blob: 64ea6d68b8bb14c9c0ea7180a456e17319e2bb37 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* @author Denis M. Kishenko
* @version $Revision$
*/
package java.awt.geom;
import java.awt.Rectangle;
import java.awt.Shape;
import java.util.NoSuchElementException;
import org.apache.harmony.awt.gl.Crossing;
import org.apache.harmony.awt.internal.nls.Messages;
/**
* The Class QuadCurve2D is a Shape that represents a segment of a
* quadratic (Bezier) curve. The curved segment is determined by three points:
* a start point, an end point, and a control point. The line from the control
* point to the starting point gives the tangent to the curve at the
* starting point, and the line from the control point to the end point
* gives the tangent to the curve at the end point.
*/
public abstract class QuadCurve2D implements Shape, Cloneable {
/**
* The Class Float is the subclass of QuadCurve2D that has all
* of its data values stored with float-level precision.
*/
public static class Float extends QuadCurve2D {
/** The x coordinate of the starting point of the curved segment. */
public float x1;
/** The y coordinate of the starting point of the curved segment. */
public float y1;
/** The x coordinate of the control point. */
public float ctrlx;
/** The y coordinate of the control point. */
public float ctrly;
/** The x coordinate of the end point of the curved segment. */
public float x2;
/** The y coordinate of the end point of the curved segment. */
public float y2;
/**
* Instantiates a new float-valued QuadCurve2D with all coordinate values
* set to zero.
*/
public Float() {
}
/**
* Instantiates a new float-valued QuadCurve2D with the specified
* coordinate values.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*/
public Float(float x1, float y1, float ctrlx, float ctrly, float x2, float y2) {
setCurve(x1, y1, ctrlx, ctrly, x2, y2);
}
@Override
public double getX1() {
return x1;
}
@Override
public double getY1() {
return y1;
}
@Override
public double getCtrlX() {
return ctrlx;
}
@Override
public double getCtrlY() {
return ctrly;
}
@Override
public double getX2() {
return x2;
}
@Override
public double getY2() {
return y2;
}
@Override
public Point2D getP1() {
return new Point2D.Float(x1, y1);
}
@Override
public Point2D getCtrlPt() {
return new Point2D.Float(ctrlx, ctrly);
}
@Override
public Point2D getP2() {
return new Point2D.Float(x2, y2);
}
@Override
public void setCurve(double x1, double y1, double ctrlx, double ctrly, double x2, double y2) {
this.x1 = (float)x1;
this.y1 = (float)y1;
this.ctrlx = (float)ctrlx;
this.ctrly = (float)ctrly;
this.x2 = (float)x2;
this.y2 = (float)y2;
}
/**
* Sets the data values of the curve.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*/
public void setCurve(float x1, float y1, float ctrlx, float ctrly, float x2, float y2) {
this.x1 = x1;
this.y1 = y1;
this.ctrlx = ctrlx;
this.ctrly = ctrly;
this.x2 = x2;
this.y2 = y2;
}
public Rectangle2D getBounds2D() {
float rx0 = Math.min(Math.min(x1, x2), ctrlx);
float ry0 = Math.min(Math.min(y1, y2), ctrly);
float rx1 = Math.max(Math.max(x1, x2), ctrlx);
float ry1 = Math.max(Math.max(y1, y2), ctrly);
return new Rectangle2D.Float(rx0, ry0, rx1 - rx0, ry1 - ry0);
}
}
/**
* The Class Double is the subclass of QuadCurve2D that has all
* of its data values stored with double-level precision.
*/
public static class Double extends QuadCurve2D {
/** The x coordinate of the starting point of the curved segment. */
public double x1;
/** The y coordinate of the starting point of the curved segment. */
public double y1;
/** The x coordinate of the control point. */
public double ctrlx;
/** The y coordinate of the control point. */
public double ctrly;
/** The x coordinate of the end point of the curved segment. */
public double x2;
/** The y coordinate of the end point of the curved segment. */
public double y2;
/**
* Instantiates a new double-valued QuadCurve2D with all coordinate values
* set to zero.
