| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "OpReorderer.h" |
| |
| #include "LayerUpdateQueue.h" |
| #include "RenderNode.h" |
| #include "renderstate/OffscreenBufferPool.h" |
| #include "utils/FatVector.h" |
| #include "utils/PaintUtils.h" |
| |
| #include <SkCanvas.h> |
| #include <SkPathOps.h> |
| #include <utils/Trace.h> |
| #include <utils/TypeHelpers.h> |
| |
| namespace android { |
| namespace uirenderer { |
| |
| class BatchBase { |
| |
| public: |
| BatchBase(batchid_t batchId, BakedOpState* op, bool merging) |
| : mBatchId(batchId) |
| , mMerging(merging) { |
| mBounds = op->computedState.clippedBounds; |
| mOps.push_back(op); |
| } |
| |
| bool intersects(const Rect& rect) const { |
| if (!rect.intersects(mBounds)) return false; |
| |
| for (const BakedOpState* op : mOps) { |
| if (rect.intersects(op->computedState.clippedBounds)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| batchid_t getBatchId() const { return mBatchId; } |
| bool isMerging() const { return mMerging; } |
| |
| const std::vector<BakedOpState*>& getOps() const { return mOps; } |
| |
| void dump() const { |
| ALOGD(" Batch %p, id %d, merging %d, count %d, bounds " RECT_STRING, |
| this, mBatchId, mMerging, mOps.size(), RECT_ARGS(mBounds)); |
| } |
| protected: |
| batchid_t mBatchId; |
| Rect mBounds; |
| std::vector<BakedOpState*> mOps; |
| bool mMerging; |
| }; |
| |
| class OpBatch : public BatchBase { |
| public: |
| static void* operator new(size_t size, LinearAllocator& allocator) { |
| return allocator.alloc(size); |
| } |
| |
| OpBatch(batchid_t batchId, BakedOpState* op) |
| : BatchBase(batchId, op, false) { |
| } |
| |
| void batchOp(BakedOpState* op) { |
| mBounds.unionWith(op->computedState.clippedBounds); |
| mOps.push_back(op); |
| } |
| }; |
| |
| class MergingOpBatch : public BatchBase { |
| public: |
| static void* operator new(size_t size, LinearAllocator& allocator) { |
| return allocator.alloc(size); |
| } |
| |
| MergingOpBatch(batchid_t batchId, BakedOpState* op) |
| : BatchBase(batchId, op, true) { |
| } |
| |
| /* |
| * Helper for determining if a new op can merge with a MergingDrawBatch based on their bounds |
| * and clip side flags. Positive bounds delta means new bounds fit in old. |
| */ |
| static inline bool checkSide(const int currentFlags, const int newFlags, const int side, |
| float boundsDelta) { |
| bool currentClipExists = currentFlags & side; |
| bool newClipExists = newFlags & side; |
| |
| // if current is clipped, we must be able to fit new bounds in current |
| if (boundsDelta > 0 && currentClipExists) return false; |
| |
| // if new is clipped, we must be able to fit current bounds in new |
| if (boundsDelta < 0 && newClipExists) return false; |
| |
| return true; |
| } |
| |
| static bool paintIsDefault(const SkPaint& paint) { |
| return paint.getAlpha() == 255 |
| && paint.getColorFilter() == nullptr |
| && paint.getShader() == nullptr; |
| } |
| |
| static bool paintsAreEquivalent(const SkPaint& a, const SkPaint& b) { |
| return a.getAlpha() == b.getAlpha() |
| && a.getColorFilter() == b.getColorFilter() |
| && a.getShader() == b.getShader(); |
| } |
| |
| /* |
| * Checks if a (mergeable) op can be merged into this batch |
| * |
| * If true, the op's multiDraw must be guaranteed to handle both ops simultaneously, so it is |
| * important to consider all paint attributes used in the draw calls in deciding both a) if an |
| * op tries to merge at all, and b) if the op can merge with another set of ops |
| * |
| * False positives can lead to information from the paints of subsequent merged operations being |
