blob: 12d2cdeb5d0ccc04ffdaf373e1739278466b6ea2 [file] [log] [blame]
/*
* Copyright (C) 2006 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package android.graphics;
import java.awt.Shape;
import java.awt.geom.AffineTransform;
import java.awt.geom.Ellipse2D;
import java.awt.geom.GeneralPath;
import java.awt.geom.PathIterator;
import java.awt.geom.Rectangle2D;
/**
* The Path class encapsulates compound (multiple contour) geometric paths
* consisting of straight line segments, quadratic curves, and cubic curves.
* It can be drawn with canvas.drawPath(path, paint), either filled or stroked
* (based on the paint's Style), or it can be used for clipping or to draw
* text on a path.
*/
public class Path {
private FillType mFillType = FillType.WINDING;
private GeneralPath mPath = new GeneralPath();
private float mLastX = 0;
private float mLastY = 0;
//---------- Custom methods ----------
public Shape getAwtShape() {
return mPath;
}
//----------
/**
* Create an empty path
*/
public Path() {
}
/**
* Create a new path, copying the contents from the src path.
*
* @param src The path to copy from when initializing the new path
*/
public Path(Path src) {
mPath.append(src.mPath, false /* connect */);
}
/**
* Clear any lines and curves from the path, making it empty.
* This does NOT change the fill-type setting.
*/
public void reset() {
mPath = new GeneralPath();
}
/**
* Rewinds the path: clears any lines and curves from the path but
* keeps the internal data structure for faster reuse.
*/
public void rewind() {
// FIXME
throw new UnsupportedOperationException();
}
/** Replace the contents of this with the contents of src.
*/
public void set(Path src) {
mPath.append(src.mPath, false /* connect */);
}
/** Enum for the ways a path may be filled
*/
public enum FillType {
// these must match the values in SkPath.h
WINDING (GeneralPath.WIND_NON_ZERO, false),
EVEN_ODD (GeneralPath.WIND_EVEN_ODD, false),
INVERSE_WINDING (GeneralPath.WIND_NON_ZERO, true),
INVERSE_EVEN_ODD(GeneralPath.WIND_EVEN_ODD, true);
FillType(int rule, boolean inverse) {
this.rule = rule;
this.inverse = inverse;
}
final int rule;
final boolean inverse;
}
/**
* Return the path's fill type. This defines how "inside" is
* computed. The default value is WINDING.
*
* @return the path's fill type
*/
public FillType getFillType() {
return mFillType;
}
/**
* Set the path's fill type. This defines how "inside" is computed.
*
* @param ft The new fill type for this path
*/
public void setFillType(FillType ft) {
mFillType = ft;
mPath.setWindingRule(ft.rule);
}
/**
* Returns true if the filltype is one of the INVERSE variants
*
* @return true if the filltype is one of the INVERSE variants
*/
public boolean isInverseFillType() {
return mFillType.inverse;
}
/**
* Toggles the INVERSE state of the filltype
*/
public void toggleInverseFillType() {
switch (mFillType) {
case WINDING:
mFillType = FillType.INVERSE_WINDING;
break;
case EVEN_ODD:
mFillType = FillType.INVERSE_EVEN_ODD;
break;
case INVERSE_WINDING:
mFillType = FillType.WINDING;
break;
case INVERSE_EVEN_ODD:
mFillType = FillType.EVEN_ODD;
break;
}
}
/**
* Returns true if the path is empty (contains no lines or curves)
*
* @return true if the path is empty (contains no lines or curves)
*/
public boolean isEmpty() {
return mPath.getCurrentPoint() == null;
}
/**
* Returns true if the path specifies a rectangle. If so, and if rect is
* not null, set rect to the bounds of the path. If the path does not
* specify a rectangle, return false and ignore rect.
*
* @param rect If not null, returns the bounds of the path if it specifies
* a rectangle
* @return true if the path specifies a rectangle
*/
public boolean isRect(RectF rect) {
// FIXME
throw new UnsupportedOperationException();
}
/**
* Compute the bounds of the path, and write the answer into bounds. If the
* path contains 0 or 1 points, the bounds is set to (0,0,0,0)
*
* @param bounds Returns the computed bounds of the path
* @param exact If true, return the exact (but slower) bounds, else return
* just the bounds of all control points
*/
public void computeBounds(RectF bounds, boolean exact) {
Rectangle2D rect = mPath.getBounds2D();
bounds.left = (float)rect.getMinX();
bounds.right = (float)rect.getMaxX();
bounds.top = (float)rect.getMinY();
bounds.bottom = (float)rect.getMaxY();
}
/**
* Hint to the path to prepare for adding more points. This can allow the
* path to more efficiently allocate its storage.
*
* @param extraPtCount The number of extra points that may be added to this
* path
*/
public void incReserve(int extraPtCount) {
// pass
}
/**
* Set the beginning of the next contour to the point (x,y).
