blob: 5ffc21a589394ecd2231be76c4fde538c74b32fd [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.renderscript;
import java.lang.Math;
import android.util.Log;
/**
* @hide
*
**/
public class Matrix4f {
public Matrix4f() {
mMat = new float[16];
loadIdentity();
}
public float get(int i, int j) {
return mMat[i*4 + j];
}
public void set(int i, int j, float v) {
mMat[i*4 + j] = v;
}
public void loadIdentity() {
mMat[0] = 1;
mMat[1] = 0;
mMat[2] = 0;
mMat[3] = 0;
mMat[4] = 0;
mMat[5] = 1;
mMat[6] = 0;
mMat[7] = 0;
mMat[8] = 0;
mMat[9] = 0;
mMat[10] = 1;
mMat[11] = 0;
mMat[12] = 0;
mMat[13] = 0;
mMat[14] = 0;
mMat[15] = 1;
}
public void load(Matrix4f src) {
System.arraycopy(mMat, 0, src, 0, 16);
}
public void loadRotate(float rot, float x, float y, float z) {
float c, s;
mMat[3] = 0;
mMat[7] = 0;
mMat[11]= 0;
mMat[12]= 0;
mMat[13]= 0;
mMat[14]= 0;
mMat[15]= 1;
rot *= (float)(java.lang.Math.PI / 180.0f);
c = (float)java.lang.Math.cos(rot);
s = (float)java.lang.Math.sin(rot);
float len = (float)java.lang.Math.sqrt(x*x + y*y + z*z);
if (!(len != 1)) {
float recipLen = 1.f / len;
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
float nc = 1.0f - c;
float xy = x * y;
float yz = y * z;
float zx = z * x;
float xs = x * s;
float ys = y * s;
float zs = z * s;
mMat[ 0] = x*x*nc + c;
mMat[ 4] = xy*nc - zs;
mMat[ 8] = zx*nc + ys;
mMat[ 1] = xy*nc + zs;
mMat[ 5] = y*y*nc + c;
mMat[ 9] = yz*nc - xs;
mMat[ 2] = zx*nc - ys;
mMat[ 6] = yz*nc + xs;
mMat[10] = z*z*nc + c;
}
public void loadScale(float x, float y, float z) {
loadIdentity();
mMat[0] = x;
mMat[5] = y;
mMat[10] = z;
}
public void loadTranslate(float x, float y, float z) {
loadIdentity();
mMat[12] = x;
mMat[13] = y;
mMat[14] = z;
}
public void loadMultiply(Matrix4f lhs, Matrix4f rhs) {
for (int i=0 ; i<4 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
float ri3 = 0;
for (int j=0 ; j<4 ; j++) {
float rhs_ij = rhs.get(i,j);
ri0 += lhs.get(j,0) * rhs_ij;
ri1 += lhs.get(j,1) * rhs_ij;
ri2 += lhs.get(j,2) * rhs_ij;
ri3 += lhs.get(j,3) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
set(i,3, ri3);
}
}
public void loadOrtho(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 / (r - l);
mMat[5] = 2 / (t - b);
mMat[10]= -2 / (f - n);
mMat[12]= -(r + l) / (r - l);
mMat[13]= -(t + b) / (t - b);
mMat[14]= -(f + n) / (f - n);
}
public void loadFrustum(float l, float r, float b, float t, float n, float f) {
loadIdentity();
mMat[0] = 2 * n / (r - l);
mMat[5] = 2 * n / (t - b);
mMat[8] = (r + l) / (r - l);
mMat[9] = (t + b) / (t - b);
mMat[10]= -(f + n) / (f - n);
mMat[11]= -1;
mMat[14]= -2*f*n / (f - n);
mMat[15]= 0;
}
public void multiply(Matrix4f rhs) {
Matrix4f tmp = new Matrix4f();
tmp.loadMultiply(this, rhs);
load(tmp);
}
public void rotate(float rot, float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadRotate(rot, x, y, z);
multiply(tmp);
}
public void scale(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadScale(x, y, z);
multiply(tmp);
}
public void translate(float x, float y, float z) {
Matrix4f tmp = new Matrix4f();
tmp.loadTranslate(x, y, z);
multiply(tmp);
}
private float computeCofactor(int i, int j) {
int c0 = (i+1) % 4;
int c1 = (i+2) % 4;
int c2 = (i+3) % 4;
int r0 = (j+1) % 4;
int r1 = (j+2) % 4;
int r2 = (j+3) % 4;
float minor = (mMat[c0 + 4*r0] * (mMat[c1 + 4*r1] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r1]))
- (mMat[c0 + 4*r1] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r2] -
mMat[c1 + 4*r2] * mMat[c2 + 4*r0]))
+ (mMat[c0 + 4*r2] * (mMat[c1 + 4*r0] * mMat[c2 + 4*r1] -
mMat[c1 + 4*r1] * mMat[c2 + 4*r0]));
float cofactor = ((i+j) & 1) != 0 ? -minor : minor;
return cofactor;
}
public boolean inverse() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*i + j] = computeCofactor(i, j);
}
}
// Dot product of 0th column of source and 0th row of result
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[1] +
mMat[8]*result.mMat[2] + mMat[12]*result.mMat[3];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
public boolean inverseTranspose() {
Matrix4f result = new Matrix4f();
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
result.mMat[4*j + i] = computeCofactor(i, j);
}
}
float det = mMat[0]*result.mMat[0] + mMat[4]*result.mMat[4] +
mMat[8]*result.mMat[8] + mMat[12]*result.mMat[12];
if (Math.abs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; ++i) {
mMat[i] = result.mMat[i] * det;
}
return true;
}
public void transpose() {
for(int i = 0; i < 3; ++i) {
for(int j = i + 1; j < 4; ++j) {
float temp = mMat[i*4 + j];
mMat[i*4 + j] = mMat[j*4 + i];
mMat[j*4 + i] = temp;
}
}
}
final float[] mMat;
}