| * dropped, so we make simplifying qualifications on the ops that can merge, per op type. |
| */ |
| bool canMergeWith(BakedOpState* op) const { |
| bool isTextBatch = getBatchId() == OpBatchType::Text |
| || getBatchId() == OpBatchType::ColorText; |
| |
| // Overlapping other operations is only allowed for text without shadow. For other ops, |
| // multiDraw isn't guaranteed to overdraw correctly |
| if (!isTextBatch || PaintUtils::hasTextShadow(op->op->paint)) { |
| if (intersects(op->computedState.clippedBounds)) return false; |
| } |
| |
| const BakedOpState* lhs = op; |
| const BakedOpState* rhs = mOps[0]; |
| |
| if (!MathUtils::areEqual(lhs->alpha, rhs->alpha)) return false; |
| |
| // Identical round rect clip state means both ops will clip in the same way, or not at all. |
| // As the state objects are const, we can compare their pointers to determine mergeability |
| if (lhs->roundRectClipState != rhs->roundRectClipState) return false; |
| if (lhs->projectionPathMask != rhs->projectionPathMask) return false; |
| |
| /* Clipping compatibility check |
| * |
| * Exploits the fact that if a op or batch is clipped on a side, its bounds will equal its |
| * clip for that side. |
| */ |
| const int currentFlags = mClipSideFlags; |
| const int newFlags = op->computedState.clipSideFlags; |
| if (currentFlags != OpClipSideFlags::None || newFlags != OpClipSideFlags::None) { |
| const Rect& opBounds = op->computedState.clippedBounds; |
| float boundsDelta = mBounds.left - opBounds.left; |
| if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Left, boundsDelta)) return false; |
| boundsDelta = mBounds.top - opBounds.top; |
| if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Top, boundsDelta)) return false; |
| |
| // right and bottom delta calculation reversed to account for direction |
| boundsDelta = opBounds.right - mBounds.right; |
| if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Right, boundsDelta)) return false; |
| boundsDelta = opBounds.bottom - mBounds.bottom; |
| if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Bottom, boundsDelta)) return false; |
| } |
| |
| const SkPaint* newPaint = op->op->paint; |
| const SkPaint* oldPaint = mOps[0]->op->paint; |
| |
| if (newPaint == oldPaint) { |
| // if paints are equal, then modifiers + paint attribs don't need to be compared |
| return true; |
| } else if (newPaint && !oldPaint) { |
| return paintIsDefault(*newPaint); |
| } else if (!newPaint && oldPaint) { |
| return paintIsDefault(*oldPaint); |
| } |
| return paintsAreEquivalent(*newPaint, *oldPaint); |
| } |
| |
| void mergeOp(BakedOpState* op) { |
| mBounds.unionWith(op->computedState.clippedBounds); |
| mOps.push_back(op); |
| |
| const int newClipSideFlags = op->computedState.clipSideFlags; |
| mClipSideFlags |= newClipSideFlags; |
| |
| const Rect& opClip = op->computedState.clipRect; |
| if (newClipSideFlags & OpClipSideFlags::Left) mClipRect.left = opClip.left; |
| if (newClipSideFlags & OpClipSideFlags::Top) mClipRect.top = opClip.top; |
| if (newClipSideFlags & OpClipSideFlags::Right) mClipRect.right = opClip.right; |
| if (newClipSideFlags & OpClipSideFlags::Bottom) mClipRect.bottom = opClip.bottom; |
| } |
| |
| private: |
| int mClipSideFlags = 0; |
| Rect mClipRect; |
| }; |
| |
| OpReorderer::LayerReorderer::LayerReorderer(uint32_t width, uint32_t height, |
| const Rect& repaintRect, const BeginLayerOp* beginLayerOp, RenderNode* renderNode) |
| : width(width) |
| , height(height) |
| , repaintRect(repaintRect) |
| , offscreenBuffer(renderNode ? renderNode->getLayer() : nullptr) |
| , beginLayerOp(beginLayerOp) |