*
* @param x The x-coordinate of the start of a new contour
* @param y The y-coordinate of the start of a new contour
*/
public void moveTo(float x, float y) {
mPath.moveTo(mLastX = x, mLastY = y);
}
/**
* Set the beginning of the next contour relative to the last point on the
* previous contour. If there is no previous contour, this is treated the
* same as moveTo().
*
* @param dx The amount to add to the x-coordinate of the end of the
* previous contour, to specify the start of a new contour
* @param dy The amount to add to the y-coordinate of the end of the
* previous contour, to specify the start of a new contour
*/
public void rMoveTo(float dx, float dy) {
dx += mLastX;
dy += mLastY;
mPath.moveTo(mLastX = dx, mLastY = dy);
}
/**
* Add a line from the last point to the specified point (x,y).
* If no moveTo() call has been made for this contour, the first point is
* automatically set to (0,0).
*
* @param x The x-coordinate of the end of a line
* @param y The y-coordinate of the end of a line
*/
public void lineTo(float x, float y) {
mPath.lineTo(mLastX = x, mLastY = y);
}
/**
* Same as lineTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx The amount to add to the x-coordinate of the previous point on
* this contour, to specify a line
* @param dy The amount to add to the y-coordinate of the previous point on
* this contour, to specify a line
*/
public void rLineTo(float dx, float dy) {
if (isEmpty()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
dx += mLastX;
dy += mLastY;
mPath.lineTo(mLastX = dx, mLastY = dy);
}
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
mPath.quadTo(x1, y1, mLastX = x2, mLastY = y2);
}
/**
* Same as quadTo, but the coordinates are considered relative to the last
* point on this contour. If there is no previous point, then a moveTo(0,0)
* is inserted automatically.
*
* @param dx1 The amount to add to the x-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dy1 The amount to add to the y-coordinate of the last point on
* this contour, for the control point of a quadratic curve
* @param dx2 The amount to add to the x-coordinate of the last point on
* this contour, for the end point of a quadratic curve
* @param dy2 The amount to add to the y-coordinate of the last point on
* this contour, for the end point of a quadratic curve
*/
public void rQuadTo(float dx1, float dy1, float dx2, float dy2) {
if (isEmpty()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
dx1 += mLastX;
dy1 += mLastY;
dx2 += mLastX;
dy2 += mLastY;
mPath.quadTo(dx1, dy1, mLastX = dx2, mLastY = dy2);
}
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
mPath.curveTo(x1, y1, x2, y2, mLastX = x3, mLastY = y3);
}
/**
* Same as cubicTo, but the coordinates are considered relative to the
* current point on this contour. If there is no previous point, then a
* moveTo(0,0) is inserted automatically.
*/
public void rCubicTo(float dx1, float dy1, float dx2, float dy2,
float dx3, float dy3) {
if (isEmpty()) {
mPath.moveTo(mLastX = 0, mLastY = 0);
}
dx1 += mLastX;
dy1 += mLastY;
dx2 += mLastX;
dy2 += mLastY;
dx3 += mLastX;
dy3 += mLastY;
mPath.curveTo(dx1, dy1, dx2, dy2, mLastX = dx3, mLastY = dy3);
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc. The sweep angle is tread mod 360.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise, treated
* mod 360.
* @param forceMoveTo If true, always begin a new contour with the arc
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle,
boolean forceMoveTo) {
throw new UnsupportedOperationException();
}
/**
* Append the specified arc to the path as a new contour. If the start of
* the path is different from the path's current last point, then an
* automatic lineTo() is added to connect the current contour to the
* start of the arc. However, if the path is empty, then we call moveTo()
* with the first point of the arc.
*
* @param oval The bounds of oval defining shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void arcTo(RectF oval, float startAngle, float sweepAngle) {
throw new UnsupportedOperationException();
}
/**
* Close the current contour. If the current point is not equal to the
* first point of the contour, a line segment is automatically added.
*/
public void close() {
mPath.closePath();
}
/**
* Specifies how closed shapes (e.g. rects, ovals) are oriented when they
* are added to a path.
