blob: aee413332f072283c4992813d9f4b1d9e6a2aa32 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_RS_BUILD_FOR_HOST
#include "rsContext.h"
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#else
#include "rsContextHostStub.h"
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#endif //ANDROID_RS_BUILD_FOR_HOST
#include "rsProgramVertex.h"
using namespace android;
using namespace android::renderscript;
ProgramVertex::ProgramVertex(Context *rsc, bool texMat) :
Program(rsc)
{
mAllocFile = __FILE__;
mAllocLine = __LINE__;
mTextureMatrixEnable = texMat;
mLightCount = 0;
init(rsc);
}
ProgramVertex::ProgramVertex(Context *rsc, const char * shaderText,
uint32_t shaderLength, const uint32_t * params,
uint32_t paramLength) :
Program(rsc, shaderText, shaderLength, params, paramLength)
{
mAllocFile = __FILE__;
mAllocLine = __LINE__;
mTextureMatrixEnable = false;
mLightCount = 0;
init(rsc);
}
ProgramVertex::~ProgramVertex()
{
}
static void logMatrix(const char *txt, const float *f)
{
LOGV("Matrix %s, %p", txt, f);
LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[0], f[4], f[8], f[12]);
LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[1], f[5], f[9], f[13]);
LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[2], f[6], f[10], f[14]);
LOGV("%6.4f, %6.4f, %6.4f, %6.4f", f[3], f[7], f[11], f[15]);
}
void ProgramVertex::setupGL(const Context *rsc, ProgramVertexState *state)
{
if ((state->mLast.get() == this) && !mDirty) {
return;
}
state->mLast.set(this);
const float *f = static_cast<const float *>(mConstants[0]->getPtr());
glMatrixMode(GL_TEXTURE);
if (mTextureMatrixEnable) {
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]);
} else {
glLoadIdentity();
}
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
if (mLightCount) {
#ifndef ANDROID_RS_BUILD_FOR_HOST // GLES Only
int v = 0;
glEnable(GL_LIGHTING);
glLightModelxv(GL_LIGHT_MODEL_TWO_SIDE, &v);
for (uint32_t ct = 0; ct < mLightCount; ct++) {
const Light *l = mLights[ct].get();
glEnable(GL_LIGHT0 + ct);
l->setupGL(ct);
}
for (uint32_t ct = mLightCount; ct < MAX_LIGHTS; ct++) {
glDisable(GL_LIGHT0 + ct);
}
#endif //ANDROID_RS_BUILD_FOR_HOST
} else {
glDisable(GL_LIGHTING);
}
if (!f) {
LOGE("Must bind constants to vertex program");
}
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]);
mDirty = false;
}
void ProgramVertex::loadShader(Context *rsc) {
Program::loadShader(rsc, GL_VERTEX_SHADER);
}
void ProgramVertex::createShader()
{
mShader.setTo("");
mShader.append("varying vec4 varColor;\n");
mShader.append("varying vec4 varTex0;\n");
if (mUserShader.length() > 1) {
mShader.append("uniform mat4 ");
mShader.append(mUniformNames[0]);
mShader.append(";\n");
for (uint32_t ct=0; ct < mConstantCount; ct++) {
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
switch(f->getComponent().getVectorSize()) {
case 1: mShader.append("uniform float UNI_"); break;
case 2: mShader.append("uniform vec2 UNI_"); break;
case 3: mShader.append("uniform vec3 UNI_"); break;
case 4: mShader.append("uniform vec4 UNI_"); break;
default:
rsAssert(0);
}
mShader.append(fn);
mShader.append(";\n");
}
}
for (uint32_t ct=0; ct < mInputCount; ct++) {
const Element *e = mInputElements[ct].get();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
switch(f->getComponent().getVectorSize()) {
case 1: mShader.append("attribute float ATTRIB_"); break;
case 2: mShader.append("attribute vec2 ATTRIB_"); break;