| , renderNode(renderNode) {} |
| |
| // iterate back toward target to see if anything drawn since should overlap the new op |
| // if no target, merging ops still iterate to find similar batch to insert after |
| void OpReorderer::LayerReorderer::locateInsertIndex(int batchId, const Rect& clippedBounds, |
| BatchBase** targetBatch, size_t* insertBatchIndex) const { |
| for (int i = mBatches.size() - 1; i >= 0; i--) { |
| BatchBase* overBatch = mBatches[i]; |
| |
| if (overBatch == *targetBatch) break; |
| |
| // TODO: also consider shader shared between batch types |
| if (batchId == overBatch->getBatchId()) { |
| *insertBatchIndex = i + 1; |
| if (!*targetBatch) break; // found insert position, quit |
| } |
| |
| if (overBatch->intersects(clippedBounds)) { |
| // NOTE: it may be possible to optimize for special cases where two operations |
| // of the same batch/paint could swap order, such as with a non-mergeable |
| // (clipped) and a mergeable text operation |
| *targetBatch = nullptr; |
| break; |
| } |
| } |
| } |
| |
| void OpReorderer::LayerReorderer::deferUnmergeableOp(LinearAllocator& allocator, |
| BakedOpState* op, batchid_t batchId) { |
| OpBatch* targetBatch = mBatchLookup[batchId]; |
| |
| size_t insertBatchIndex = mBatches.size(); |
| if (targetBatch) { |
| locateInsertIndex(batchId, op->computedState.clippedBounds, |
| (BatchBase**)(&targetBatch), &insertBatchIndex); |
| } |
| |
| if (targetBatch) { |
| targetBatch->batchOp(op); |
| } else { |
| // new non-merging batch |
| targetBatch = new (allocator) OpBatch(batchId, op); |
| mBatchLookup[batchId] = targetBatch; |
| mBatches.insert(mBatches.begin() + insertBatchIndex, targetBatch); |
| } |
| } |
| |
| // insertion point of a new batch, will hopefully be immediately after similar batch |
| // (generally, should be similar shader) |
| void OpReorderer::LayerReorderer::deferMergeableOp(LinearAllocator& allocator, |
| BakedOpState* op, batchid_t batchId, mergeid_t mergeId) { |
| MergingOpBatch* targetBatch = nullptr; |
| |
| // Try to merge with any existing batch with same mergeId |
| auto getResult = mMergingBatchLookup[batchId].find(mergeId); |
| if (getResult != mMergingBatchLookup[batchId].end()) { |
| targetBatch = getResult->second; |
| if (!targetBatch->canMergeWith(op)) { |
| targetBatch = nullptr; |
| } |
| } |
| |
| size_t insertBatchIndex = mBatches.size(); |
| locateInsertIndex(batchId, op->computedState.clippedBounds, |
| (BatchBase**)(&targetBatch), &insertBatchIndex); |
| |
| if (targetBatch) { |
| targetBatch->mergeOp(op); |
| } else { |
| // new merging batch |
| targetBatch = new (allocator) MergingOpBatch(batchId, op); |
| mMergingBatchLookup[batchId].insert(std::make_pair(mergeId, targetBatch)); |
| |
| mBatches.insert(mBatches.begin() + insertBatchIndex, targetBatch); |
| } |
| } |
| |
| void OpReorderer::LayerReorderer::replayBakedOpsImpl(void* arg, BakedOpDispatcher* receivers) const { |
| ATRACE_NAME("flush drawing commands"); |
| for (const BatchBase* batch : mBatches) { |
| // TODO: different behavior based on batch->isMerging() |
| for (const BakedOpState* op : batch->getOps()) { |
| receivers[op->op->opId](arg, *op->op, *op); |
| } |
| } |
| } |
| |
| void OpReorderer::LayerReorderer::dump() const { |
| ALOGD("LayerReorderer %p, %ux%u buffer %p, blo %p, rn %p", |
| this, width, height, offscreenBuffer, beginLayerOp, renderNode); |
| for (const BatchBase* batch : mBatches) { |
| batch->dump(); |
| } |
| } |
| |
| OpReorderer::OpReorderer(const LayerUpdateQueue& layers, const SkRect& clip, |
| uint32_t viewportWidth, uint32_t viewportHeight, |