*/
public Double() {
}
/**
* Instantiates a new double-valued QuadCurve2D with the specified
* coordinate values.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*/
public Double(double x1, double y1, double ctrlx, double ctrly, double x2, double y2) {
setCurve(x1, y1, ctrlx, ctrly, x2, y2);
}
@Override
public double getX1() {
return x1;
}
@Override
public double getY1() {
return y1;
}
@Override
public double getCtrlX() {
return ctrlx;
}
@Override
public double getCtrlY() {
return ctrly;
}
@Override
public double getX2() {
return x2;
}
@Override
public double getY2() {
return y2;
}
@Override
public Point2D getP1() {
return new Point2D.Double(x1, y1);
}
@Override
public Point2D getCtrlPt() {
return new Point2D.Double(ctrlx, ctrly);
}
@Override
public Point2D getP2() {
return new Point2D.Double(x2, y2);
}
@Override
public void setCurve(double x1, double y1, double ctrlx, double ctrly, double x2, double y2) {
this.x1 = x1;
this.y1 = y1;
this.ctrlx = ctrlx;
this.ctrly = ctrly;
this.x2 = x2;
this.y2 = y2;
}
public Rectangle2D getBounds2D() {
double rx0 = Math.min(Math.min(x1, x2), ctrlx);
double ry0 = Math.min(Math.min(y1, y2), ctrly);
double rx1 = Math.max(Math.max(x1, x2), ctrlx);
double ry1 = Math.max(Math.max(y1, y2), ctrly);
return new Rectangle2D.Double(rx0, ry0, rx1 - rx0, ry1 - ry0);
}
}
/*
* QuadCurve2D path iterator
*/
/**
* The PathIterator for a Quad2D curve.
*/
class Iterator implements PathIterator {
/** The source QuadCurve2D object. */
QuadCurve2D c;
/** The path iterator transformation. */
AffineTransform t;
/** The current segment index. */
int index;
/**
* Constructs a new QuadCurve2D.Iterator for given curve and transformation
*
* @param q - the source QuadCurve2D object
* @param t the AffineTransform that acts on the coordinates before
* returning them (or null)
*/
Iterator(QuadCurve2D q, AffineTransform t) {
this.c = q;
this.t = t;
}
public int getWindingRule() {
return WIND_NON_ZERO;
}
public boolean isDone() {
return (index > 1);
}
public void next() {
index++;
}
public int currentSegment(double[] coords) {
if (isDone()) {
// awt.4B=Iterator out of bounds
throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$
}
int type;
int count;
if (index == 0) {
type = SEG_MOVETO;
coords[0] = c.getX1();
coords[1] = c.getY1();
count = 1;
} else {
type = SEG_QUADTO;
coords[0] = c.getCtrlX();
coords[1] = c.getCtrlY();
coords[2] = c.getX2();
coords[3] = c.getY2();
count = 2;
}
if (t != null) {
t.transform(coords, 0, coords, 0, count);
}
return type;
}
public int currentSegment(float[] coords) {
if (isDone()) {
// awt.4B=Iterator out of bounds
throw new NoSuchElementException(Messages.getString("awt.4B")); //$NON-NLS-1$
}
int type;
int count;
if (index == 0) {
type = SEG_MOVETO;
coords[0] = (float)c.getX1();
coords[1] = (float)c.getY1();
count = 1;
} else {
type = SEG_QUADTO;
coords[0] = (float)c.getCtrlX();
coords[1] = (float)c.getCtrlY();
coords[2] = (float)c.getX2();
coords[3] = (float)c.getY2();
count = 2;
}
if (t != null) {
t.transform(coords, 0, coords, 0, count);
}
return type;
}
}
/**
* Instantiates a new quadratic curve.
*/
protected QuadCurve2D() {
}
/**
* Gets the x coordinate of the starting point.
*
* @return the x coordinate of the starting point
*/
public abstract double getX1();
/**
* Gets the y coordinate of the starting point.
*
* @return the y coordinate of the starting point
*/
public abstract double getY1();
/**
* Gets the starting point.
*
* @return the starting point
*/
public abstract Point2D getP1();
/**
* Gets the x coordinate of the control point.
*
* @return the x coordinate of the control point
*/
public abstract double getCtrlX();
/**
* Gets the y coordinate of the control point.
