blob: 2fcf7f3914708b39226d8e2a4ffcbf162701b19b [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include "SkiaShader.h"
#include "Caches.h"
#include "Extensions.h"
#include "Layer.h"
#include "Matrix.h"
#include "Texture.h"
#include <SkMatrix.h>
#include <utils/Log.h>
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Support
///////////////////////////////////////////////////////////////////////////////
static const GLenum gTileModes[] = {
GL_CLAMP_TO_EDGE, // == SkShader::kClamp_TileMode
GL_REPEAT, // == SkShader::kRepeat_Mode
GL_MIRRORED_REPEAT // == SkShader::kMirror_TileMode
};
/**
* This function does not work for n == 0.
*/
static inline bool isPowerOfTwo(unsigned int n) {
return !(n & (n - 1));
}
static inline void bindUniformColor(int slot, uint32_t color) {
const float a = ((color >> 24) & 0xff) / 255.0f;
glUniform4f(slot,
a * ((color >> 16) & 0xff) / 255.0f,
a * ((color >> 8) & 0xff) / 255.0f,
a * ((color ) & 0xff) / 255.0f,
a);
}
static inline void bindUniformColor(int slot, FloatColor color) {
glUniform4fv(slot, 1, reinterpret_cast<const float*>(&color));
}
static inline void bindTexture(Caches* caches, Texture* texture, GLenum wrapS, GLenum wrapT) {
caches->textureState().bindTexture(texture->id);
texture->setWrapST(wrapS, wrapT);
}
/**
* Compute the matrix to transform to screen space.
* @param screenSpace Output param for the computed matrix.
* @param unitMatrix The unit matrix for gradient shaders, as returned by SkShader::asAGradient,
* or identity.
* @param localMatrix Local matrix, as returned by SkShader::getLocalMatrix().
* @param modelViewMatrix Model view matrix, as supplied by the OpenGLRenderer.
*/
static void computeScreenSpaceMatrix(mat4& screenSpace, const SkMatrix& unitMatrix,
const SkMatrix& localMatrix, const mat4& modelViewMatrix) {
mat4 shaderMatrix;
// uses implicit construction
shaderMatrix.loadInverse(localMatrix);
// again, uses implicit construction
screenSpace.loadMultiply(unitMatrix, shaderMatrix);
screenSpace.multiply(modelViewMatrix);
}
// Returns true if one is a bitmap and the other is a gradient
static bool bitmapAndGradient(SkiaShaderType type1, SkiaShaderType type2) {
return (type1 == kBitmap_SkiaShaderType && type2 == kGradient_SkiaShaderType)
|| (type2 == kBitmap_SkiaShaderType && type1 == kGradient_SkiaShaderType);
}
SkiaShaderType SkiaShader::getType(const SkShader& shader) {
// First check for a gradient shader.
switch (shader.asAGradient(nullptr)) {
case SkShader::kNone_GradientType:
// Not a gradient shader. Fall through to check for other types.
break;
case SkShader::kLinear_GradientType:
case SkShader::kRadial_GradientType:
case SkShader::kSweep_GradientType:
return kGradient_SkiaShaderType;
default:
// This is a Skia gradient that has no SkiaShader equivalent. Return None to skip.
return kNone_SkiaShaderType;
}
// The shader is not a gradient. Check for a bitmap shader.
if (shader.asABitmap(nullptr, nullptr, nullptr) == SkShader::kDefault_BitmapType) {
return kBitmap_SkiaShaderType;
}
// Check for a ComposeShader.
