| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ANDROID_MAT_H |
| #define ANDROID_MAT_H |
| |
| #include "vec.h" |
| #include "traits.h" |
| |
| // ----------------------------------------------------------------------- |
| |
| namespace android { |
| |
| template <typename TYPE, size_t C, size_t R> |
| class mat; |
| |
| namespace helpers { |
| |
| template <typename TYPE, size_t C, size_t R> |
| mat<TYPE, C, R>& doAssign( |
| mat<TYPE, C, R>& lhs, |
| typename TypeTraits<TYPE>::ParameterType rhs) { |
| for (size_t i=0 ; i<C ; i++) |
| for (size_t j=0 ; j<R ; j++) |
| lhs[i][j] = (i==j) ? rhs : 0; |
| return lhs; |
| } |
| |
| template <typename TYPE, size_t C, size_t R, size_t D> |
| mat<TYPE, C, R> PURE doMul( |
| const mat<TYPE, D, R>& lhs, |
| const mat<TYPE, C, D>& rhs) |
| { |
| mat<TYPE, C, R> res; |
| for (size_t c=0 ; c<C ; c++) { |
| for (size_t r=0 ; r<R ; r++) { |
| TYPE v(0); |
| for (size_t k=0 ; k<D ; k++) { |
| v += lhs[k][r] * rhs[c][k]; |
| } |
| res[c][r] = v; |
| } |
| } |
| return res; |
| } |
| |
| template <typename TYPE, size_t R, size_t D> |
| vec<TYPE, R> PURE doMul( |
| const mat<TYPE, D, R>& lhs, |
| const vec<TYPE, D>& rhs) |
| { |
| vec<TYPE, R> res; |
| for (size_t r=0 ; r<R ; r++) { |
| TYPE v(0); |
| for (size_t k=0 ; k<D ; k++) { |
| v += lhs[k][r] * rhs[k]; |
| } |
| res[r] = v; |
| } |
| return res; |
| } |
| |
| template <typename TYPE, size_t C, size_t R> |
| mat<TYPE, C, R> PURE doMul( |
| const vec<TYPE, R>& lhs, |
| const mat<TYPE, C, 1>& rhs) |
| { |
| mat<TYPE, C, R> res; |
| for (size_t c=0 ; c<C ; c++) { |
| for (size_t r=0 ; r<R ; r++) { |
| res[c][r] = lhs[r] * rhs[c][0]; |
| } |
| } |
| return res; |
| } |
| |
| template <typename TYPE, size_t C, size_t R> |
| mat<TYPE, C, R> PURE doMul( |
| const mat<TYPE, C, R>& rhs, |
| typename TypeTraits<TYPE>::ParameterType v) |
| { |
| mat<TYPE, C, R> res; |
| for (size_t c=0 ; c<C ; c++) { |
| for (size_t r=0 ; r<R ; r++) { |
| res[c][r] = rhs[c][r] * v; |
| } |
| } |
| return res; |
| } |
| |
| template <typename TYPE, size_t C, size_t R> |
| mat<TYPE, C, R> PURE doMul( |
| typename TypeTraits<TYPE>::ParameterType v, |
| const mat<TYPE, C, R>& rhs) |
| { |
| mat<TYPE, C, R> res; |
| for (size_t c=0 ; c<C ; c++) { |
| for (size_t r=0 ; r<R ; r++) { |
| res[c][r] = v * rhs[c][r]; |
| } |
| } |
| return res; |
| } |
| |
| |
| }; // namespace helpers |
| |
| // ----------------------------------------------------------------------- |
| |
| template <typename TYPE, size_t C, size_t R> |
| class mat : public vec< vec<TYPE, R>, C > { |
| typedef typename TypeTraits<TYPE>::ParameterType pTYPE; |
| typedef vec< vec<TYPE, R>, C > base; |
| public: |
| // STL-like interface. |
| typedef TYPE value_type; |
| typedef TYPE& reference; |
| typedef TYPE const& const_reference; |
| typedef size_t size_type; |
| size_type size() const { return R*C; } |
| enum { ROWS = R, COLS = C }; |
| |
| |
| // ----------------------------------------------------------------------- |
| // default constructors |
| |
| mat() { } |
| mat(const mat& rhs) : base(rhs) { } |
| mat(const base& rhs) : base(rhs) { } |
| |
| // ----------------------------------------------------------------------- |
| // conversion constructors |
| |
| // sets the diagonal to the value, off-diagonal to zero |
| mat(pTYPE rhs) { |
| helpers::doAssign(*this, rhs); |
| } |
| |
| // ----------------------------------------------------------------------- |
