| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #include "JankTracker.h" |
| |
| #include "Properties.h" |
| #include "utils/TimeUtils.h" |
| |
| #include <algorithm> |
| #include <cutils/ashmem.h> |
| #include <cutils/log.h> |
| #include <cstdio> |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <limits> |
| #include <cmath> |
| #include <sys/mman.h> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| static const char* JANK_TYPE_NAMES[] = { |
| "Missed Vsync", |
| "High input latency", |
| "Slow UI thread", |
| "Slow bitmap uploads", |
| "Slow issue draw commands", |
| }; |
| |
| struct Comparison { |
| FrameInfoIndex start; |
| FrameInfoIndex end; |
| }; |
| |
| static const Comparison COMPARISONS[] = { |
| {FrameInfoIndex::IntendedVsync, FrameInfoIndex::Vsync}, |
| {FrameInfoIndex::OldestInputEvent, FrameInfoIndex::Vsync}, |
| {FrameInfoIndex::Vsync, FrameInfoIndex::SyncStart}, |
| {FrameInfoIndex::SyncStart, FrameInfoIndex::IssueDrawCommandsStart}, |
| {FrameInfoIndex::IssueDrawCommandsStart, FrameInfoIndex::FrameCompleted}, |
| }; |
| |
| // If the event exceeds 10 seconds throw it away, this isn't a jank event |
| // it's an ANR and will be handled as such |
| static const int64_t IGNORE_EXCEEDING = seconds_to_nanoseconds(10); |
| |
| /* |
| * We don't track direct-drawing via Surface:lockHardwareCanvas() |
| * for now |
| * |
| * TODO: kSurfaceCanvas can negatively impact other drawing by using up |
| * time on the RenderThread, figure out how to attribute that as a jank-causer |
| */ |
| static const int64_t EXEMPT_FRAMES_FLAGS = FrameInfoFlags::SurfaceCanvas; |
| |
| // The bucketing algorithm controls so to speak |
| // If a frame is <= to this it goes in bucket 0 |
| static const uint32_t kBucketMinThreshold = 5; |
| // If a frame is > this, start counting in increments of 2ms |
| static const uint32_t kBucket2msIntervals = 32; |
| // If a frame is > this, start counting in increments of 4ms |
| static const uint32_t kBucket4msIntervals = 48; |
| |
| // For testing purposes to try and eliminate test infra overhead we will |
| // consider any unknown delay of frame start as part of the test infrastructure |
| // and filter it out of the frame profile data |
| static FrameInfoIndex sFrameStart = FrameInfoIndex::IntendedVsync; |
| |
| // The interval of the slow frame histogram |
| static const uint32_t kSlowFrameBucketIntervalMs = 50; |
| // The start point of the slow frame bucket in ms |
| static const uint32_t kSlowFrameBucketStartMs = 150; |
| |
| // This will be called every frame, performance sensitive |
| // Uses bit twiddling to avoid branching while achieving the packing desired |
| static uint32_t frameCountIndexForFrameTime(nsecs_t frameTime) { |
| uint32_t index = static_cast<uint32_t>(ns2ms(frameTime)); |
| // If index > kBucketMinThreshold mask will be 0xFFFFFFFF as a result |
| // of negating 1 (twos compliment, yaay) else mask will be 0 |
| uint32_t mask = -(index > kBucketMinThreshold); |
| // If index > threshold, this will essentially perform: |
| // amountAboveThreshold = index - threshold; |
| // index = threshold + (amountAboveThreshold / 2) |
| // However if index is <= this will do nothing. It will underflow, do |
| // a right shift by 0 (no-op), then overflow back to the original value |
| index = ((index - kBucket4msIntervals) >> (index > kBucket4msIntervals)) |
| + kBucket4msIntervals; |
| index = ((index - kBucket2msIntervals) >> (index > kBucket2msIntervals)) |
| + kBucket2msIntervals; |
| // If index was < minThreshold at the start of all this it's going to |
| // be a pretty garbage value right now. However, mask is 0 so we'll end |
| // up with the desired result of 0. |
| index = (index - kBucketMinThreshold) & mask; |
| return index; |
| } |
| |
| // Only called when dumping stats, less performance sensitive |
| static uint32_t frameTimeForFrameCountIndex(uint32_t index) { |
| index = index + kBucketMinThreshold; |
| if (index > kBucket2msIntervals) { |
| index += (index - kBucket2msIntervals); |
| } |
| if (index > kBucket4msIntervals) { |
| // This works because it was already doubled by the above if |
| // 1 is added to shift slightly more towards the middle of the bucket |
| index += (index - kBucket4msIntervals) + 1; |
| } |
| return index; |
| } |
| |