*
* @return y coordinate of the control point
*/
public abstract double getCtrlY();
/**
* Gets the control point.
*
* @return the control point
*/
public abstract Point2D getCtrlPt();
/**
* Gets the x coordinate of the end point.
*
* @return the x coordinate of the end point
*/
public abstract double getX2();
/**
* Gets the y coordinate of the end point.
*
* @return the y coordinate of the end point
*/
public abstract double getY2();
/**
* Gets the end point.
*
* @return the end point
*/
public abstract Point2D getP2();
/**
* Sets the data of the curve.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*/
public abstract void setCurve(double x1, double y1, double ctrlx, double ctrly, double x2, double y2);
/**
* Sets the data of the curve.
*
* @param p1 the starting point of the curved segment
* @param cp the control point
* @param p2 the end point of the curved segment
*
* @throws NullPointerException if any of the three points is null.
*/
public void setCurve(Point2D p1, Point2D cp, Point2D p2) {
setCurve(p1.getX(), p1.getY(), cp.getX(), cp.getY(), p2.getX(), p2.getY());
}
/**
* Sets the data of the curve by reading the data from an array
* of values. The values are read in the same order as the arguments
* of the method {@link QuadCurve2D#setCurve(double, double, double, double, double, double)}.
*
* @param coords the array of values containing the new coordinates
* @param offset the offset of the data to read within the array
*
* @throws ArrayIndexOutOfBoundsException if coords.length < offset + 6.
* @throws NullPointerException if the coordinate array is null.
*/
public void setCurve(double[] coords, int offset) {
setCurve(
coords[offset + 0], coords[offset + 1],
coords[offset + 2], coords[offset + 3],
coords[offset + 4], coords[offset + 5]);
}
/**
* Sets the data of the curve by reading the data from an array
* of points. The values are read in the same order as the arguments
* of the method {@link QuadCurve2D#setCurve(Point2D, Point2D, Point2D)}
*
* @param points the array of points containing the new coordinates
* @param offset the offset of the data to read within the array
*
* @throws ArrayIndexOutOfBoundsException if points.length < offset + 3.
* @throws NullPointerException if the point array is null.
*/
public void setCurve(Point2D[] points, int offset) {
setCurve(
points[offset + 0].getX(), points[offset + 0].getY(),
points[offset + 1].getX(), points[offset + 1].getY(),
points[offset + 2].getX(), points[offset + 2].getY());
}
/**
* Sets the data of the curve by copying it from another QuadCurve2D.
*
* @param curve the curve to copy the data points from
*
* @throws NullPointerException if the curve is null.
*/
public void setCurve(QuadCurve2D curve) {
setCurve(
curve.getX1(), curve.getY1(),
curve.getCtrlX(), curve.getCtrlY(),
curve.getX2(), curve.getY2());
}
/**
* Gets the square of the distance from the control point to the
* straight line segment connecting the start point and the end point
* for this curve.
*
* @return the square of the distance from the control point to the
* straight line segment connecting the start point and the end point.
*/
public double getFlatnessSq() {
return Line2D.ptSegDistSq(
getX1(), getY1(),
getX2(), getY2(),
getCtrlX(), getCtrlY());
}
/**
* Gets the square of the distance from the control point to the
* straight line segment connecting the start point and the end point.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*
* @return the square of the distance from the control point to the
* straight line segment connecting the start point and the end point.
*/
public static double getFlatnessSq(double x1, double y1, double ctrlx, double ctrly, double x2, double y2) {
return Line2D.ptSegDistSq(x1, y1, x2, y2, ctrlx, ctrly);
}
/**
* Gets the square of the distance from the control point to the
* straight line segment connecting the start point and the end point
* by reading the coordinates of the points from an array of values.
* The values are read in the same order as the arguments
* of the method {@link QuadCurve2D#getFlatnessSq(double, double, double, double, double, double)}.
*
* @param coords the array of points containing the coordinates to use for
* the calculation
* @param offset the offset of the data to read within the array
*
* @return the square of the distance from the control point to the
* straight line segment connecting the start point and the end point.
*
* @throws ArrayIndexOutOfBoundsException if coords.length < offset + 6.
* @throws NullPointerException if the coordinate array is null.