| // Assignment |
| |
| mat& operator=(const mat& rhs) { |
| base::operator=(rhs); |
| return *this; |
| } |
| |
| mat& operator=(const base& rhs) { |
| base::operator=(rhs); |
| return *this; |
| } |
| |
| mat& operator=(pTYPE rhs) { |
| return helpers::doAssign(*this, rhs); |
| } |
| |
| // ----------------------------------------------------------------------- |
| // non-member function declaration and definition |
| |
| friend inline mat PURE operator + (const mat& lhs, const mat& rhs) { |
| return helpers::doAdd( |
| static_cast<const base&>(lhs), |
| static_cast<const base&>(rhs)); |
| } |
| friend inline mat PURE operator - (const mat& lhs, const mat& rhs) { |
| return helpers::doSub( |
| static_cast<const base&>(lhs), |
| static_cast<const base&>(rhs)); |
| } |
| |
| // matrix*matrix |
| template <size_t D> |
| friend mat PURE operator * ( |
| const mat<TYPE, D, R>& lhs, |
| const mat<TYPE, C, D>& rhs) { |
| return helpers::doMul(lhs, rhs); |
| } |
| |
| // matrix*vector |
| friend vec<TYPE, R> PURE operator * ( |
| const mat& lhs, const vec<TYPE, C>& rhs) { |
| return helpers::doMul(lhs, rhs); |
| } |
| |
| // vector*matrix |
| friend mat PURE operator * ( |
| const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) { |
| return helpers::doMul(lhs, rhs); |
| } |
| |
| // matrix*scalar |
| friend inline mat PURE operator * (const mat& lhs, pTYPE v) { |
| return helpers::doMul(lhs, v); |
| } |
| |
| // scalar*matrix |
| friend inline mat PURE operator * (pTYPE v, const mat& rhs) { |
| return helpers::doMul(v, rhs); |
| } |
| |
| // ----------------------------------------------------------------------- |
| // streaming operator to set the columns of the matrix: |
| // example: |
| // mat33_t m; |
| // m << v0 << v1 << v2; |
| |
| // column_builder<> stores the matrix and knows which column to set |
| template<size_t PREV_COLUMN> |
| struct column_builder { |
| mat& matrix; |
| column_builder(mat& matrix) : matrix(matrix) { } |
| }; |
| |
| // operator << is not a method of column_builder<> so we can |
| // overload it for unauthorized values (partial specialization |
| // not allowed in class-scope). |
| // we just set the column and return the next column_builder<> |
| template<size_t PREV_COLUMN> |
| friend column_builder<PREV_COLUMN+1> operator << ( |
| const column_builder<PREV_COLUMN>& lhs, |
| const vec<TYPE, R>& rhs) { |
| lhs.matrix[PREV_COLUMN+1] = rhs; |
| return column_builder<PREV_COLUMN+1>(lhs.matrix); |
| } |
| |
| // we return void here so we get a compile-time error if the |
| // user tries to set too many columns |
| friend void operator << ( |
| const column_builder<C-2>& lhs, |
| const vec<TYPE, R>& rhs) { |
| lhs.matrix[C-1] = rhs; |
| } |
| |
| // this is where the process starts. we set the first columns and |
| // return the next column_builder<> |
| column_builder<0> operator << (const vec<TYPE, R>& rhs) { |
| (*this)[0] = rhs; |
| return column_builder<0>(*this); |
| } |
| }; |
| |
| // Specialize column matrix so they're exactly equivalent to a vector |
| template <typename TYPE, size_t R> |
| class mat<TYPE, 1, R> : public vec<TYPE, R> { |
| typedef vec<TYPE, R> base; |
| public: |
| // STL-like interface. |
| typedef TYPE value_type; |
| typedef TYPE& reference; |
| typedef TYPE const& const_reference; |
| typedef size_t size_type; |
| size_type size() const { return R; } |
| enum { ROWS = R, COLS = 1 }; |
| |
| mat() { } |
| mat(const base& rhs) : base(rhs) { } |