SkShader::ComposeRec rec;
if (shader.asACompose(&rec)) {
const SkiaShaderType shaderAType = getType(*rec.fShaderA);
const SkiaShaderType shaderBType = getType(*rec.fShaderB);
// Compose is only supported if one is a bitmap and the other is a
// gradient. Otherwise, return None to skip.
if (!bitmapAndGradient(shaderAType, shaderBType)) {
return kNone_SkiaShaderType;
}
return kCompose_SkiaShaderType;
}
if (shader.asACustomShader(nullptr)) {
return kLayer_SkiaShaderType;
}
return kNone_SkiaShaderType;
}
typedef void (*describeProc)(Caches* caches, ProgramDescription& description,
const Extensions& extensions, const SkShader& shader);
describeProc gDescribeProc[] = {
InvalidSkiaShader::describe,
SkiaBitmapShader::describe,
SkiaGradientShader::describe,
SkiaComposeShader::describe,
SkiaLayerShader::describe,
};
typedef void (*setupProgramProc)(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions& extensions, const SkShader& shader);
setupProgramProc gSetupProgramProc[] = {
InvalidSkiaShader::setupProgram,
SkiaBitmapShader::setupProgram,
SkiaGradientShader::setupProgram,
SkiaComposeShader::setupProgram,
SkiaLayerShader::setupProgram,
};
void SkiaShader::describe(Caches* caches, ProgramDescription& description,
const Extensions& extensions, const SkShader& shader) {
gDescribeProc[getType(shader)](caches, description, extensions, shader);
}
void SkiaShader::setupProgram(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions& extensions, const SkShader& shader) {
gSetupProgramProc[getType(shader)](caches, modelViewMatrix, textureUnit, extensions, shader);
}
///////////////////////////////////////////////////////////////////////////////
// Layer shader
///////////////////////////////////////////////////////////////////////////////
void SkiaLayerShader::describe(Caches*, ProgramDescription& description,
const Extensions&, const SkShader& shader) {
description.hasBitmap = true;
}
void SkiaLayerShader::setupProgram(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions&, const SkShader& shader) {
Layer* layer;
if (!shader.asACustomShader(reinterpret_cast<void**>(&layer))) {
LOG_ALWAYS_FATAL("SkiaLayerShader::setupProgram called on the wrong type of shader!");
}
GLuint textureSlot = (*textureUnit)++;
caches->textureState().activateTexture(textureSlot);
const float width = layer->getWidth();
const float height = layer->getHeight();
mat4 textureTransform;
computeScreenSpaceMatrix(textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
// Uniforms
layer->bindTexture();
layer->setWrap(GL_CLAMP_TO_EDGE);
layer->setFilter(GL_LINEAR);
Program& program = caches->program();
glUniform1i(program.getUniform("bitmapSampler"), textureSlot);
glUniformMatrix4fv(program.getUniform("textureTransform"), 1,
GL_FALSE, &textureTransform.data[0]);
glUniform2f(program.getUniform("textureDimension"), 1.0f / width, 1.0f / height);
}
///////////////////////////////////////////////////////////////////////////////
// Bitmap shader
///////////////////////////////////////////////////////////////////////////////
struct BitmapShaderInfo {
float width;
float height;
GLenum wrapS;
GLenum wrapT;
Texture* texture;
};
static bool bitmapShaderHelper(Caches* caches, ProgramDescription* description,
BitmapShaderInfo* shaderInfo,
const Extensions& extensions,
const SkBitmap& bitmap, SkShader::TileMode tileModes[2]) {
Texture* texture = caches->textureCache.get(&bitmap);
if (!texture) return false;
const float width = texture->width;
const float height = texture->height;
GLenum wrapS, wrapT;
if (description) {
description->hasBitmap = true;
}
// The driver does not support non-power of two mirrored/repeated
// textures, so do it ourselves
if (!extensions.hasNPot() && (!isPowerOfTwo(width) || !isPowerOfTwo(height)) &&
(tileModes[0] != SkShader::kClamp_TileMode ||
tileModes[1] != SkShader::kClamp_TileMode)) {
if (description) {
description->isBitmapNpot = true;
description->bitmapWrapS = gTileModes[tileModes[0]];
description->bitmapWrapT = gTileModes[tileModes[1]];
}
wrapS = GL_CLAMP_TO_EDGE;
wrapT = GL_CLAMP_TO_EDGE;
} else {
wrapS = gTileModes[tileModes[0]];
wrapT = gTileModes[tileModes[1]];
}
if (shaderInfo) {
shaderInfo->width = width;
shaderInfo->height = height;
shaderInfo->wrapS = wrapS;
shaderInfo->wrapT = wrapT;