| const std::vector< sp<RenderNode> >& nodes, const Vector3& lightCenter) |
| : mCanvasState(*this) { |
| ATRACE_NAME("prepare drawing commands"); |
| |
| mLayerReorderers.reserve(layers.entries().size()); |
| mLayerStack.reserve(layers.entries().size()); |
| |
| // Prepare to defer Fbo0 |
| mLayerReorderers.emplace_back(viewportWidth, viewportHeight, Rect(clip)); |
| mLayerStack.push_back(0); |
| mCanvasState.initializeSaveStack(viewportWidth, viewportHeight, |
| clip.fLeft, clip.fTop, clip.fRight, clip.fBottom, |
| lightCenter); |
| |
| // Render all layers to be updated, in order. Defer in reverse order, so that they'll be |
| // updated in the order they're passed in (mLayerReorderers are issued to Renderer in reverse) |
| for (int i = layers.entries().size() - 1; i >= 0; i--) { |
| RenderNode* layerNode = layers.entries()[i].renderNode; |
| const Rect& layerDamage = layers.entries()[i].damage; |
| |
| saveForLayer(layerNode->getWidth(), layerNode->getHeight(), |
| layerDamage, nullptr, layerNode); |
| mCanvasState.writableSnapshot()->setClip( |
| layerDamage.left, layerDamage.top, layerDamage.right, layerDamage.bottom); |
| |
| if (layerNode->getDisplayList()) { |
| deferImpl(*(layerNode->getDisplayList())); |
| } |
| restoreForLayer(); |
| } |
| |
| // Defer Fbo0 |
| for (const sp<RenderNode>& node : nodes) { |
| if (node->nothingToDraw()) continue; |
| |
| int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); |
| deferNodePropsAndOps(*node); |
| mCanvasState.restoreToCount(count); |
| } |
| } |
| |
| OpReorderer::OpReorderer(int viewportWidth, int viewportHeight, const DisplayList& displayList, |
| const Vector3& lightCenter) |
| : mCanvasState(*this) { |
| ATRACE_NAME("prepare drawing commands"); |
| // Prepare to defer Fbo0 |
| mLayerReorderers.emplace_back(viewportWidth, viewportHeight, |
| Rect(viewportWidth, viewportHeight)); |
| mLayerStack.push_back(0); |
| mCanvasState.initializeSaveStack(viewportWidth, viewportHeight, |
| 0, 0, viewportWidth, viewportHeight, lightCenter); |
| |
| deferImpl(displayList); |
| } |
| |
| void OpReorderer::onViewportInitialized() {} |
| |
| void OpReorderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {} |
| |
| void OpReorderer::deferNodePropsAndOps(RenderNode& node) { |
| if (node.applyViewProperties(mCanvasState, mAllocator)) { |
| // not rejected so render |
| if (node.getLayer()) { |
| // HW layer |
| LayerOp* drawLayerOp = new (mAllocator) LayerOp(node); |
| BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); |
| if (bakedOpState) { |
| // Layer will be drawn into parent layer (which is now current, since we popped mLayerStack) |
| currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); |
| } |
| } else { |
| deferImpl(*(node.getDisplayList())); |
| } |
| } |
| } |
| |
| typedef key_value_pair_t<float, const RenderNodeOp*> ZRenderNodeOpPair; |
| |
| template <typename V> |
| static void buildZSortedChildList(V* zTranslatedNodes, |
| const DisplayList& displayList, const DisplayList::Chunk& chunk) { |
| if (chunk.beginChildIndex == chunk.endChildIndex) return; |
| |
| for (size_t i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) { |
| RenderNodeOp* childOp = displayList.getChildren()[i]; |
| RenderNode* child = childOp->renderNode; |
| float childZ = child->properties().getZ(); |
| |
| if (!MathUtils::isZero(childZ) && chunk.reorderChildren) { |
| zTranslatedNodes->push_back(ZRenderNodeOpPair(childZ, childOp)); |
| childOp->skipInOrderDraw = true; |
| } else if (!child->properties().getProjectBackwards()) { |
| // regular, in order drawing DisplayList |
| childOp->skipInOrderDraw = false; |
