(resultIndex == -1)) { |
| // TODO: Add more error handling here. |
| ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle); |
| } |
| return resultIndex; |
| } |
| |
| /** |
| * Convert the incoming polygons into arrays of vertices, for each ray. |
| * Ray only shoots when there is one vertex either on penumbra on umbra. |
| * |
| * Finally, it will generate vertices per ray for umbra, penumbra and optionally |
| * occludedUmbra. |
| * |
| * Return true (success) when all vertices are generated |
| */ |
| int SpotShadow::convertPolysToVerticesPerRay( |
| bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength, |
| const Vector2* umbra, int umbraLength, const Vector2* penumbra, |
| int penumbraLength, const Vector2& centroid, |
| Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay, |
| Vector2* occludedUmbraVerticesPerRay) { |
| int totalRayNumber = umbraLength + penumbraLength; |
| |
| // For incoming umbra / penumbra polygons, we will build an intermediate data |
| // structure to help us sort all the vertices according to the vertices. |
| // Using this data structure, we can tell where (the angle) to shoot the ray, |
| // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at. |
| // |
| // We first parse each vertices and generate a table of VertexAngleData. |
| // Based on that, we create 2 arrays telling us which edge to shoot at. |
| VertexAngleData allVerticesAngleData[totalRayNumber]; |
| VertexAngleData umbraAngleList[umbraLength]; |
| VertexAngleData penumbraAngleList[penumbraLength]; |
| |
| int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0; |
| float polyAngleList[polyAngleLength]; |
| |
| const int maxUmbraAngleIndex = |
| setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra"); |
| const int maxPenumbraAngleIndex = |
| setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra"); |
| const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid); |
| |
| // Check all the polygons here are CW. |
| bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList); |
| bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength, |
| umbraAngleList, "umbra"); |
| bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength, |
| penumbraAngleList, "penumbra"); |
| |
| if (!isUmbraCW || !isPenumbraCW || !isPolyCW) { |
| #if DEBUG_SHADOW |
| ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d", |
| isUmbraCW, isPenumbraCW, isPolyCW); |
| #endif |
| return false; |
| } |
| |
| mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex, |
| umbraAngleList, umbraLength, penumbraAngleList, penumbraLength, |
| allVerticesAngleData); |
| |
| // Calculate the offset to the left most Inner vertex for each outerVertex. |
| // Then the offset to the left most Outer vertex for each innerVertex. |
| int offsetToInner[totalRayNumber]; |
| int offsetToOuter[totalRayNumber]; |
| calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner); |
| calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter); |
| |
| // Generate both umbraVerticesPerRay and penumbraVerticesPerRay |
| for (int i = 0; i < totalRayNumber; i++) { |
| float rayAngle = allVerticesAngleData[i].mAngle; |
| bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra; |
| |
| float dx = cosf(rayAngle); |
| float dy = sinf(rayAngle); |
| float distanceToIntersectUmbra = -1; |
| |
| if (isUmbraVertex) { |
| // We can just copy umbra easily, and calculate the distance for the |
| // occluded umbra computation. |
| int startUmbraIndex = allVerticesAngleData[i].mVertexIndex; |
| umbraVerticesPerRay[i] = umbra[startUmbraIndex]; |
| if (hasOccludedUmbraArea) { |
| distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length(); |
| } |
| |
| //shoot ray to penumbra only |
| int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber, |
| allVerticesAngleData); |
| float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy, |
| penumbra[startPenumbraIndex], |
| penumbra[(startPenumbraIndex + 1) % penumbraLength]); |
| if (distanceToIntersectPenumbra < 0) { |
| #if DEBUG_SHADOW |
| ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f", |
| rayAngle, dx, dy); |
| #endif |
| distanceToIntersectPenumbra = 0; |
| } |
| penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra; |
| penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra; |
| } else { |
| // We can just copy the penumbra |
| int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex; |
| penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex]; |
| |
| // And shoot ray to umbra only |
| int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber, |
| allVerticesAngleData); |
| |
| distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy, |
| umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]); |
| if (distanceToIntersectUmbra < 0) { |
| #if DEBUG_SHADOW |
| ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f", |
| rayAngle, dx, dy); |
| #endif |
| distanceToIntersectUmbra = 0; |
| } |
| umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra; |
| umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra; |
| } |
| |
| if (hasOccludedUmbraArea) { |
| // Shoot the same ray to the poly2d, and get the distance. |
| int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength, |
| polyAngleList, rayAngle); |
| |
| float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy, |
| poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]); |
| if (distanceToIntersectPoly < 0) { |