shaderInfo->texture = texture;
}
return true;
}
void SkiaBitmapShader::describe(Caches* caches, ProgramDescription& description,
const Extensions& extensions, const SkShader& shader) {
SkBitmap bitmap;
SkShader::TileMode xy[2];
if (shader.asABitmap(&bitmap, nullptr, xy) != SkShader::kDefault_BitmapType) {
LOG_ALWAYS_FATAL("SkiaBitmapShader::describe called with a different kind of shader!");
}
bitmapShaderHelper(caches, &description, nullptr, extensions, bitmap, xy);
}
void SkiaBitmapShader::setupProgram(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions& extensions, const SkShader& shader) {
SkBitmap bitmap;
SkShader::TileMode xy[2];
if (shader.asABitmap(&bitmap, nullptr, xy) != SkShader::kDefault_BitmapType) {
LOG_ALWAYS_FATAL("SkiaBitmapShader::setupProgram called with a different kind of shader!");
}
GLuint textureSlot = (*textureUnit)++;
caches->textureState().activateTexture(textureSlot);
BitmapShaderInfo shaderInfo;
if (!bitmapShaderHelper(caches, nullptr, &shaderInfo, extensions, bitmap, xy)) {
return;
}
Program& program = caches->program();
Texture* texture = shaderInfo.texture;
const AutoTexture autoCleanup(texture);
mat4 textureTransform;
computeScreenSpaceMatrix(textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
// Uniforms
bindTexture(caches, texture, shaderInfo.wrapS, shaderInfo.wrapT);
texture->setFilter(GL_LINEAR);
glUniform1i(program.getUniform("bitmapSampler"), textureSlot);
glUniformMatrix4fv(program.getUniform("textureTransform"), 1,
GL_FALSE, &textureTransform.data[0]);
glUniform2f(program.getUniform("textureDimension"), 1.0f / shaderInfo.width,
1.0f / shaderInfo.height);
}
///////////////////////////////////////////////////////////////////////////////
// Linear gradient shader
///////////////////////////////////////////////////////////////////////////////
static void toUnitMatrix(const SkPoint pts[2], SkMatrix* matrix) {
SkVector vec = pts[1] - pts[0];
const float mag = vec.length();
const float inv = mag ? 1.0f / mag : 0;
vec.scale(inv);
matrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
matrix->postTranslate(-pts[0].fX, -pts[0].fY);
matrix->postScale(inv, inv);
}
///////////////////////////////////////////////////////////////////////////////
// Circular gradient shader
///////////////////////////////////////////////////////////////////////////////
static void toCircularUnitMatrix(const float x, const float y, const float radius,
SkMatrix* matrix) {
const float inv = 1.0f / radius;
matrix->setTranslate(-x, -y);
matrix->postScale(inv, inv);
}
///////////////////////////////////////////////////////////////////////////////
// Sweep gradient shader
///////////////////////////////////////////////////////////////////////////////
static void toSweepUnitMatrix(const float x, const float y, SkMatrix* matrix) {
matrix->setTranslate(-x, -y);
}
///////////////////////////////////////////////////////////////////////////////
// Common gradient code
///////////////////////////////////////////////////////////////////////////////
static bool isSimpleGradient(const SkShader::GradientInfo& gradInfo) {
return gradInfo.fColorCount == 2 && gradInfo.fTileMode == SkShader::kClamp_TileMode;
}
void SkiaGradientShader::describe(Caches*, ProgramDescription& description,
const Extensions& extensions, const SkShader& shader) {
SkShader::GradientInfo gradInfo;
gradInfo.fColorCount = 0;
gradInfo.fColors = nullptr;
gradInfo.fColorOffsets = nullptr;
switch (shader.asAGradient(&gradInfo)) {
case SkShader::kLinear_GradientType:
description.gradientType = ProgramDescription::kGradientLinear;
break;
case SkShader::kRadial_GradientType:
description.gradientType = ProgramDescription::kGradientCircular;
break;
case SkShader::kSweep_GradientType:
description.gradientType = ProgramDescription::kGradientSweep;
break;
default:
// Do nothing. This shader is unsupported.
return;
}
description.hasGradient = true;
description.isSimpleGradient = isSimpleGradient(gradInfo);
}
void SkiaGradientShader::setupProgram(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions&, const SkShader& shader) {
// SkShader::GradientInfo.fColorCount is an in/out parameter. As input, it tells asAGradient
// how much space has been allocated for fColors and fColorOffsets. 10 was chosen
// arbitrarily, but should be >= 2.
