blob: 6041db80b2796d541565661819768a1c75c27087 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_RS_BUILD_FOR_HOST
#include "rsContext.h"
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#else
#include "rsContextHostStub.h"
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#endif //ANDROID_RS_BUILD_FOR_HOST
#include "rsProgram.h"
using namespace android;
using namespace android::renderscript;
Program::Program(Context *rsc) : ObjectBase(rsc)
{
mAllocFile = __FILE__;
mAllocLine = __LINE__;
mDirty = true;
mShaderID = 0;
mAttribCount = 0;
mUniformCount = 0;
mInputElements = NULL;
mOutputElements = NULL;
mConstantTypes = NULL;
mInputCount = 0;
mOutputCount = 0;
mConstantCount = 0;
mIsValid = false;
}
Program::Program(Context *rsc, const char * shaderText, uint32_t shaderLength,
const uint32_t * params, uint32_t paramLength) :
ObjectBase(rsc)
{
mAllocFile = __FILE__;
mAllocLine = __LINE__;
mDirty = true;
mShaderID = 0;
mAttribCount = 0;
mUniformCount = 0;
mTextureCount = 0;
mInputCount = 0;
mOutputCount = 0;
mConstantCount = 0;
for (uint32_t ct=0; ct < paramLength; ct+=2) {
if (params[ct] == RS_PROGRAM_PARAM_INPUT) {
mInputCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_OUTPUT) {
mOutputCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_CONSTANT) {
mConstantCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_TEXTURE_COUNT) {
mTextureCount = params[ct+1];
}
}
mInputElements = new ObjectBaseRef<Element>[mInputCount];
mOutputElements = new ObjectBaseRef<Element>[mOutputCount];
mConstantTypes = new ObjectBaseRef<Type>[mConstantCount];
uint32_t input = 0;
uint32_t output = 0;
uint32_t constant = 0;
for (uint32_t ct=0; ct < paramLength; ct+=2) {
if (params[ct] == RS_PROGRAM_PARAM_INPUT) {
mInputElements[input++].set(reinterpret_cast<Element *>(params[ct+1]));
}
if (params[ct] == RS_PROGRAM_PARAM_OUTPUT) {
mOutputElements[output++].set(reinterpret_cast<Element *>(params[ct+1]));
}
if (params[ct] == RS_PROGRAM_PARAM_CONSTANT) {
mConstantTypes[constant++].set(reinterpret_cast<Type *>(params[ct+1]));
}
}
mUserShader.setTo(shaderText, shaderLength);
}
Program::~Program()
{
for (uint32_t ct=0; ct < MAX_UNIFORMS; ct++) {
bindAllocation(NULL, ct);
}
delete[] mInputElements;
delete[] mOutputElements;
delete[] mConstantTypes;
mInputCount = 0;
mOutputCount = 0;
mConstantCount = 0;
}
void Program::bindAllocation(Allocation *alloc, uint32_t slot)
{
if (mConstants[slot].get() == alloc) {
return;
}
if (mConstants[slot].get()) {
mConstants[slot].get()->removeProgramToDirty(this);
}
mConstants[slot].set(alloc);
if (alloc) {
alloc->addProgramToDirty(this);
}
mDirty = true;
}
void Program::bindTexture(uint32_t slot, Allocation *a)
{
if (slot >= MAX_TEXTURE) {
LOGE("Attempt to bind a texture to a slot > MAX_TEXTURE");
return;
}
//LOGE("bindtex %i %p", slot, a);
mTextures[slot].set(a);
mDirty = true;
}
void Program::bindSampler(uint32_t slot, Sampler *s)
{
if (slot >= MAX_TEXTURE) {
LOGE("Attempt to bind a Sampler to a slot > MAX_TEXTURE");
return;
}
mSamplers[slot].set(s);
mDirty = true;
}
String8 Program::getGLSLInputString() const
{
String8 s;
for (uint32_t ct=0; ct < mInputCount; ct++) {
const Element *e = mInputElements[ct].get();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
// Cannot be complex
rsAssert(!f->getFieldCount());
switch(f->getComponent().getVectorSize()) {
case 1: s.append("attribute float ATTRIB_"); break;
case 2: s.append("attribute vec2 ATTRIB_"); break;
case 3: s.append("attribute vec3 ATTRIB_"); break;
case 4: s.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
s.append(e->getFieldName(field));
s.append(";\n");
}
}
return s;
}
String8 Program::getGLSLOutputString() const
{
return String8();
}
String8 Program::getGLSLConstantString() const
{
return String8();
}
void Program::createShader()
{
}
bool Program::loadShader(Context *rsc, uint32_t type)
{
mShaderID = glCreateShader(type);
rsAssert(mShaderID);
if (rsc->props.mLogShaders) {
LOGV("Loading shader type %x, ID %i", type, mShaderID);
LOGV("%s", mShader.string());
}
if (mShaderID) {
const char * ss = mShader.string();