| distanceToIntersectPoly = 0; |
| } |
| distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly); |
| occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly; |
| occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly; |
| } |
| } |
| |
| #if DEBUG_SHADOW |
| verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner, |
| offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength, |
| penumbraAngleList, maxPenumbraAngleIndex, penumbraLength); |
| #endif |
| return true; // success |
| |
| } |
| |
| /** |
| * Generate a triangle strip given two convex polygon |
| **/ |
| void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale, |
| Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength, |
| const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip, |
| const Vector2& centroid) { |
| |
| bool hasOccludedUmbraArea = false; |
| Vector2 poly2d[polyLength]; |
| |
| if (isCasterOpaque) { |
| for (int i = 0; i < polyLength; i++) { |
| poly2d[i].x = poly[i].x; |
| poly2d[i].y = poly[i].y; |
| } |
| // Make sure the centroid is inside the umbra, otherwise, fall back to the |
| // approach as if there is no occluded umbra area. |
| if (testPointInsidePolygon(centroid, poly2d, polyLength)) { |
| hasOccludedUmbraArea = true; |
| } |
| } |
| |
| int totalRayNum = umbraLength + penumbraLength; |
| Vector2 umbraVertices[totalRayNum]; |
| Vector2 penumbraVertices[totalRayNum]; |
| Vector2 occludedUmbraVertices[totalRayNum]; |
| bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d, |
| polyLength, umbra, umbraLength, penumbra, penumbraLength, |
| centroid, umbraVertices, penumbraVertices, occludedUmbraVertices); |
| if (!convertSuccess) { |
| return; |
| } |
| |
| // Minimal value is 1, for each vertex show up once. |
| // The bigger this value is , the smoother the look is, but more memory |
| // is consumed. |
| // When the ray number is high, that means the polygon has been fine |
| // tessellated, we don't need this extra slice, just keep it as 1. |
| int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2; |
| |
| // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices. |
| int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge; |
| int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum; |
| int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2); |
| AlphaVertex* shadowVertices = |
| shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount); |
| uint16_t* indexBuffer = |
| shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount); |
| |
| int indexBufferIndex = 0; |
| int vertexBufferIndex = 0; |
| |
| uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge]; |
| // Should be something like 0 0 0 1 1 1 2 3 3 3... |
| int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge]; |
| int realUmbraVertexCount = 0; |
| for (int i = 0; i < totalRayNum; i++) { |
| Vector2 currentPenumbra = penumbraVertices[i]; |
| Vector2 currentUmbra = umbraVertices[i]; |
| |
| Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum]; |
| Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum]; |
| // NextUmbra/Penumbra will be done in the next loop!! |
| for (int weight = 0; weight < sliceNumberPerEdge; weight++) { |
| const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight) |
| + nextPenumbra * weight) / sliceNumberPerEdge; |
| |
| const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight) |
| + nextUmbra * weight) / sliceNumberPerEdge; |
| |
| // In the vertex buffer, we fill the Penumbra first, then umbra. |
| indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x, |
| slicedPenumbra.y, 0.0f); |
| |
| // When we add umbra vertex, we need to remember its current ray number. |
| // And its own vertexBufferIndex. This is for occluded umbra usage. |
| indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| rayNumberPerSlicedUmbra[realUmbraVertexCount] = i; |
| slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex; |
| realUmbraVertexCount++; |
| AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x, |
| slicedUmbra.y, M_PI); |
| } |
| } |
| |
| indexBuffer[indexBufferIndex++] = 0; |
| //RealUmbraVertexIndex[0] must be 1, so we connect back well at the |
| //beginning of occluded area. |
| indexBuffer[indexBufferIndex++] = 1; |
| |
| float occludedUmbraAlpha = M_PI; |
| if (hasOccludedUmbraArea) { |
| // Now the occludedUmbra area; |
| int currentRayNumber = -1; |
| int firstOccludedUmbraIndex = -1; |
| for (int i = 0; i < realUmbraVertexCount; i++) { |
| indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; |
| |
| // If the occludedUmbra vertex has not been added yet, then add it. |
| // Otherwise, just use the previously added occludedUmbra vertices. |
| if (rayNumberPerSlicedUmbra[i] != currentRayNumber) { |
| currentRayNumber++; |
| indexBuffer[indexBufferIndex++] = vertexBufferIndex; |
| // We need to remember the begining of the occludedUmbra vertices |
| // to close this loop. |
| if (currentRayNumber == 0) { |
| firstOccludedUmbraIndex = vertexBufferIndex; |
| } |
| AlphaVertex::set(&shadowVertices[vertexBufferIndex++], |
| occludedUmbraVertices[currentRayNumber].x, |
| occludedUmbraVertices[currentRayNumber].y, |
| occludedUmbraAlpha); |
| } else { |
| indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1); |
| } |
| } |
| // Close the loop here! |
| indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; |
| indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex; |
| } else { |