// As output, it tells the number of actual colors/offsets in the gradient.
const int COLOR_COUNT = 10;
SkAutoSTMalloc<COLOR_COUNT, SkColor> colorStorage(COLOR_COUNT);
SkAutoSTMalloc<COLOR_COUNT, SkScalar> positionStorage(COLOR_COUNT);
SkShader::GradientInfo gradInfo;
gradInfo.fColorCount = COLOR_COUNT;
gradInfo.fColors = colorStorage.get();
gradInfo.fColorOffsets = positionStorage.get();
SkShader::GradientType gradType = shader.asAGradient(&gradInfo);
Program& program = caches->program();
if (CC_UNLIKELY(!isSimpleGradient(gradInfo))) {
if (gradInfo.fColorCount > COLOR_COUNT) {
// There was not enough room in our arrays for all the colors and offsets. Try again,
// now that we know the true number of colors.
gradInfo.fColors = colorStorage.reset(gradInfo.fColorCount);
gradInfo.fColorOffsets = positionStorage.reset(gradInfo.fColorCount);
shader.asAGradient(&gradInfo);
}
GLuint textureSlot = (*textureUnit)++;
caches->textureState().activateTexture(textureSlot);
#ifndef SK_SCALAR_IS_FLOAT
#error Need to convert gradInfo.fColorOffsets to float!
#endif
Texture* texture = caches->gradientCache.get(gradInfo.fColors, gradInfo.fColorOffsets,
gradInfo.fColorCount);
// Uniforms
bindTexture(caches, texture, gTileModes[gradInfo.fTileMode], gTileModes[gradInfo.fTileMode]);
glUniform1i(program.getUniform("gradientSampler"), textureSlot);
} else {
bindUniformColor(program.getUniform("startColor"), gradInfo.fColors[0]);
bindUniformColor(program.getUniform("endColor"), gradInfo.fColors[1]);
}
caches->dither.setupProgram(program, textureUnit);
SkMatrix unitMatrix;
switch (gradType) {
case SkShader::kLinear_GradientType:
toUnitMatrix(gradInfo.fPoint, &unitMatrix);
break;
case SkShader::kRadial_GradientType:
toCircularUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY,
gradInfo.fRadius[0], &unitMatrix);
break;
case SkShader::kSweep_GradientType:
toSweepUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY, &unitMatrix);
break;
default:
LOG_ALWAYS_FATAL("Invalid SkShader gradient type %d", gradType);
}
mat4 screenSpace;
computeScreenSpaceMatrix(screenSpace, unitMatrix, shader.getLocalMatrix(), modelViewMatrix);
glUniformMatrix4fv(program.getUniform("screenSpace"), 1, GL_FALSE, &screenSpace.data[0]);
}
///////////////////////////////////////////////////////////////////////////////
// Compose shader
///////////////////////////////////////////////////////////////////////////////
void SkiaComposeShader::describe(Caches* caches, ProgramDescription& description,
const Extensions& extensions, const SkShader& shader) {
SkShader::ComposeRec rec;
if (!shader.asACompose(&rec)) {
LOG_ALWAYS_FATAL("SkiaComposeShader::describe called on the wrong shader type!");
}
SkiaShader::describe(caches, description, extensions, *rec.fShaderA);
SkiaShader::describe(caches, description, extensions, *rec.fShaderB);
if (SkiaShader::getType(*rec.fShaderA) == kBitmap_SkiaShaderType) {
description.isBitmapFirst = true;
}
if (!SkXfermode::AsMode(rec.fMode, &description.shadersMode)) {
// TODO: Support other modes.