*/
public static double getFlatnessSq(double coords[], int offset) {
return Line2D.ptSegDistSq(
coords[offset + 0], coords[offset + 1],
coords[offset + 4], coords[offset + 5],
coords[offset + 2], coords[offset + 3]);
}
/**
* Gets the distance from the control point to the
* straight line segment connecting the start point and the end point
* of this QuadCurve2D.
*
* @return the the distance from the control point to the
* straight line segment connecting the start point and the end point
* of this QuadCurve2D
*/
public double getFlatness() {
return Line2D.ptSegDist(getX1(), getY1(), getX2(), getY2(), getCtrlX(), getCtrlY());
}
/**
* Gets the distance from the control point to the
* straight line segment connecting the start point and the end point.
*
* @param x1 the x coordinate of the starting point of the curved segment
* @param y1 the y coordinate of the starting point of the curved segment
* @param ctrlx the x coordinate of the control point
* @param ctrly the y coordinate of the control point
* @param x2 the x coordinate of the end point of the curved segment
* @param y2 the y coordinate of the end point of the curved segment
*
* @return the the distance from the control point to the
* straight line segment connecting the start point and the end point
*/
public static double getFlatness(double x1, double y1, double ctrlx,
double ctrly, double x2, double y2)
{
return Line2D.ptSegDist(x1, y1, x2, y2, ctrlx, ctrly);
}
/**
* Gets the the distance from the control point to the
* straight line segment connecting the start point and the end point.
* The values are read in the same order as the arguments
* of the method {@link QuadCurve2D#getFlatness(double, double, double, double, double, double)}.
*
* @param coords the array of points containing the coordinates to use for
* the calculation
* @param offset the offset of the data to read within the array
*
* @return the the distance from the control point to the
* straight line segment connecting the start point and the end point
*
* @throws ArrayIndexOutOfBoundsException if coords.length < offset + 6.
* @throws NullPointerException if the coordinate array is null.
*/
public static double getFlatness(double coords[], int offset) {
return Line2D.ptSegDist(
coords[offset + 0], coords[offset + 1],
coords[offset + 4], coords[offset + 5],
coords[offset + 2], coords[offset + 3]);
}
/**
* Creates the data for two quadratic curves by dividing this
* curve in two. The division point is the point on the curve
* that is closest to this curve's control point. The data of
* this curve is left unchanged.
*
* @param left the QuadCurve2D where the left (start) segment's
* data is written
* @param right the QuadCurve2D where the right (end) segment's
* data is written
*
* @throws NullPointerException if either curve is null.
*/
public void subdivide(QuadCurve2D left, QuadCurve2D right) {
subdivide(this, left, right);
}
/**
* Creates the data for two quadratic curves by dividing a source
* curve in two. The division point is the point on the curve
* that is closest to the source curve's control point. The data of
* the source curve is left unchanged.
*
* @param src the curve that provides the initial data
* @param left the QuadCurve2D where the left (start) segment's
* data is written
* @param right the QuadCurve2D where the right (end) segment's
* data is written
*
* @throws NullPointerException if one of the curves is null.
*/
public static void subdivide(QuadCurve2D src, QuadCurve2D left, QuadCurve2D right) {
double x1 = src.getX1();
double y1 = src.getY1();
double cx = src.getCtrlX();
double cy = src.getCtrlY();
double x2 = src.getX2();
double y2 = src.getY2();
double cx1 = (x1 + cx) / 2.0;
double cy1 = (y1 + cy) / 2.0;
double cx2 = (x2 + cx) / 2.0;
double cy2 = (y2 + cy) / 2.0;
cx = (cx1 + cx2) / 2.0;
cy = (cy1 + cy2) / 2.0;
if (left != null) {
left.setCurve(x1, y1, cx1, cy1, cx, cy);
}
if (right != null) {
right.setCurve(cx, cy, cx2, cy2, x2, y2);
}
}
/**
* Creates the data for two quadratic curves by dividing a source
* curve in two. The division point is the point on the curve
* that is closest to the source curve's control point. The data
* for the three curves is read and written from arrays of values in
* the usual order: x1, y1, cx, cy, x2, y2.