case 3: mShader.append("attribute vec3 ATTRIB_"); break;
case 4: mShader.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
mShader.append(fn);
mShader.append(";\n");
}
}
mShader.append(mUserShader);
} else {
mShader.append("attribute vec4 ATTRIB_position;\n");
mShader.append("attribute vec4 ATTRIB_color;\n");
mShader.append("attribute vec3 ATTRIB_normal;\n");
mShader.append("attribute vec4 ATTRIB_texture0;\n");
for (uint32_t ct=0; ct < mUniformCount; ct++) {
mShader.append("uniform mat4 ");
mShader.append(mUniformNames[ct]);
mShader.append(";\n");
}
mShader.append("void main() {\n");
mShader.append(" gl_Position = UNI_MVP * ATTRIB_position;\n");
mShader.append(" gl_PointSize = 1.0;\n");
mShader.append(" varColor = ATTRIB_color;\n");
if (mTextureMatrixEnable) {
mShader.append(" varTex0 = UNI_TexMatrix * ATTRIB_texture0;\n");
} else {
mShader.append(" varTex0 = ATTRIB_texture0;\n");
}
mShader.append("}\n");
}
}
void ProgramVertex::setupGL2(const Context *rsc, ProgramVertexState *state, ShaderCache *sc)
{
//LOGE("sgl2 vtx1 %x", glGetError());
if ((state->mLast.get() == this) && !mDirty) {
return;
}
rsc->checkError("ProgramVertex::setupGL2 start");
const float *f = static_cast<const float *>(mConstants[0]->getPtr());
Matrix mvp;
mvp.load(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
Matrix t;
t.load(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]);
mvp.multiply(&t);
glUniformMatrix4fv(sc->vtxUniformSlot(0), 1, GL_FALSE, mvp.m);
if (mTextureMatrixEnable) {
glUniformMatrix4fv(sc->vtxUniformSlot(1), 1, GL_FALSE,
&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]);
}
rsc->checkError("ProgramVertex::setupGL2 begin uniforms");
uint32_t uidx = 1;
for (uint32_t ct=0; ct < mConstantCount; ct++) {
Allocation *alloc = mConstants[ct+1].get();
if (!alloc) {
continue;
}
const uint8_t *data = static_cast<const uint8_t *>(alloc->getPtr());
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
uint32_t offset = e->getFieldOffsetBytes(field);
int32_t slot = sc->vtxUniformSlot(uidx);
const float *fd = reinterpret_cast<const float *>(&data[offset]);
//LOGE("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i", slot, offset, ct, field, uidx);
if (slot >= 0) {
switch(f->getComponent().getVectorSize()) {
case 1:
//LOGE("Uniform 1 = %f", fd[0]);
glUniform1fv(slot, 1, fd);
break;
case 2:
//LOGE("Uniform 2 = %f %f", fd[0], fd[1]);
glUniform2fv(slot, 1, fd);
break;
case 3:
//LOGE("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]);
glUniform3fv(slot, 1, fd);
break;
case 4:
//LOGE("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]);
glUniform4fv(slot, 1, fd);
break;
default:
rsAssert(0);
}
}
uidx ++;
}
}
for (uint32_t ct=0; ct < mConstantCount; ct++) {
uint32_t glSlot = sc->vtxUniformSlot(ct + 1);
}
state->mLast.set(this);
rsc->checkError("ProgramVertex::setupGL2");
}
void ProgramVertex::addLight(const Light *l)
{
if (mLightCount < MAX_LIGHTS) {
mLights[mLightCount].set(l);
mLightCount++;
}
}
void ProgramVertex::setProjectionMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants[0]->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::setModelviewMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants[0]->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::setTextureMatrix(const rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants[0]->getPtr());