description.shadersMode = SkXfermode::kSrcOver_Mode;
}
}
void SkiaComposeShader::setupProgram(Caches* caches, const mat4& modelViewMatrix,
GLuint* textureUnit, const Extensions& extensions, const SkShader& shader) {
SkShader::ComposeRec rec;
if (!shader.asACompose(&rec)) {
LOG_ALWAYS_FATAL("SkiaComposeShader::setupProgram called on the wrong shader type!");
}
// Apply this compose shader's local transform and pass it down to
// the child shaders. They will in turn apply their local transform
// to this matrix.
mat4 transform;
computeScreenSpaceMatrix(transform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
SkiaShader::setupProgram(caches, transform, textureUnit, extensions, *rec.fShaderA);
SkiaShader::setupProgram(caches, transform, textureUnit, extensions, *rec.fShaderB);
}
///////////////////////////////////////////////////////////////////////////////
// Store / apply
///////////////////////////////////////////////////////////////////////////////
bool tryStoreGradient(Caches& caches, const SkShader& shader, const Matrix4 modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::GradientShaderData* outData) {
SkShader::GradientInfo gradInfo;
gradInfo.fColorCount = 0;
gradInfo.fColors = nullptr;
gradInfo.fColorOffsets = nullptr;
SkMatrix unitMatrix;
switch (shader.asAGradient(&gradInfo)) {
case SkShader::kLinear_GradientType:
description->gradientType = ProgramDescription::kGradientLinear;
toUnitMatrix(gradInfo.fPoint, &unitMatrix);
break;
case SkShader::kRadial_GradientType:
description->gradientType = ProgramDescription::kGradientCircular;
toCircularUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY,
gradInfo.fRadius[0], &unitMatrix);
break;
case SkShader::kSweep_GradientType:
description->gradientType = ProgramDescription::kGradientSweep;
toSweepUnitMatrix(gradInfo.fPoint[0].fX, gradInfo.fPoint[0].fY, &unitMatrix);
break;
default:
// Do nothing. This shader is unsupported.
return false;
}
description->hasGradient = true;
description->isSimpleGradient = isSimpleGradient(gradInfo);
computeScreenSpaceMatrix(outData->screenSpace, unitMatrix,
shader.getLocalMatrix(), modelViewMatrix);
// re-query shader to get full color / offset data
std::unique_ptr<SkColor[]> colorStorage(new SkColor[gradInfo.fColorCount]);
std::unique_ptr<SkScalar[]> colorOffsets(new SkScalar[gradInfo.fColorCount]);
gradInfo.fColors = &colorStorage[0];
gradInfo.fColorOffsets = &colorOffsets[0];
shader.asAGradient(&gradInfo);
if (CC_UNLIKELY(!isSimpleGradient(gradInfo))) {
outData->gradientSampler = (*textureUnit)++;
#ifndef SK_SCALAR_IS_FLOAT
#error Need to convert gradInfo.fColorOffsets to float!