| mat(const mat& rhs) : base(rhs) { } |
| mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); } |
| mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; } |
| mat& operator=(const base& rhs) { base::operator=(rhs); return *this; } |
| mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); } |
| // we only have one column, so ignore the index |
| const base& operator[](size_t) const { return *this; } |
| base& operator[](size_t) { return *this; } |
| void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; } |
| }; |
| |
| // ----------------------------------------------------------------------- |
| // matrix functions |
| |
| // transpose. this handles matrices of matrices |
| inline int PURE transpose(int v) { return v; } |
| inline float PURE transpose(float v) { return v; } |
| inline double PURE transpose(double v) { return v; } |
| |
| // Transpose a matrix |
| template <typename TYPE, size_t C, size_t R> |
| mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) { |
| mat<TYPE, R, C> r; |
| for (size_t i=0 ; i<R ; i++) |
| for (size_t j=0 ; j<C ; j++) |
| r[i][j] = transpose(m[j][i]); |
| return r; |
| } |
| |
| // Calculate the trace of a matrix |
| template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) { |
| TYPE t; |
| for (size_t i=0 ; i<C ; i++) |
| t += m[i][i]; |
| return t; |
| } |
| |
| // Test positive-semidefiniteness of a matrix |
| template <typename TYPE, size_t C> |
| static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) { |
| for (size_t i=0 ; i<C ; i++) |
| if (m[i][i] < 0) |
| return false; |
| |
| for (size_t i=0 ; i<C ; i++) |
| for (size_t j=i+1 ; j<C ; j++) |
| if (fabs(m[i][j] - m[j][i]) > tolerance) |
| return false; |
| |
| return true; |
| } |
| |
| // Transpose a vector |
| template < |
| template<typename T, size_t S> class VEC, |
| typename TYPE, |
| size_t SIZE |
| > |
| mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) { |
| mat<TYPE, SIZE, 1> r; |
| for (size_t i=0 ; i<SIZE ; i++) |
| r[i][0] = transpose(v[i]); |
| return r; |
| } |
| |
| // ----------------------------------------------------------------------- |
| // "dumb" matrix inversion |
| template<typename T, size_t N> |
| mat<T, N, N> PURE invert(const mat<T, N, N>& src) { |
| T t; |
| size_t swap; |
| mat<T, N, N> tmp(src); |
| mat<T, N, N> inverse(1); |
| |
| for (size_t i=0 ; i<N ; i++) { |
| // look for largest element in column |
| swap = i; |
| for (size_t j=i+1 ; j<N ; j++) { |
| if (fabs(tmp[j][i]) > fabs(tmp[i][i])) { |
| swap = j; |
| } |
| } |
| |
| if (swap != i) { |
| /* swap rows. */ |
| for (size_t k=0 ; k<N ; k++) { |
| t = tmp[i][k]; |
| tmp[i][k] = tmp[swap][k]; |
| tmp[swap][k] = t; |
| |
| t = inverse[i][k]; |
| inverse[i][k] = inverse[swap][k]; |
| inverse[swap][k] = t; |
| } |
| } |
| |
| t = 1 / tmp[i][i]; |
| for (size_t k=0 ; k<N ; k++) { |
| tmp[i][k] *= t; |
| inverse[i][k] *= t; |
| } |
| for (size_t j=0 ; j<N ; j++) { |
| if (j != i) { |
| t = tmp[j][i]; |
| for (size_t k=0 ; k<N ; k++) { |
| tmp[j][k] -= tmp[i][k] * t; |
| inverse[j][k] -= inverse[i][k] * t; |
| } |
| } |
| } |
| } |
| return inverse; |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| typedef mat<float, 2, 2> mat22_t; |
| typedef mat<float, 3, 3> mat33_t; |
| typedef mat<float, 4, 4> mat44_t; |
| |
| // ----------------------------------------------------------------------- |
| |
| }; // namespace android |
| |
| #endif /* ANDROID_MAT_H */ |