| int lastCentroidIndex = vertexBufferIndex; |
| AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, |
| centroid.y, occludedUmbraAlpha); |
| for (int i = 0; i < realUmbraVertexCount; i++) { |
| indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i]; |
| indexBuffer[indexBufferIndex++] = lastCentroidIndex; |
| } |
| // Close the loop here! |
| indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0]; |
| indexBuffer[indexBufferIndex++] = lastCentroidIndex; |
| } |
| |
| #if DEBUG_SHADOW |
| ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount); |
| ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex); |
| for (int i = 0; i < vertexBufferIndex; i++) { |
| ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y, |
| shadowVertices[i].alpha); |
| } |
| for (int i = 0; i < indexBufferIndex; i++) { |
| ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]); |
| } |
| #endif |
| |
| // At the end, update the real index and vertex buffer size. |
| shadowTriangleStrip.updateVertexCount(vertexBufferIndex); |
| shadowTriangleStrip.updateIndexCount(indexBufferIndex); |
| ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer"); |
| ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer"); |
| |
| shadowTriangleStrip.setMode(VertexBuffer::kIndices); |
| shadowTriangleStrip.computeBounds<AlphaVertex>(); |
| } |
| |
| #if DEBUG_SHADOW |
| |
| #define TEST_POINT_NUMBER 128 |
| /** |
| * Calculate the bounds for generating random test points. |
| */ |
| void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, |
| Vector2& upperBound) { |
| if (inVector.x < lowerBound.x) { |
| lowerBound.x = inVector.x; |
| } |
| |
| if (inVector.y < lowerBound.y) { |
| lowerBound.y = inVector.y; |
| } |
| |
| if (inVector.x > upperBound.x) { |
| upperBound.x = inVector.x; |
| } |
| |
| if (inVector.y > upperBound.y) { |
| upperBound.y = inVector.y; |
| } |
| } |
| |
| /** |
| * For debug purpose, when things go wrong, dump the whole polygon data. |
| */ |
| void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { |
| for (int i = 0; i < polyLength; i++) { |
| ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); |
| } |
| } |
| |
| /** |
| * For debug purpose, when things go wrong, dump the whole polygon data. |
| */ |
| void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) { |
| for (int i = 0; i < polyLength; i++) { |
| ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); |
| } |
| } |
| |
| /** |
| * Test whether the polygon is convex. |
| */ |
| bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, |
| const char* name) { |
| bool isConvex = true; |
| for (int i = 0; i < polygonLength; i++) { |
| Vector2 start = polygon[i]; |
| Vector2 middle = polygon[(i + 1) % polygonLength]; |
| Vector2 end = polygon[(i + 2) % polygonLength]; |
| |
| double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) - |
| (double(middle.y) - start.y) * (double(end.x) - start.x); |
| bool isCCWOrCoLinear = (delta >= EPSILON); |
| |
| if (isCCWOrCoLinear) { |
| ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," |
| "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", |
| name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); |
| isConvex = false; |
| break; |
| } |
| } |
| return isConvex; |
| } |
| |
| /** |
| * Test whether or not the polygon (intersection) is within the 2 input polygons. |
| * Using Marte Carlo method, we generate a random point, and if it is inside the |
| * intersection, then it must be inside both source polygons. |
| */ |
| void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, |
| const Vector2* poly2, int poly2Length, |
| const Vector2* intersection, int intersectionLength) { |
| // Find the min and max of x and y. |
| Vector2 lowerBound = {FLT_MAX, FLT_MAX}; |
| Vector2 upperBound = {-FLT_MAX, -FLT_MAX}; |
| for (int i = 0; i < poly1Length; i++) { |
| updateBound(poly1[i], lowerBound, upperBound); |
| } |
| for (int i = 0; i < poly2Length; i++) { |
| updateBound(poly2[i], lowerBound, upperBound); |
| } |
| |
| bool dumpPoly = false; |
| for (int k = 0; k < TEST_POINT_NUMBER; k++) { |
| // Generate a random point between minX, minY and maxX, maxY. |
| double randomX = rand() / double(RAND_MAX); |
| double randomY = rand() / double(RAND_MAX); |
| |
| Vector2 testPoint; |
| testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); |
| testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); |
| |
| // If the random point is in both poly 1 and 2, then it must be intersection. |
| if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { |
| if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { |
| dumpPoly = true; |
| ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" |
| " not in the poly1", |
| testPoint.x, testPoint.y); |
| } |
| |
| if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { |
| dumpPoly = true; |
| ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" |
| " not in the poly2", |
| testPoint.x, testPoint.y); |
| } |
| } |
| } |
| |
| if (dumpPoly) { |
| dumpPolygon(intersection, intersectionLength, "intersection"); |
| for (int i = 1; i < intersectionLength; i++) { |
| Vector2 delta = intersection[i] - intersection[i - 1]; |
| ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); |
| } |
| |
| dumpPolygon(poly1, poly1Length, "poly 1"); |
| dumpPolygon(poly2, poly2Length, "poly 2"); |
| } |
| } |
| #endif |
| |
| }; // namespace uirenderer |
| }; // namespace android |