memcpy(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET], m, sizeof(rsc_Matrix));
mDirty = true;
}
void ProgramVertex::getProjectionMatrix(rsc_Matrix *m) const
{
float *f = static_cast<float *>(mConstants[0]->getPtr());
memcpy(m, &f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], sizeof(rsc_Matrix));
}
void ProgramVertex::transformToScreen(const Context *rsc, float *v4out, const float *v3in) const
{
float *f = static_cast<float *>(mConstants[0]->getPtr());
Matrix mvp;
mvp.loadMultiply((Matrix *)&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET],
(Matrix *)&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]);
mvp.vectorMultiply(v4out, v3in);
}
void ProgramVertex::initAddUserElement(const Element *e, String8 *names, uint32_t *count, const char *prefix)
{
rsAssert(e->getFieldCount());
for (uint32_t ct=0; ct < e->getFieldCount(); ct++) {
const Element *ce = e->getField(ct);
if (ce->getFieldCount()) {
initAddUserElement(ce, names, count, prefix);
} else {
String8 tmp(prefix);
tmp.append(e->getFieldName(ct));
names[*count].setTo(tmp.string());
(*count)++;
}
}
}
void ProgramVertex::init(Context *rsc)
{
mAttribCount = 0;
if (mUserShader.size() > 0) {
for (uint32_t ct=0; ct < mInputCount; ct++) {
initAddUserElement(mInputElements[ct].get(), mAttribNames, &mAttribCount, "ATTRIB_");
}
mUniformCount = 1;
mUniformNames[0].setTo("UNI_MVP");
for (uint32_t ct=0; ct < mConstantCount; ct++) {
initAddUserElement(mConstantTypes[ct]->getElement(), mUniformNames, &mUniformCount, "UNI_");
}
} else {
mUniformCount = 2;
mUniformNames[0].setTo("UNI_MVP");
mUniformNames[1].setTo("UNI_TexMatrix");
}
createShader();
}
void ProgramVertex::serialize(OStream *stream) const
{
}
ProgramVertex *ProgramVertex::createFromStream(Context *rsc, IStream *stream)
{
return NULL;
}
///////////////////////////////////////////////////////////////////////
ProgramVertexState::ProgramVertexState()
{
}
ProgramVertexState::~ProgramVertexState()
{
}
void ProgramVertexState::init(Context *rsc)
{
#ifndef ANDROID_RS_BUILD_FOR_HOST
RsElement e = (RsElement) Element::create(rsc, RS_TYPE_FLOAT_32, RS_KIND_USER, false, 1);
rsi_TypeBegin(rsc, e);
rsi_TypeAdd(rsc, RS_DIMENSION_X, 48);
mAllocType.set((Type *)rsi_TypeCreate(rsc));
ProgramVertex *pv = new ProgramVertex(rsc, false);
Allocation *alloc = (Allocation *)rsi_AllocationCreateTyped(rsc, mAllocType.get());
mDefaultAlloc.set(alloc);
mDefault.set(pv);
pv->init(rsc);
pv->bindAllocation(alloc, 0);
updateSize(rsc);
#endif //ANDROID_RS_BUILD_FOR_HOST
}
void ProgramVertexState::updateSize(Context *rsc)
{
Matrix m;
m.loadOrtho(0,rsc->getWidth(), rsc->getHeight(),0, -1,1);
mDefaultAlloc->subData(RS_PROGRAM_VERTEX_PROJECTION_OFFSET, 16, &m.m[0], 16*4);
m.loadIdentity();
mDefaultAlloc->subData(RS_PROGRAM_VERTEX_MODELVIEW_OFFSET, 16, &m.m[0], 16*4);
}
void ProgramVertexState::deinit(Context *rsc)
{
mDefaultAlloc.clear();
mDefault.clear();
mAllocType.clear();
mLast.clear();
}
namespace android {
namespace renderscript {
RsProgramVertex rsi_ProgramVertexCreate(Context *rsc, bool texMat)
{
ProgramVertex *pv = new ProgramVertex(rsc, texMat);
pv->incUserRef();
return pv;
}
RsProgramVertex rsi_ProgramVertexCreate2(Context *rsc, const char * shaderText,
uint32_t shaderLength, const uint32_t * params,
uint32_t paramLength)
{
ProgramVertex *pv = new ProgramVertex(rsc, shaderText, shaderLength, params, paramLength);
pv->incUserRef();
return pv;
}
}
}