#endif
outData->gradientTexture = caches.gradientCache.get(
gradInfo.fColors, gradInfo.fColorOffsets, gradInfo.fColorCount);
outData->wrapST = gTileModes[gradInfo.fTileMode];
} else {
outData->gradientSampler = 0;
outData->gradientTexture = nullptr;
outData->startColor.set(gradInfo.fColors[0]);
outData->endColor.set(gradInfo.fColors[1]);
}
outData->ditherSampler = (*textureUnit)++;
return true;
}
void applyGradient(Caches& caches, const SkiaShaderData::GradientShaderData& data) {
if (CC_UNLIKELY(data.gradientTexture)) {
caches.textureState().activateTexture(data.gradientSampler);
bindTexture(&caches, data.gradientTexture, data.wrapST, data.wrapST);
glUniform1i(caches.program().getUniform("gradientSampler"), data.gradientSampler);
} else {
bindUniformColor(caches.program().getUniform("startColor"), data.startColor);
bindUniformColor(caches.program().getUniform("endColor"), data.endColor);
}
// TODO: remove sampler slot incrementing from dither.setupProgram,
// since this assignment of slots is done at store, not apply time
GLuint ditherSampler = data.ditherSampler;
caches.dither.setupProgram(caches.program(), &ditherSampler);
glUniformMatrix4fv(caches.program().getUniform("screenSpace"), 1,
GL_FALSE, &data.screenSpace.data[0]);
}
bool tryStoreBitmap(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::BitmapShaderData* outData) {
SkBitmap bitmap;
SkShader::TileMode xy[2];
if (shader.asABitmap(&bitmap, nullptr, xy) != SkShader::kDefault_BitmapType) {
return false;
}
outData->bitmapTexture = caches.textureCache.get(&bitmap);
if (!outData->bitmapTexture) return false;
outData->bitmapSampler = (*textureUnit)++;
const float width = outData->bitmapTexture->width;
const float height = outData->bitmapTexture->height;
description->hasBitmap = true;
if (!caches.extensions().hasNPot()
&& (!isPowerOfTwo(width) || !isPowerOfTwo(height))
&& (xy[0] != SkShader::kClamp_TileMode || xy[1] != SkShader::kClamp_TileMode)) {
description->isBitmapNpot = true;
description->bitmapWrapS = gTileModes[xy[0]];
description->bitmapWrapT = gTileModes[xy[1]];
outData->wrapS = GL_CLAMP_TO_EDGE;
outData->wrapT = GL_CLAMP_TO_EDGE;
} else {
outData->wrapS = gTileModes[xy[0]];
outData->wrapT = gTileModes[xy[1]];
}
computeScreenSpaceMatrix(outData->textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
outData->textureDimension[0] = 1.0f / width;
outData->textureDimension[1] = 1.0f / height;
return true;
}
void applyBitmap(Caches& caches, const SkiaShaderData::BitmapShaderData& data) {
caches.textureState().activateTexture(data.bitmapSampler);
bindTexture(&caches, data.bitmapTexture, data.wrapS, data.wrapT);
data.bitmapTexture->setFilter(GL_LINEAR);
glUniform1i(caches.program().getUniform("bitmapSampler"), data.bitmapSampler);
glUniformMatrix4fv(caches.program().getUniform("textureTransform"), 1, GL_FALSE,
&data.textureTransform.data[0]);
glUniform2fv(caches.program().getUniform("textureDimension"), 1, &data.textureDimension[0]);
}
SkiaShaderType getComposeSubType(const SkShader& shader) {
// First check for a gradient shader.
switch (shader.asAGradient(nullptr)) {
case SkShader::kNone_GradientType:
// Not a gradient shader. Fall through to check for other types.
break;
case SkShader::kLinear_GradientType:
case SkShader::kRadial_GradientType:
case SkShader::kSweep_GradientType:
return kGradient_SkiaShaderType;
default:
// This is a Skia gradient that has no SkiaShader equivalent. Return None to skip.
return kNone_SkiaShaderType;
}
// The shader is not a gradient. Check for a bitmap shader.