*
* @param src the array that gives the data values for the source curve
* @param srcoff the offset in the src array to read the values from
* @param left the array where the coordinates of the start curve should be written
* @param leftOff the offset in the left array to start writing the values
* @param right the array where the coordinates of the end curve should be written
* @param rightOff the offset in the right array to start writing the values
*
* @throws ArrayIndexOutOfBoundsException if src.length < srcoff + 6
* or if left.length < leftOff + 6 or if right.length < rightOff + 6.
* @throws NullPointerException if one of the arrays is null.
*/
public static void subdivide(double src[], int srcoff, double left[],
int leftOff, double right[], int rightOff)
{
double x1 = src[srcoff + 0];
double y1 = src[srcoff + 1];
double cx = src[srcoff + 2];
double cy = src[srcoff + 3];
double x2 = src[srcoff + 4];
double y2 = src[srcoff + 5];
double cx1 = (x1 + cx) / 2.0;
double cy1 = (y1 + cy) / 2.0;
double cx2 = (x2 + cx) / 2.0;
double cy2 = (y2 + cy) / 2.0;
cx = (cx1 + cx2) / 2.0;
cy = (cy1 + cy2) / 2.0;
if (left != null) {
left[leftOff + 0] = x1;
left[leftOff + 1] = y1;
left[leftOff + 2] = cx1;
left[leftOff + 3] = cy1;
left[leftOff + 4] = cx;
left[leftOff + 5] = cy;
}
if (right != null) {
right[rightOff + 0] = cx;
right[rightOff + 1] = cy;
right[rightOff + 2] = cx2;
right[rightOff + 3] = cy2;
right[rightOff + 4] = x2;
right[rightOff + 5] = y2;
}
}
/**
* Finds the roots of the quadratic polynomial. This is
* accomplished by finding the (real) values of x that solve
* the following equation: eqn[2]*x*x + eqn[1]*x + eqn[0] = 0.
* The solutions are written back into the array eqn starting
* from the index 0 in the array. The return value tells how
* many array elements have been changed by this method call.
*
* @param eqn an array containing the coefficients of the
* quadratic polynomial to solve.
*
* @return the number of roots of the quadratic polynomial
*
* @throws ArrayIndexOutOfBoundsException if eqn.length < 3.
* @throws NullPointerException if the array is null.
*/
public static int solveQuadratic(double eqn[]) {
return solveQuadratic(eqn, eqn);
}
/**
* Finds the roots of the quadratic polynomial. This is
* accomplished by finding the (real) values of x that solve
* the following equation: eqn[2]*x*x + eqn[1]*x + eqn[0] = 0.
* The solutions are written into the array res starting
* from the index 0 in the array. The return value tells how
* many array elements have been written by this method call.
*
* @param eqn an array containing the coefficients of the
* quadratic polynomial to solve.
* @param res the array that this method writes the results into
*
* @return the number of roots of the quadratic polynomial
*
* @throws ArrayIndexOutOfBoundsException if eqn.length < 3 or
* if res.length is less than the number of roots.
* @throws NullPointerException if either array is null.
*/
public static int solveQuadratic(double eqn[], double res[]) {
return Crossing.solveQuad(eqn, res);
}
public boolean contains(double px, double py) {
return Crossing.isInsideEvenOdd(Crossing.crossShape(this, px, py));
}
public boolean contains(double rx, double ry, double rw, double rh) {
int cross = Crossing.intersectShape(this, rx, ry, rw, rh);
return cross != Crossing.CROSSING && Crossing.isInsideEvenOdd(cross);
}
public boolean intersects(double rx, double ry, double rw, double rh) {
int cross = Crossing.intersectShape(this, rx, ry, rw, rh);
return cross == Crossing.CROSSING || Crossing.isInsideEvenOdd(cross);
}
public boolean contains(Point2D p) {
return contains(p.getX(), p.getY());
}
public boolean intersects(Rectangle2D r) {
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
public boolean contains(Rectangle2D r) {
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
public Rectangle getBounds() {
return getBounds2D().getBounds();
}
public PathIterator getPathIterator(AffineTransform t) {
return new Iterator(this, t);
}
public PathIterator getPathIterator(AffineTransform t, double flatness) {
return new FlatteningPathIterator(getPathIterator(t), flatness);
}
@Override
public Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
}
}