blob: 1d31c9e08a9e31bc637b06908eb72b05987ac8bc [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VectorDrawable.h"
#include "PathParser.h"
#include "SkImageInfo.h"
#include <utils/Log.h>
#include "utils/Macros.h"
#include "utils/VectorDrawableUtils.h"
#include <math.h>
#include <string.h>
namespace android {
namespace uirenderer {
namespace VectorDrawable {
const int Tree::MAX_CACHED_BITMAP_SIZE = 2048;
void Path::draw(SkCanvas* outCanvas, const SkMatrix& groupStackedMatrix, float scaleX, float scaleY) {
float matrixScale = getMatrixScale(groupStackedMatrix);
if (matrixScale == 0) {
// When either x or y is scaled to 0, we don't need to draw anything.
return;
}
const SkPath updatedPath = getUpdatedPath();
SkMatrix pathMatrix(groupStackedMatrix);
pathMatrix.postScale(scaleX, scaleY);
//TODO: try apply the path matrix to the canvas instead of creating a new path.
SkPath renderPath;
renderPath.reset();
renderPath.addPath(updatedPath, pathMatrix);
float minScale = fmin(scaleX, scaleY);
float strokeScale = minScale * matrixScale;
drawPath(outCanvas, renderPath, strokeScale);
}
void Path::setPathData(const Data& data) {
if (mData == data) {
return;
}
// Updates the path data. Note that we don't generate a new Skia path right away
// because there are cases where the animation is changing the path data, but the view
// that hosts the VD has gone off screen, in which case we won't even draw. So we
// postpone the Skia path generation to the draw time.
mData = data;
mSkPathDirty = true;
}
void Path::dump() {
ALOGD("Path: %s has %zu points", mName.c_str(), mData.points.size());
}
float Path::getMatrixScale(const SkMatrix& groupStackedMatrix) {
// Given unit vectors A = (0, 1) and B = (1, 0).
// After matrix mapping, we got A' and B'. Let theta = the angel b/t A' and B'.
// Therefore, the final scale we want is min(|A'| * sin(theta), |B'| * sin(theta)),
// which is (|A'| * |B'| * sin(theta)) / max (|A'|, |B'|);
// If max (|A'|, |B'|) = 0, that means either x or y has a scale of 0.
//
// For non-skew case, which is most of the cases, matrix scale is computing exactly the
// scale on x and y axis, and take the minimal of these two.
// For skew case, an unit square will mapped to a parallelogram. And this function will
// return the minimal height of the 2 bases.
SkVector skVectors[2];
skVectors[0].set(0, 1);
skVectors[1].set(1, 0);
groupStackedMatrix.mapVectors(skVectors, 2);
float scaleX = hypotf(skVectors[0].fX, skVectors[0].fY);
float scaleY = hypotf(skVectors[1].fX, skVectors[1].fY);
float crossProduct = skVectors[0].cross(skVectors[1]);
float maxScale = fmax(scaleX, scaleY);
float matrixScale = 0;
if (maxScale > 0) {
matrixScale = fabs(crossProduct) / maxScale;
}
return matrixScale;
}
Path::Path(const char* pathStr, size_t strLength) {
PathParser::ParseResult result;
PathParser::getPathDataFromString(&mData, &result, pathStr, strLength);
if (!result.failureOccurred) {
VectorDrawableUtils::verbsToPath(&mSkPath, mData);
}
}
Path::Path(const Data& data) {
mData = data;
// Now we need to construct a path
VectorDrawableUtils::verbsToPath(&mSkPath, data);
}
Path::Path(const Path& path) : Node(path) {
mData = path.mData;
VectorDrawableUtils::verbsToPath(&mSkPath, mData);
}
bool Path::canMorph(const Data& morphTo) {
return VectorDrawableUtils::canMorph(mData, morphTo);
}
bool Path::canMorph(const Path& path) {
return canMorph(path.mData);
}
const SkPath& Path::getUpdatedPath() {
if (mSkPathDirty) {
mSkPath.reset();
VectorDrawableUtils::verbsToPath(&mSkPath, mData);
mSkPathDirty = false;
}
return mSkPath;
}