| } |
| } |
| |
| // Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order) |
| std::stable_sort(zTranslatedNodes->begin(), zTranslatedNodes->end()); |
| } |
| |
| template <typename V> |
| static size_t findNonNegativeIndex(const V& zTranslatedNodes) { |
| for (size_t i = 0; i < zTranslatedNodes.size(); i++) { |
| if (zTranslatedNodes[i].key >= 0.0f) return i; |
| } |
| return zTranslatedNodes.size(); |
| } |
| |
| template <typename V> |
| void OpReorderer::defer3dChildren(ChildrenSelectMode mode, const V& zTranslatedNodes) { |
| const int size = zTranslatedNodes.size(); |
| if (size == 0 |
| || (mode == ChildrenSelectMode::Negative&& zTranslatedNodes[0].key > 0.0f) |
| || (mode == ChildrenSelectMode::Positive && zTranslatedNodes[size - 1].key < 0.0f)) { |
| // no 3d children to draw |
| return; |
| } |
| |
| /** |
| * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters |
| * with very similar Z heights to draw together. |
| * |
| * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are |
| * underneath both, and neither's shadow is drawn on top of the other. |
| */ |
| const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); |
| size_t drawIndex, shadowIndex, endIndex; |
| if (mode == ChildrenSelectMode::Negative) { |
| drawIndex = 0; |
| endIndex = nonNegativeIndex; |
| shadowIndex = endIndex; // draw no shadows |
| } else { |
| drawIndex = nonNegativeIndex; |
| endIndex = size; |
| shadowIndex = drawIndex; // potentially draw shadow for each pos Z child |
| } |
| |
| float lastCasterZ = 0.0f; |
| while (shadowIndex < endIndex || drawIndex < endIndex) { |
| if (shadowIndex < endIndex) { |
| const RenderNodeOp* casterNodeOp = zTranslatedNodes[shadowIndex].value; |
| const float casterZ = zTranslatedNodes[shadowIndex].key; |
| // attempt to render the shadow if the caster about to be drawn is its caster, |
| // OR if its caster's Z value is similar to the previous potential caster |
| if (shadowIndex == drawIndex || casterZ - lastCasterZ < 0.1f) { |
| deferShadow(*casterNodeOp); |
| |
| lastCasterZ = casterZ; // must do this even if current caster not casting a shadow |
| shadowIndex++; |
| continue; |
| } |
| } |
| |
| const RenderNodeOp* childOp = zTranslatedNodes[drawIndex].value; |
| deferRenderNodeOp(*childOp); |
| drawIndex++; |
| } |
| } |
| |
| void OpReorderer::deferShadow(const RenderNodeOp& casterNodeOp) { |
| auto& node = *casterNodeOp.renderNode; |
| auto& properties = node.properties(); |
| |
| if (properties.getAlpha() <= 0.0f |
| || properties.getOutline().getAlpha() <= 0.0f |
| || !properties.getOutline().getPath() |
| || properties.getScaleX() == 0 |
| || properties.getScaleY() == 0) { |
| // no shadow to draw |
| return; |
| } |
| |
| const SkPath* casterOutlinePath = properties.getOutline().getPath(); |
| const SkPath* revealClipPath = properties.getRevealClip().getPath(); |
| if (revealClipPath && revealClipPath->isEmpty()) return; |
| |
| float casterAlpha = properties.getAlpha() * properties.getOutline().getAlpha(); |
| |
| // holds temporary SkPath to store the result of intersections |
| SkPath* frameAllocatedPath = nullptr; |
| const SkPath* casterPath = casterOutlinePath; |
| |
| // intersect the shadow-casting path with the reveal, if present |
| if (revealClipPath) { |
| frameAllocatedPath = createFrameAllocatedPath(); |
| |
| Op(*casterPath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath); |
| casterPath = frameAllocatedPath; |
| } |
| |
| // intersect the shadow-casting path with the clipBounds, if present |
| if (properties.getClippingFlags() & CLIP_TO_CLIP_BOUNDS) { |
| if (!frameAllocatedPath) { |