glShaderSource(mShaderID, 1, &ss, NULL);
glCompileShader(mShaderID);
GLint compiled = 0;
glGetShaderiv(mShaderID, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
GLint infoLen = 0;
glGetShaderiv(mShaderID, GL_INFO_LOG_LENGTH, &infoLen);
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
glGetShaderInfoLog(mShaderID, infoLen, NULL, buf);
LOGE("Could not compile shader \n%s\n", buf);
free(buf);
}
glDeleteShader(mShaderID);
mShaderID = 0;
rsc->setError(RS_ERROR_BAD_SHADER, "Error returned from GL driver loading shader text,");
return false;
}
}
}
if (rsc->props.mLogShaders) {
LOGV("--Shader load result %x ", glGetError());
}
mIsValid = true;
return true;
}
void Program::setShader(const char *txt, uint32_t len)
{
mUserShader.setTo(txt, len);
}
void Program::appendUserConstants() {
for (uint32_t ct=0; ct < mConstantCount; ct++) {
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
if(f->getType() == RS_TYPE_MATRIX_4X4) {
mShader.append("uniform mat4 UNI_");
}
else if(f->getType() == RS_TYPE_MATRIX_3X3) {
mShader.append("uniform mat3 UNI_");
}
else if(f->getType() == RS_TYPE_MATRIX_2X2) {
mShader.append("uniform mat2 UNI_");
}
else {
switch(f->getComponent().getVectorSize()) {
case 1: mShader.append("uniform float UNI_"); break;
case 2: mShader.append("uniform vec2 UNI_"); break;
case 3: mShader.append("uniform vec3 UNI_"); break;
case 4: mShader.append("uniform vec4 UNI_"); break;
default:
rsAssert(0);
}
}
mShader.append(fn);
mShader.append(";\n");
}
}
}
void Program::setupUserConstants(ShaderCache *sc, bool isFragment) {
uint32_t uidx = 1;
for (uint32_t ct=0; ct < mConstantCount; ct++) {
Allocation *alloc = mConstants[ct+1].get();
if (!alloc) {
continue;
}
const uint8_t *data = static_cast<const uint8_t *>(alloc->getPtr());
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fieldName = e->getFieldName(field);
// If this field is padding, skip it
if(fieldName[0] == '#') {
continue;
}
uint32_t offset = e->getFieldOffsetBytes(field);
const float *fd = reinterpret_cast<const float *>(&data[offset]);
int32_t slot = -1;
if(!isFragment) {
slot = sc->vtxUniformSlot(uidx);
}
else {
slot = sc->fragUniformSlot(uidx);
}
//LOGE("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s", slot, offset, ct, field, uidx, fieldName);
if (slot >= 0) {
if(f->getType() == RS_TYPE_MATRIX_4X4) {
glUniformMatrix4fv(slot, 1, GL_FALSE, fd);
}
else if(f->getType() == RS_TYPE_MATRIX_3X3) {
glUniformMatrix3fv(slot, 1, GL_FALSE, fd);
}
else if(f->getType() == RS_TYPE_MATRIX_2X2) {
glUniformMatrix2fv(slot, 1, GL_FALSE, fd);
}
else {
switch(f->getComponent().getVectorSize()) {
case 1:
//LOGE("Uniform 1 = %f", fd[0]);
glUniform1fv(slot, 1, fd);
break;
case 2:
//LOGE("Uniform 2 = %f %f", fd[0], fd[1]);
glUniform2fv(slot, 1, fd);
break;
case 3:
//LOGE("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]);
glUniform3fv(slot, 1, fd);
break;
case 4:
//LOGE("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]);
glUniform4fv(slot, 1, fd);
break;
default:
rsAssert(0);
}
}
}
uidx ++;
}
}
}
void Program::initAddUserElement(const Element *e, String8 *names, uint32_t *count, const char *prefix)
{
rsAssert(e->getFieldCount());
for (uint32_t ct=0; ct < e->getFieldCount(); ct++) {
const Element *ce = e->getField(ct);
if (ce->getFieldCount()) {
initAddUserElement(ce, names, count, prefix);
}
else if(e->getFieldName(ct)[0] != '#') {
String8 tmp(prefix);
tmp.append(e->getFieldName(ct));
names[*count].setTo(tmp.string());
(*count)++;
}
}
}
namespace android {
namespace renderscript {
void rsi_ProgramBindConstants(Context *rsc, RsProgram vp, uint32_t slot, RsAllocation constants)
{
Program *p = static_cast<Program *>(vp);
p->bindAllocation(static_cast<Allocation *>(constants), slot);
}
void rsi_ProgramBindTexture(Context *rsc, RsProgram vpf, uint32_t slot, RsAllocation a)
{
Program *p = static_cast<Program *>(vpf);
p->bindTexture(slot, static_cast<Allocation *>(a));
}
void rsi_ProgramBindSampler(Context *rsc, RsProgram vpf, uint32_t slot, RsSampler s)
{
Program *p = static_cast<Program *>(vpf);
p->bindSampler(slot, static_cast<Sampler *>(s));
}
}
}