void Path::setPath(const char* pathStr, size_t strLength) {
PathParser::ParseResult result;
mSkPathDirty = true;
PathParser::getPathDataFromString(&mData, &result, pathStr, strLength);
}
FullPath::FullPath(const FullPath& path) : Path(path) {
mStrokeWidth = path.mStrokeWidth;
mStrokeColor = path.mStrokeColor;
mStrokeAlpha = path.mStrokeAlpha;
mFillColor = path.mFillColor;
mFillAlpha = path.mFillAlpha;
mTrimPathStart = path.mTrimPathStart;
mTrimPathEnd = path.mTrimPathEnd;
mTrimPathOffset = path.mTrimPathOffset;
mStrokeMiterLimit = path.mStrokeMiterLimit;
mStrokeLineCap = path.mStrokeLineCap;
mStrokeLineJoin = path.mStrokeLineJoin;
}
const SkPath& FullPath::getUpdatedPath() {
if (!mSkPathDirty && !mTrimDirty) {
return mTrimmedSkPath;
}
Path::getUpdatedPath();
if (mTrimPathStart != 0.0f || mTrimPathEnd != 1.0f) {
applyTrim();
return mTrimmedSkPath;
} else {
return mSkPath;
}
}
void FullPath::updateProperties(float strokeWidth, SkColor strokeColor, float strokeAlpha,
SkColor fillColor, float fillAlpha, float trimPathStart, float trimPathEnd,
float trimPathOffset, float strokeMiterLimit, int strokeLineCap, int strokeLineJoin) {
mStrokeWidth = strokeWidth;
mStrokeColor = strokeColor;
mStrokeAlpha = strokeAlpha;
mFillColor = fillColor;
mFillAlpha = fillAlpha;
mStrokeMiterLimit = strokeMiterLimit;
mStrokeLineCap = SkPaint::Cap(strokeLineCap);
mStrokeLineJoin = SkPaint::Join(strokeLineJoin);
// If any trim property changes, mark trim dirty and update the trim path
setTrimPathStart(trimPathStart);
setTrimPathEnd(trimPathEnd);
setTrimPathOffset(trimPathOffset);
}
inline SkColor applyAlpha(SkColor color, float alpha) {
int alphaBytes = SkColorGetA(color);
return SkColorSetA(color, alphaBytes * alpha);
}
void FullPath::drawPath(SkCanvas* outCanvas, const SkPath& renderPath, float strokeScale){
// Draw path's fill, if fill color isn't transparent.
if (mFillColor != SK_ColorTRANSPARENT) {
mPaint.setStyle(SkPaint::Style::kFill_Style);
mPaint.setAntiAlias(true);
mPaint.setColor(applyAlpha(mFillColor, mFillAlpha));
outCanvas->drawPath(renderPath, mPaint);
}
// Draw path's stroke, if stroke color isn't transparent
if (mStrokeColor != SK_ColorTRANSPARENT) {
mPaint.setStyle(SkPaint::Style::kStroke_Style);
mPaint.setAntiAlias(true);
mPaint.setStrokeJoin(mStrokeLineJoin);
mPaint.setStrokeCap(mStrokeLineCap);
mPaint.setStrokeMiter(mStrokeMiterLimit);
mPaint.setColor(applyAlpha(mStrokeColor, mStrokeAlpha));
mPaint.setStrokeWidth(mStrokeWidth * strokeScale);
outCanvas->drawPath(renderPath, mPaint);
}
}
/**
* Applies trimming to the specified path.
*/
void FullPath::applyTrim() {
if (mTrimPathStart == 0.0f && mTrimPathEnd == 1.0f) {
// No trimming necessary.
return;
}
SkPathMeasure measure(mSkPath, false);
float len = SkScalarToFloat(measure.getLength());
float start = len * fmod((mTrimPathStart + mTrimPathOffset), 1.0f);
float end = len * fmod((mTrimPathEnd + mTrimPathOffset), 1.0f);
mTrimmedSkPath.reset();
if (start > end) {
measure.getSegment(start, len, &mTrimmedSkPath, true);
measure.getSegment(0, end, &mTrimmedSkPath, true);
} else {
measure.getSegment(start, end, &mTrimmedSkPath, true);
}
mTrimDirty = false;
}
inline int putData(int8_t* outBytes, int startIndex, float value) {
int size = sizeof(float);
memcpy(&outBytes[startIndex], &value, size);
return size;
}
inline int putData(int8_t* outBytes, int startIndex, int value) {
int size = sizeof(int);
memcpy(&outBytes[startIndex], &value, size);
return size;
}
struct FullPathProperties {
// TODO: Consider storing full path properties in this struct instead of the fields.
