| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "OpenGLRenderer" |
| #define ATRACE_TAG ATRACE_TAG_VIEW |
| |
| #include <math.h> |
| #include <utils/Log.h> |
| #include <utils/Trace.h> |
| |
| #include "AmbientShadow.h" |
| #include "Caches.h" |
| #include "ShadowTessellator.h" |
| #include "SpotShadow.h" |
| |
| namespace android { |
| namespace uirenderer { |
| |
| void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque, |
| const Vector3* casterPolygon, int casterVertexCount, |
| const Vector3& centroid3d, const Rect& casterBounds, |
| const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) { |
| ATRACE_CALL(); |
| |
| // A bunch of parameters to tweak the shadow. |
| // TODO: Allow some of these changable by debug settings or APIs. |
| float heightFactor = 1.0f / 128; |
| const float geomFactor = 64; |
| |
| Caches& caches = Caches::getInstance(); |
| if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) { |
| heightFactor *= caches.propertyAmbientRatio; |
| } |
| |
| Rect ambientShadowBounds(casterBounds); |
| ambientShadowBounds.outset(maxZ * geomFactor * heightFactor); |
| |
| if (!localClip.intersects(ambientShadowBounds)) { |
| #if DEBUG_SHADOW |
| ALOGD("Ambient shadow is out of clip rect!"); |
| #endif |
| return; |
| } |
| |
| AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon, |
| casterVertexCount, centroid3d, heightFactor, geomFactor, |
| shadowVertexBuffer); |
| } |
| |
| void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque, |
| const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid, |
| const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius, |
| const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) { |
| ATRACE_CALL(); |
| |
| Caches& caches = Caches::getInstance(); |
| |
| Vector3 adjustedLightCenter(lightCenter); |
| if (CC_UNLIKELY(caches.propertyLightPosY > 0)) { |
| adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up |
| } |
| if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) { |
| adjustedLightCenter.z = caches.propertyLightPosZ; |
| } |
| |
| #if DEBUG_SHADOW |
| ALOGD("light center %f %f %f", |
| adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z); |
| #endif |
| |
| // light position (because it's in local space) needs to compensate for receiver transform |
| // TODO: should apply to light orientation, not just position |
| Matrix4 reverseReceiverTransform; |
| reverseReceiverTransform.loadInverse(receiverTransform); |
| reverseReceiverTransform.mapPoint3d(adjustedLightCenter); |
| |
| const int lightVertexCount = 8; |
| if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) { |
| lightRadius = caches.propertyLightDiameter; |
| } |
| |
| // Now light and caster are both in local space, we will check whether |
| // the shadow is within the clip area. |
| Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius, |
| adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius); |
| lightRect.unionWith(localClip); |
| if (!lightRect.intersects(casterBounds)) { |
| #if DEBUG_SHADOW |
| ALOGD("Spot shadow is out of clip rect!"); |
| #endif |
| return; |
| } |
| |
| SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius, |
| casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer); |
| |
| #if DEBUG_SHADOW |
| if(shadowVertexBuffer.getVertexCount() <= 0) { |
| ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount()); |
| } |
| #endif |
| } |
| |
| void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) { |
| int currentIndex = 0; |
| const int rays = SHADOW_RAY_COUNT; |
| // For the penumbra area. |
| for (int layer = 0; layer < 2; layer ++) { |
| int baseIndex = layer * rays; |
| for (int i = 0; i < rays; i++) { |
| shadowIndices[currentIndex++] = i + baseIndex; |
| shadowIndices[currentIndex++] = rays + i + baseIndex; |
| } |
| // To close the loop, back to the ray 0. |
| shadowIndices[currentIndex++] = 0 + baseIndex; |
| // Note this is the same as the first index of next layer loop. |
| shadowIndices[currentIndex++] = rays + baseIndex; |
| } |
| |
| #if DEBUG_SHADOW |
| if (currentIndex != MAX_SHADOW_INDEX_COUNT) { |
| ALOGW("vertex index count is wrong. current %d, expected %d", |
| currentIndex, MAX_SHADOW_INDEX_COUNT); |
| } |
| for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) { |
| ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]); |
| } |
| #endif |
| } |
| |
| /** |
| * Calculate the centroid of a 2d polygon. |
| * |
| * @param poly The polygon, which is represented in a Vector2 array. |
| * @param polyLength The length of the polygon in terms of number of vertices. |
| * @return the centroid of the polygon. |
| */ |
| Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) { |
| double sumx = 0; |
| double sumy = 0; |
| int p1 = polyLength - 1; |
| double area = 0; |
| for (int p2 = 0; p2 < polyLength; p2++) { |
| double x1 = poly[p1].x; |
| double y1 = poly[p1].y; |
| double x2 = poly[p2].x; |
| double y2 = poly[p2].y; |
| double a = (x1 * y2 - x2 * y1); |
| sumx += (x1 + x2) * a; |
| sumy += (y1 + y2) * a; |
| area += a; |
| p1 = p2; |
| } |
| |
| Vector2 centroid = poly[0]; |
| if (area != 0) { |
| centroid = (Vector2){static_cast<float>(sumx / (3 * area)), |
| static_cast<float>(sumy / (3 * area))}; |
| } else { |
| ALOGW("Area is 0 while computing centroid!"); |
| } |
| return centroid; |
| } |
| |
| // Make sure p1 -> p2 is going CW around the poly. |
| Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) { |
| Vector2 result = p2 - p1; |
| if (result.x != 0 || result.y != 0) { |
| result.normalize(); |
| // Calculate the normal , which is CCW 90 rotate to the delta. |
| float tempy = result.y; |
| result.y = result.x; |
| result.x = -tempy; |
| } |
| return result; |
| } |
| /** |
| * Test whether the polygon is order in clockwise. |
| * |
| * @param polygon the polygon as a Vector2 array |
| * @param len the number of points of the polygon |
| */ |
| bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) { |
| if (len < 2 || polygon == NULL) { |
| return true; |
| } |
| double sum = 0; |
| double p1x = polygon[len - 1].x; |
| double p1y = polygon[len - 1].y; |
| for (int i = 0; i < len; i++) { |
| |
| double p2x = polygon[i].x; |
| double p2y = polygon[i].y; |
| sum += p1x * p2y - p2x * p1y; |
| p1x = p2x; |
| p1y = p2y; |
| } |
| return sum < 0; |
| } |
| |
| bool ShadowTessellator::isClockwisePath(const SkPath& path) { |
| SkPath::Iter iter(path, false); |
| SkPoint pts[4]; |
| SkPath::Verb v; |
| |
| Vector<Vector2> arrayForDirection; |
| while (SkPath::kDone_Verb != (v = iter.next(pts))) { |
| switch (v) { |
| case SkPath::kMove_Verb: |
| arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()}); |
| break; |
| case SkPath::kLine_Verb: |
| arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); |
| break; |
| case SkPath::kQuad_Verb: |
| arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); |
| arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()}); |
| break; |
| case SkPath::kCubic_Verb: |
| arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); |
| arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()}); |
| arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()}); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return isClockwise(arrayForDirection.array(), arrayForDirection.size()); |
| } |
| |
| void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) { |
| int n = len / 2; |
| for (int i = 0; i < n; i++) { |
| Vertex tmp = polygon[i]; |
| int k = len - 1 - i; |
| polygon[i] = polygon[k]; |
| polygon[k] = tmp; |
| } |
| } |
| |
| int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1, |
| const Vector2& vector2, float divisor) { |
| // When there is no distance difference, there is no need for extra vertices. |
| if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) { |
| return 0; |
| } |
| // The formula is : |
| // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI)) |
| // The value ranges for each step are: |
| // dot( ) --- [-1, 1] |
| // acos( ) --- [0, M_PI] |
| // floor(...) --- [0, EXTRA_VERTEX_PER_PI] |
| float dotProduct = vector1.dot(vector2); |
| // TODO: Use look up table for the dotProduct to extraVerticesNumber |
| // computation, if needed. |
| float angle = acosf(dotProduct); |
| return (int) floor(angle / divisor); |
| } |
| |
| void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) { |
| LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d", |
| bufferName, used, total); |
| } |
| |
| }; // namespace uirenderer |
| }; // namespace android |