*/
public enum Direction {
/** clockwise */
CW (0), // must match enum in SkPath.h
/** counter-clockwise */
CCW (1); // must match enum in SkPath.h
Direction(int ni) {
nativeInt = ni;
}
final int nativeInt;
}
/**
* Add a closed rectangle contour to the path
*
* @param rect The rectangle to add as a closed contour to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(RectF rect, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
addRect(rect.left, rect.top, rect.right, rect.bottom, dir);
}
/**
* Add a closed rectangle contour to the path
*
* @param left The left side of a rectangle to add to the path
* @param top The top of a rectangle to add to the path
* @param right The right side of a rectangle to add to the path
* @param bottom The bottom of a rectangle to add to the path
* @param dir The direction to wind the rectangle's contour
*/
public void addRect(float left, float top, float right, float bottom,
Direction dir) {
moveTo(left, top);
switch (dir) {
case CW:
lineTo(right, top);
lineTo(right, bottom);
lineTo(left, bottom);
break;
case CCW:
lineTo(left, bottom);
lineTo(right, bottom);
lineTo(right, top);
break;
}
close();
}
/**
* Add a closed oval contour to the path
*
* @param oval The bounds of the oval to add as a closed contour to the path
* @param dir The direction to wind the oval's contour
*/
public void addOval(RectF oval, Direction dir) {
if (oval == null) {
throw new NullPointerException("need oval parameter");
}
// FIXME Need to support direction
Ellipse2D ovalShape = new Ellipse2D.Float(oval.left, oval.top, oval.width(), oval.height());
mPath.append(ovalShape, false /* connect */);
}
/**
* Add a closed circle contour to the path
*
* @param x The x-coordinate of the center of a circle to add to the path
* @param y The y-coordinate of the center of a circle to add to the path
* @param radius The radius of a circle to add to the path
* @param dir The direction to wind the circle's contour
*/
public void addCircle(float x, float y, float radius, Direction dir) {
// FIXME
throw new UnsupportedOperationException();
}
/**
* Add the specified arc to the path as a new contour.
*
* @param oval The bounds of oval defining the shape and size of the arc
* @param startAngle Starting angle (in degrees) where the arc begins
* @param sweepAngle Sweep angle (in degrees) measured clockwise
*/
public void addArc(RectF oval, float startAngle, float sweepAngle) {
if (oval == null) {
throw new NullPointerException("need oval parameter");
}
// FIXME
throw new UnsupportedOperationException();
}
/**
* Add a closed round-rectangle contour to the path
*
* @param rect The bounds of a round-rectangle to add to the path
* @param rx The x-radius of the rounded corners on the round-rectangle
* @param ry The y-radius of the rounded corners on the round-rectangle
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float rx, float ry, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
// FIXME
throw new UnsupportedOperationException();
}
/**
* Add a closed round-rectangle contour to the path. Each corner receives
* two radius values [X, Y]. The corners are ordered top-left, top-right,
* bottom-right, bottom-left
*
* @param rect The bounds of a round-rectangle to add to the path
* @param radii Array of 8 values, 4 pairs of [X,Y] radii
* @param dir The direction to wind the round-rectangle's contour
*/
public void addRoundRect(RectF rect, float[] radii, Direction dir) {
if (rect == null) {
throw new NullPointerException("need rect parameter");
}
if (radii.length < 8) {
throw new ArrayIndexOutOfBoundsException("radii[] needs 8 values");
}
// FIXME
throw new UnsupportedOperationException();
}
/**
* Add a copy of src to the path, offset by (dx,dy)
*
* @param src The path to add as a new contour
* @param dx The amount to translate the path in X as it is added
*/
public void addPath(Path src, float dx, float dy) {
PathIterator iterator = src.mPath.getPathIterator(new AffineTransform(0, 0, dx, 0, 0, dy));
mPath.append(iterator, false /* connect */);
}
/**
* Add a copy of src to the path
*
* @param src The path that is appended to the current path
*/
public void addPath(Path src) {
addPath(src, 0, 0);
}
/**
* Add a copy of src to the path, transformed by matrix
*
* @param src The path to add as a new contour
*/
public void addPath(Path src, Matrix matrix) {
// FIXME
throw new UnsupportedOperationException();
}
/**
* Offset the path by (dx,dy), returning true on success
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
* @param dst The translated path is written here. If this is null, then
* the original path is modified.
*/
public void offset(float dx, float dy, Path dst) {
GeneralPath newPath = new GeneralPath();
PathIterator iterator = mPath.getPathIterator(new AffineTransform(0, 0, dx, 0, 0, dy));
newPath.append(iterator, false /* connect */);
if (dst != null) {
dst.mPath = newPath;
} else {
mPath = newPath;
}
}
/**
* Offset the path by (dx,dy), returning true on success
*
* @param dx The amount in the X direction to offset the entire path
* @param dy The amount in the Y direction to offset the entire path
*/
public void offset(float dx, float dy) {
offset(dx, dy, null /* dst */);
}
/**
* Sets the last point of the path.
*
* @param dx The new X coordinate for the last point
* @param dy The new Y coordinate for the last point
*/
public void setLastPoint(float dx, float dy) {
mLastX = dx;
mLastY = dy;
}
/**
* Transform the points in this path by matrix, and write the answer
* into dst. If dst is null, then the the original path is modified.
*
* @param matrix The matrix to apply to the path
* @param dst The transformed path is written here. If dst is null,
* then the the original path is modified
*/
public void transform(Matrix matrix, Path dst) {
// FIXME
throw new UnsupportedOperationException();
}
/**
* Transform the points in this path by matrix.
*
* @param matrix The matrix to apply to the path
*/
public void transform(Matrix matrix) {
transform(matrix, null /* dst */);
}
}