| JankTracker::JankTracker(const DisplayInfo& displayInfo) { |
| // By default this will use malloc memory. It may be moved later to ashmem |
| // if there is shared space for it and a request comes in to do that. |
| mData = new ProfileData; |
| reset(); |
| nsecs_t frameIntervalNanos = static_cast<nsecs_t>(1_s / displayInfo.fps); |
| #if USE_HWC2 |
| nsecs_t sfOffset = frameIntervalNanos - (displayInfo.presentationDeadline - 1_ms); |
| nsecs_t offsetDelta = sfOffset - displayInfo.appVsyncOffset; |
| // There are two different offset cases. If the offsetDelta is positive |
| // and small, then the intention is to give apps extra time by leveraging |
| // pipelining between the UI & RT threads. If the offsetDelta is large or |
| // negative, the intention is to subtract time from the total duration |
| // in which case we can't afford to wait for dequeueBuffer blockage. |
| if (offsetDelta <= 4_ms && offsetDelta >= 0) { |
| // SF will begin composition at VSYNC-app + offsetDelta. If we are triple |
| // buffered, this is the expected time at which dequeueBuffer will |
| // return due to the staggering of VSYNC-app & VSYNC-sf. |
| mDequeueTimeForgiveness = offsetDelta + 4_ms; |
| } |
| #endif |
| setFrameInterval(frameIntervalNanos); |
| } |
| |
| JankTracker::~JankTracker() { |
| freeData(); |
| } |
| |
| void JankTracker::freeData() { |
| if (mIsMapped) { |
| munmap(mData, sizeof(ProfileData)); |
| } else { |
| delete mData; |
| } |
| mIsMapped = false; |
| mData = nullptr; |
| } |
| |
| void JankTracker::switchStorageToAshmem(int ashmemfd) { |
| int regionSize = ashmem_get_size_region(ashmemfd); |
| if (regionSize < static_cast<int>(sizeof(ProfileData))) { |
| ALOGW("Ashmem region is too small! Received %d, required %u", |
| regionSize, static_cast<unsigned int>(sizeof(ProfileData))); |
| return; |
| } |
| ProfileData* newData = reinterpret_cast<ProfileData*>( |
| mmap(NULL, sizeof(ProfileData), PROT_READ | PROT_WRITE, |
| MAP_SHARED, ashmemfd, 0)); |
| if (newData == MAP_FAILED) { |
| int err = errno; |
| ALOGW("Failed to move profile data to ashmem fd %d, error = %d", |
| ashmemfd, err); |
| return; |
| } |
| |
| // The new buffer may have historical data that we want to build on top of |
| // But let's make sure we don't overflow Just In Case |
| uint32_t divider = 0; |
| if (newData->totalFrameCount > (1 << 24)) { |
| divider = 4; |
| } |
| for (size_t i = 0; i < mData->jankTypeCounts.size(); i++) { |
| newData->jankTypeCounts[i] >>= divider; |
| newData->jankTypeCounts[i] += mData->jankTypeCounts[i]; |
| } |
| for (size_t i = 0; i < mData->frameCounts.size(); i++) { |
| newData->frameCounts[i] >>= divider; |
| newData->frameCounts[i] += mData->frameCounts[i]; |
| } |
| newData->jankFrameCount >>= divider; |
| newData->jankFrameCount += mData->jankFrameCount; |
| newData->totalFrameCount >>= divider; |
| newData->totalFrameCount += mData->totalFrameCount; |
| if (newData->statStartTime > mData->statStartTime |
| || newData->statStartTime == 0) { |
| newData->statStartTime = mData->statStartTime; |
| } |
| |
| freeData(); |
| mData = newData; |
| mIsMapped = true; |
| } |
| |
| void JankTracker::setFrameInterval(nsecs_t frameInterval) { |
| mFrameInterval = frameInterval; |
| mThresholds[kMissedVsync] = 1; |
| /* |
| * Due to interpolation and sample rate differences between the touch |
| * panel and the display (example, 85hz touch panel driving a 60hz display) |
| * we call high latency 1.5 * frameinterval |
| * |
| * NOTE: Be careful when tuning this! A theoretical 1,000hz touch panel |
| * on a 60hz display will show kOldestInputEvent - kIntendedVsync of being 15ms |
| * Thus this must always be larger than frameInterval, or it will fail |
| */ |
| mThresholds[kHighInputLatency] = static_cast<int64_t>(1.5 * frameInterval); |
| |
| // Note that these do not add up to 1. This is intentional. It's to deal |
| // with variance in values, and should be sort of an upper-bound on what |
| // is reasonable to expect. |
| mThresholds[kSlowUI] = static_cast<int64_t>(.5 * frameInterval); |
| mThresholds[kSlowSync] = static_cast<int64_t>(.2 * frameInterval); |
| mThresholds[kSlowRT] = static_cast<int64_t>(.75 * frameInterval); |
| |
| } |
| |
| void JankTracker::addFrame(const FrameInfo& frame) { |
| mData->totalFrameCount++; |
| // Fast-path for jank-free frames |