| frameAllocatedPath = createFrameAllocatedPath(); |
| } |
| Rect clipBounds; |
| properties.getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds); |
| SkPath clipBoundsPath; |
| clipBoundsPath.addRect(clipBounds.left, clipBounds.top, |
| clipBounds.right, clipBounds.bottom); |
| |
| Op(*casterPath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath); |
| casterPath = frameAllocatedPath; |
| } |
| |
| ShadowOp* shadowOp = new (mAllocator) ShadowOp(casterNodeOp, casterAlpha, casterPath, |
| mCanvasState.getLocalClipBounds(), |
| mCanvasState.currentSnapshot()->getRelativeLightCenter()); |
| BakedOpState* bakedOpState = BakedOpState::tryShadowOpConstruct( |
| mAllocator, *mCanvasState.currentSnapshot(), shadowOp); |
| if (CC_LIKELY(bakedOpState)) { |
| currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Shadow); |
| } |
| } |
| |
| /** |
| * Used to define a list of lambdas referencing private OpReorderer::onXXXXOp() methods. |
| * |
| * This allows opIds embedded in the RecordedOps to be used for dispatching to these lambdas. E.g. a |
| * BitmapOp op then would be dispatched to OpReorderer::onBitmapOp(const BitmapOp&) |
| */ |
| #define OP_RECEIVER(Type) \ |
| [](OpReorderer& reorderer, const RecordedOp& op) { reorderer.on##Type(static_cast<const Type&>(op)); }, |
| void OpReorderer::deferImpl(const DisplayList& displayList) { |
| static std::function<void(OpReorderer& reorderer, const RecordedOp&)> receivers[] = { |
| MAP_OPS(OP_RECEIVER) |
| }; |
| for (const DisplayList::Chunk& chunk : displayList.getChunks()) { |
| FatVector<ZRenderNodeOpPair, 16> zTranslatedNodes; |
| buildZSortedChildList(&zTranslatedNodes, displayList, chunk); |
| |
| defer3dChildren(ChildrenSelectMode::Negative, zTranslatedNodes); |
| for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) { |
| const RecordedOp* op = displayList.getOps()[opIndex]; |
| receivers[op->opId](*this, *op); |
| } |
| defer3dChildren(ChildrenSelectMode::Positive, zTranslatedNodes); |
| } |
| } |
| |
| void OpReorderer::deferRenderNodeOp(const RenderNodeOp& op) { |
| if (op.renderNode->nothingToDraw()) return; |
| int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); |
| |
| // apply state from RecordedOp |
| mCanvasState.concatMatrix(op.localMatrix); |
| mCanvasState.clipRect(op.localClipRect.left, op.localClipRect.top, |
| op.localClipRect.right, op.localClipRect.bottom, SkRegion::kIntersect_Op); |
| |
| // then apply state from node properties, and defer ops |
| deferNodePropsAndOps(*op.renderNode); |
| |
| mCanvasState.restoreToCount(count); |
| } |
| |
| void OpReorderer::onRenderNodeOp(const RenderNodeOp& op) { |
| if (!op.skipInOrderDraw) { |
| deferRenderNodeOp(op); |
| } |
| } |
| |
| static batchid_t tessellatedBatchId(const SkPaint& paint) { |
| return paint.getPathEffect() |
| ? OpBatchType::AlphaMaskTexture |
| : (paint.isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices); |
| } |
| |
| void OpReorderer::onBitmapOp(const BitmapOp& op) { |
| BakedOpState* bakedStateOp = tryBakeOpState(op); |
| if (!bakedStateOp) return; // quick rejected |
| |
| mergeid_t mergeId = (mergeid_t) op.bitmap->getGenerationID(); |
| // TODO: AssetAtlas |
| currentLayer().deferMergeableOp(mAllocator, bakedStateOp, OpBatchType::Bitmap, mergeId); |
| } |
| |
| void OpReorderer::onRectOp(const RectOp& op) { |
| BakedOpState* bakedStateOp = tryBakeOpState(op); |
| if (!bakedStateOp) return; // quick rejected |
| currentLayer().deferUnmergeableOp(mAllocator, bakedStateOp, tessellatedBatchId(*op.paint)); |
| } |
| |
| void OpReorderer::onSimpleRectsOp(const SimpleRectsOp& op) { |