float strokeWidth;
SkColor strokeColor;
float strokeAlpha;
SkColor fillColor;
float fillAlpha;
float trimPathStart;
float trimPathEnd;
float trimPathOffset;
int32_t strokeLineCap;
int32_t strokeLineJoin;
float strokeMiterLimit;
};
REQUIRE_COMPATIBLE_LAYOUT(FullPathProperties);
static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t");
static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t");
bool FullPath::getProperties(int8_t* outProperties, int length) {
int propertyDataSize = sizeof(FullPathProperties);
if (length != propertyDataSize) {
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
propertyDataSize, length);
return false;
}
// TODO: consider replacing the property fields with a FullPathProperties struct.
FullPathProperties properties;
properties.strokeWidth = mStrokeWidth;
properties.strokeColor = mStrokeColor;
properties.strokeAlpha = mStrokeAlpha;
properties.fillColor = mFillColor;
properties.fillAlpha = mFillAlpha;
properties.trimPathStart = mTrimPathStart;
properties.trimPathEnd = mTrimPathEnd;
properties.trimPathOffset = mTrimPathOffset;
properties.strokeLineCap = mStrokeLineCap;
properties.strokeLineJoin = mStrokeLineJoin;
properties.strokeMiterLimit = mStrokeMiterLimit;
memcpy(outProperties, &properties, length);
return true;
}
void ClipPath::drawPath(SkCanvas* outCanvas, const SkPath& renderPath,
float strokeScale){
outCanvas->clipPath(renderPath, SkRegion::kIntersect_Op);
}
Group::Group(const Group& group) : Node(group) {
mRotate = group.mRotate;
mPivotX = group.mPivotX;
mPivotY = group.mPivotY;
mScaleX = group.mScaleX;
mScaleY = group.mScaleY;
mTranslateX = group.mTranslateX;
mTranslateY = group.mTranslateY;
}
void Group::draw(SkCanvas* outCanvas, const SkMatrix& currentMatrix, float scaleX,
float scaleY) {
// TODO: Try apply the matrix to the canvas instead of passing it down the tree
// Calculate current group's matrix by preConcat the parent's and
// and the current one on the top of the stack.
// Basically the Mfinal = Mviewport * M0 * M1 * M2;
// Mi the local matrix at level i of the group tree.
SkMatrix stackedMatrix;
getLocalMatrix(&stackedMatrix);
stackedMatrix.postConcat(currentMatrix);
// Save the current clip information, which is local to this group.
outCanvas->save();
// Draw the group tree in the same order as the XML file.
for (Node* child : mChildren) {
child->draw(outCanvas, stackedMatrix, scaleX, scaleY);
}
// Restore the previous clip information.
outCanvas->restore();
}
void Group::dump() {
ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size());
for (size_t i = 0; i < mChildren.size(); i++) {
mChildren[i]->dump();
}
}
void Group::updateLocalMatrix(float rotate, float pivotX, float pivotY,
float scaleX, float scaleY, float translateX, float translateY) {
setRotation(rotate);
setPivotX(pivotX);
setPivotY(pivotY);
setScaleX(scaleX);
setScaleY(scaleY);
setTranslateX(translateX);
setTranslateY(translateY);
}
void Group::getLocalMatrix(SkMatrix* outMatrix) {
outMatrix->reset();
// TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of
// translating to pivot for rotating and scaling, then translating back.
outMatrix->postTranslate(-mPivotX, -mPivotY);
outMatrix->postScale(mScaleX, mScaleY);
outMatrix->postRotate(mRotate, 0, 0);
outMatrix->postTranslate(mTranslateX + mPivotX, mTranslateY + mPivotY);
}
void Group::addChild(Node* child) {
mChildren.push_back(child);
}
bool Group::getProperties(float* outProperties, int length) {
int propertyCount = static_cast<int>(Property::Count);
if (length != propertyCount) {
LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided",
propertyCount, length);
return false;
}
for (int i = 0; i < propertyCount; i++) {
Property currentProperty = static_cast<Property>(i);
switch (currentProperty) {
case Property::Rotate_Property:
outProperties[i] = mRotate;
break;
case Property::PivotX_Property:
outProperties[i] = mPivotX;
break;
case Property::PivotY_Property:
outProperties[i] = mPivotY;
break;
case Property::ScaleX_Property:
outProperties[i] = mScaleX;
break;
case Property::ScaleY_Property:
outProperties[i] = mScaleY;
break;
case Property::TranslateX_Property:
outProperties[i] = mTranslateX;
break;
case Property::TranslateY_Property:
outProperties[i] = mTranslateY;
break;
default:
LOG_ALWAYS_FATAL("Invalid input index: %d", i);
return false;
}
}
return true;
}
void Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter,
const SkRect& bounds, bool needsMirroring, bool canReuseCache) {
// The imageView can scale the canvas in different ways, in order to
// avoid blurry scaling, we have to draw into a bitmap with exact pixel
// size first. This bitmap size is determined by the bounds and the
// canvas scale.