if (shader.asABitmap(nullptr, nullptr, nullptr) == SkShader::kDefault_BitmapType) {
return kBitmap_SkiaShaderType;
}
return kNone_SkiaShaderType;
}
void storeCompose(Caches& caches, const SkShader& bitmapShader, const SkShader& gradientShader,
const Matrix4& modelViewMatrix, GLuint* textureUnit,
ProgramDescription* description, SkiaShaderData* outData) {
LOG_ALWAYS_FATAL_IF(!tryStoreBitmap(caches, bitmapShader, modelViewMatrix,
textureUnit, description, &outData->bitmapData),
"failed storing bitmap shader data");
LOG_ALWAYS_FATAL_IF(!tryStoreGradient(caches, gradientShader, modelViewMatrix,
textureUnit, description, &outData->gradientData),
"failing storing gradient shader data");
}
bool tryStoreCompose(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData* outData) {
SkShader::ComposeRec rec;
if (!shader.asACompose(&rec)) return false;
const SkiaShaderType shaderAType = getComposeSubType(*rec.fShaderA);
const SkiaShaderType shaderBType = getComposeSubType(*rec.fShaderB);
// check that type enum values are the 2 flags that compose the kCompose value
if ((shaderAType & shaderBType) != 0) return false;
if ((shaderAType | shaderBType) != kCompose_SkiaShaderType) return false;
mat4 transform;
computeScreenSpaceMatrix(transform, SkMatrix::I(), shader.getLocalMatrix(), modelViewMatrix);
if (shaderAType == kBitmap_SkiaShaderType) {
description->isBitmapFirst = true;
storeCompose(caches, *rec.fShaderA, *rec.fShaderB,
transform, textureUnit, description, outData);
} else {
description->isBitmapFirst = false;
storeCompose(caches, *rec.fShaderB, *rec.fShaderA,
transform, textureUnit, description, outData);
}
if (!SkXfermode::AsMode(rec.fMode, &description->shadersMode)) {
// TODO: Support other modes.
description->shadersMode = SkXfermode::kSrcOver_Mode;
}
return true;
}
bool tryStoreLayer(Caches& caches, const SkShader& shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData::LayerShaderData* outData) {
Layer* layer;
if (!shader.asACustomShader(reinterpret_cast<void**>(&layer))) {
return false;
}
description->hasBitmap = true;
outData->layer = layer;
outData->bitmapSampler = (*textureUnit)++;
const float width = layer->getWidth();
const float height = layer->getHeight();
computeScreenSpaceMatrix(outData->textureTransform, SkMatrix::I(), shader.getLocalMatrix(),
modelViewMatrix);
outData->textureDimension[0] = 1.0f / width;
outData->textureDimension[1] = 1.0f / height;
return true;
}
void applyLayer(Caches& caches, const SkiaShaderData::LayerShaderData& data) {
caches.textureState().activateTexture(data.bitmapSampler);
data.layer->bindTexture();
data.layer->setWrap(GL_CLAMP_TO_EDGE);
data.layer->setFilter(GL_LINEAR);
glUniform1i(caches.program().getUniform("bitmapSampler"), data.bitmapSampler);
glUniformMatrix4fv(caches.program().getUniform("textureTransform"), 1,
GL_FALSE, &data.textureTransform.data[0]);
glUniform2fv(caches.program().getUniform("textureDimension"), 1, &data.textureDimension[0]);
}
void SkiaShader::store(Caches& caches, const SkShader* shader, const Matrix4& modelViewMatrix,
GLuint* textureUnit, ProgramDescription* description,
SkiaShaderData* outData) {
if (!shader) {
outData->skiaShaderType = kNone_SkiaShaderType;
return;
}
if (tryStoreGradient(caches, *shader, modelViewMatrix,
textureUnit, description, &outData->gradientData)) {
outData->skiaShaderType = kGradient_SkiaShaderType;
return;
}
if (tryStoreBitmap(caches, *shader, modelViewMatrix,
textureUnit, description, &outData->bitmapData)) {
outData->skiaShaderType = kBitmap_SkiaShaderType;
return;
}
if (tryStoreCompose(caches, *shader, modelViewMatrix,
textureUnit, description, outData)) {
outData->skiaShaderType = kCompose_SkiaShaderType;
return;
}
if (tryStoreLayer(caches, *shader, modelViewMatrix,
textureUnit, description, &outData->layerData)) {
outData->skiaShaderType = kLayer_SkiaShaderType;
}
}
void SkiaShader::apply(Caches& caches, const SkiaShaderData& data) {
if (!data.skiaShaderType) return;
if (data.skiaShaderType & kGradient_SkiaShaderType) {
applyGradient(caches, data.gradientData);
}
if (data.skiaShaderType & kBitmap_SkiaShaderType) {
applyBitmap(caches, data.bitmapData);
}
if (data.skiaShaderType == kLayer_SkiaShaderType) {
applyLayer(caches, data.layerData);
}
}
}; // namespace uirenderer
}; // namespace android