| BakedOpState* bakedStateOp = tryBakeOpState(op); |
| if (!bakedStateOp) return; // quick rejected |
| currentLayer().deferUnmergeableOp(mAllocator, bakedStateOp, OpBatchType::Vertices); |
| } |
| |
| void OpReorderer::saveForLayer(uint32_t layerWidth, uint32_t layerHeight, const Rect& repaintRect, |
| const BeginLayerOp* beginLayerOp, RenderNode* renderNode) { |
| |
| auto previous = mCanvasState.currentSnapshot(); |
| mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); |
| mCanvasState.writableSnapshot()->transform->loadIdentity(); |
| mCanvasState.writableSnapshot()->initializeViewport(layerWidth, layerHeight); |
| mCanvasState.writableSnapshot()->roundRectClipState = nullptr; |
| |
| Vector3 lightCenter = previous->getRelativeLightCenter(); |
| if (renderNode) { |
| Matrix4& inverse = renderNode->getLayer()->inverseTransformInWindow; |
| inverse.mapPoint3d(lightCenter); |
| } else { |
| // Combine all transforms used to present saveLayer content: |
| // parent content transform * canvas transform * bounds offset |
| Matrix4 contentTransform(*previous->transform); |
| contentTransform.multiply(beginLayerOp->localMatrix); |
| contentTransform.translate(beginLayerOp->unmappedBounds.left, beginLayerOp->unmappedBounds.top); |
| |
| // inverse the total transform, to map light center into layer-relative space |
| Matrix4 inverse; |
| inverse.loadInverse(contentTransform); |
| inverse.mapPoint3d(lightCenter); |
| } |
| mCanvasState.writableSnapshot()->setRelativeLightCenter(lightCenter); |
| |
| // create a new layer, and push its index on the stack |
| mLayerStack.push_back(mLayerReorderers.size()); |
| mLayerReorderers.emplace_back(layerWidth, layerHeight, repaintRect, beginLayerOp, renderNode); |
| } |
| |
| void OpReorderer::restoreForLayer() { |
| // restore canvas, and pop finished layer off of the stack |
| mCanvasState.restore(); |
| mLayerStack.pop_back(); |
| } |
| |
| // TODO: test rejection at defer time, where the bounds become empty |
| void OpReorderer::onBeginLayerOp(const BeginLayerOp& op) { |
| const uint32_t layerWidth = (uint32_t) op.unmappedBounds.getWidth(); |
| const uint32_t layerHeight = (uint32_t) op.unmappedBounds.getHeight(); |
| saveForLayer(layerWidth, layerHeight, Rect(layerWidth, layerHeight), &op, nullptr); |
| } |
| |
| void OpReorderer::onEndLayerOp(const EndLayerOp& /* ignored */) { |
| const BeginLayerOp& beginLayerOp = *currentLayer().beginLayerOp; |
| int finishedLayerIndex = mLayerStack.back(); |
| |
| restoreForLayer(); |
| |
| // record the draw operation into the previous layer's list of draw commands |
| // uses state from the associated beginLayerOp, since it has all the state needed for drawing |
| LayerOp* drawLayerOp = new (mAllocator) LayerOp( |
| beginLayerOp.unmappedBounds, |
| beginLayerOp.localMatrix, |
| beginLayerOp.localClipRect, |
| beginLayerOp.paint, |
| &mLayerReorderers[finishedLayerIndex].offscreenBuffer); |
| BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp); |
| |
| if (bakedOpState) { |
| // Layer will be drawn into parent layer (which is now current, since we popped mLayerStack) |
| currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap); |
| } else { |
| // Layer won't be drawn - delete its drawing batches to prevent it from doing any work |
| mLayerReorderers[finishedLayerIndex].clear(); |
| return; |
| } |
| } |
| |
| void OpReorderer::onLayerOp(const LayerOp& op) { |
| LOG_ALWAYS_FATAL("unsupported"); |
| } |
| |
| void OpReorderer::onShadowOp(const ShadowOp& op) { |
| LOG_ALWAYS_FATAL("unsupported"); |
| } |
| |
| } // namespace uirenderer |
| } // namespace android |