outCanvas->getMatrix(&mCanvasMatrix);
mBounds = bounds;
float canvasScaleX = 1.0f;
float canvasScaleY = 1.0f;
if (mCanvasMatrix.getSkewX() == 0 && mCanvasMatrix.getSkewY() == 0) {
// Only use the scale value when there's no skew or rotation in the canvas matrix.
// TODO: Add a cts test for drawing VD on a canvas with negative scaling factors.
canvasScaleX = fabs(mCanvasMatrix.getScaleX());
canvasScaleY = fabs(mCanvasMatrix.getScaleY());
}
int scaledWidth = (int) (mBounds.width() * canvasScaleX);
int scaledHeight = (int) (mBounds.height() * canvasScaleY);
scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth);
scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight);
if (scaledWidth <= 0 || scaledHeight <= 0) {
return;
}
int saveCount = outCanvas->save(SaveFlags::MatrixClip);
outCanvas->translate(mBounds.fLeft, mBounds.fTop);
// Handle RTL mirroring.
if (needsMirroring) {
outCanvas->translate(mBounds.width(), 0);
outCanvas->scale(-1.0f, 1.0f);
}
// At this point, canvas has been translated to the right position.
// And we use this bound for the destination rect for the drawBitmap, so
// we offset to (0, 0);
mBounds.offsetTo(0, 0);
createCachedBitmapIfNeeded(scaledWidth, scaledHeight);
if (!mAllowCaching) {
updateCachedBitmap(scaledWidth, scaledHeight);
} else {
if (!canReuseCache || mCacheDirty) {
updateCachedBitmap(scaledWidth, scaledHeight);
}
}
drawCachedBitmapWithRootAlpha(outCanvas, colorFilter, mBounds);
outCanvas->restoreToCount(saveCount);
}
void Tree::drawCachedBitmapWithRootAlpha(Canvas* outCanvas, SkColorFilter* filter,
const SkRect& originalBounds) {
SkPaint* paint;
if (mRootAlpha == 1.0f && filter == NULL) {
paint = NULL;
} else {
mPaint.setFilterQuality(kLow_SkFilterQuality);
mPaint.setAlpha(mRootAlpha * 255);
mPaint.setColorFilter(filter);
paint = &mPaint;
}
outCanvas->drawBitmap(mCachedBitmap, 0, 0, mCachedBitmap.width(), mCachedBitmap.height(),
originalBounds.fLeft, originalBounds.fTop, originalBounds.fRight,
originalBounds.fBottom, paint);
}
void Tree::updateCachedBitmap(int width, int height) {
mCachedBitmap.eraseColor(SK_ColorTRANSPARENT);
SkCanvas outCanvas(mCachedBitmap);
float scaleX = width / mViewportWidth;
float scaleY = height / mViewportHeight;
mRootNode->draw(&outCanvas, SkMatrix::I(), scaleX, scaleY);
mCacheDirty = false;
}
void Tree::createCachedBitmapIfNeeded(int width, int height) {
if (!canReuseBitmap(width, height)) {
SkImageInfo info = SkImageInfo::Make(width, height,
kN32_SkColorType, kPremul_SkAlphaType);
mCachedBitmap.setInfo(info);
// TODO: Count the bitmap cache against app's java heap
mCachedBitmap.allocPixels(info);
mCacheDirty = true;
}
}
bool Tree::canReuseBitmap(int width, int height) {
return width == mCachedBitmap.width() && height == mCachedBitmap.height();
}
}; // namespace VectorDrawable
}; // namespace uirenderer
}; // namespace android