| int64_t totalDuration = frame.duration(sFrameStart, FrameInfoIndex::FrameCompleted); |
| if (mDequeueTimeForgiveness |
| && frame[FrameInfoIndex::DequeueBufferDuration] > 500_us) { |
| nsecs_t expectedDequeueDuration = |
| mDequeueTimeForgiveness + frame[FrameInfoIndex::Vsync] |
| - frame[FrameInfoIndex::IssueDrawCommandsStart]; |
| if (expectedDequeueDuration > 0) { |
| // Forgive only up to the expected amount, but not more than |
| // the actual time spent blocked. |
| nsecs_t forgiveAmount = std::min(expectedDequeueDuration, |
| frame[FrameInfoIndex::DequeueBufferDuration]); |
| totalDuration -= forgiveAmount; |
| } |
| } |
| uint32_t framebucket = frameCountIndexForFrameTime(totalDuration); |
| // Keep the fast path as fast as possible. |
| if (CC_LIKELY(totalDuration < mFrameInterval)) { |
| mData->frameCounts[framebucket]++; |
| return; |
| } |
| |
| // Only things like Surface.lockHardwareCanvas() are exempt from tracking |
| if (frame[FrameInfoIndex::Flags] & EXEMPT_FRAMES_FLAGS) { |
| return; |
| } |
| |
| if (framebucket <= mData->frameCounts.size()) { |
| mData->frameCounts[framebucket]++; |
| } else { |
| framebucket = (ns2ms(totalDuration) - kSlowFrameBucketStartMs) |
| / kSlowFrameBucketIntervalMs; |
| framebucket = std::min(framebucket, |
| static_cast<uint32_t>(mData->slowFrameCounts.size() - 1)); |
| framebucket = std::max(framebucket, 0u); |
| mData->slowFrameCounts[framebucket]++; |
| } |
| |
| mData->jankFrameCount++; |
| |
| for (int i = 0; i < NUM_BUCKETS; i++) { |
| int64_t delta = frame.duration(COMPARISONS[i].start, COMPARISONS[i].end); |
| if (delta >= mThresholds[i] && delta < IGNORE_EXCEEDING) { |
| mData->jankTypeCounts[i]++; |
| } |
| } |
| } |
| |
| void JankTracker::dumpBuffer(const void* buffer, size_t bufsize, int fd) { |
| if (bufsize < sizeof(ProfileData)) { |
| return; |
| } |
| const ProfileData* data = reinterpret_cast<const ProfileData*>(buffer); |
| dumpData(data, fd); |
| } |
| |
| void JankTracker::dumpData(const ProfileData* data, int fd) { |
| if (sFrameStart != FrameInfoIndex::IntendedVsync) { |
| dprintf(fd, "\nNote: Data has been filtered!"); |
| } |
| dprintf(fd, "\nStats since: %" PRIu64 "ns", data->statStartTime); |
| dprintf(fd, "\nTotal frames rendered: %u", data->totalFrameCount); |
| dprintf(fd, "\nJanky frames: %u (%.2f%%)", data->jankFrameCount, |
| (float) data->jankFrameCount / (float) data->totalFrameCount * 100.0f); |
| dprintf(fd, "\n50th percentile: %ums", findPercentile(data, 50)); |
| dprintf(fd, "\n90th percentile: %ums", findPercentile(data, 90)); |
| dprintf(fd, "\n95th percentile: %ums", findPercentile(data, 95)); |
| dprintf(fd, "\n99th percentile: %ums", findPercentile(data, 99)); |
| for (int i = 0; i < NUM_BUCKETS; i++) { |
| dprintf(fd, "\nNumber %s: %u", JANK_TYPE_NAMES[i], data->jankTypeCounts[i]); |
| } |
| dprintf(fd, "\nHISTOGRAM:"); |
| for (size_t i = 0; i < data->frameCounts.size(); i++) { |
| dprintf(fd, " %ums=%u", frameTimeForFrameCountIndex(i), |
| data->frameCounts[i]); |
| } |
| for (size_t i = 0; i < data->slowFrameCounts.size(); i++) { |
| dprintf(fd, " %zums=%u", (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs, |
| data->slowFrameCounts[i]); |
| } |
| dprintf(fd, "\n"); |
| } |
| |
| void JankTracker::reset() { |
| mData->jankTypeCounts.fill(0); |
| mData->frameCounts.fill(0); |
| mData->slowFrameCounts.fill(0); |
| mData->totalFrameCount = 0; |
| mData->jankFrameCount = 0; |
| mData->statStartTime = systemTime(CLOCK_MONOTONIC); |
| sFrameStart = Properties::filterOutTestOverhead |
| ? FrameInfoIndex::HandleInputStart |
| : FrameInfoIndex::IntendedVsync; |
| } |
| |
| uint32_t JankTracker::findPercentile(const ProfileData* data, int percentile) { |
| int pos = percentile * data->totalFrameCount / 100; |
| int remaining = data->totalFrameCount - pos; |
| for (int i = data->slowFrameCounts.size() - 1; i >= 0; i--) { |
| remaining -= data->slowFrameCounts[i]; |
| if (remaining <= 0) { |
| return (i * kSlowFrameBucketIntervalMs) + kSlowFrameBucketStartMs; |
| } |
| } |
| for (int i = data->frameCounts.size() - 1; i >= 0; i--) { |
| remaining -= data->frameCounts[i]; |
| if (remaining <= 0) { |
| return frameTimeForFrameCountIndex(i); |
| } |
| } |
| return 0; |
| } |
| |
| } /* namespace uirenderer */ |
| } /* namespace android */ |