blob: 39b85e39ed3f72215171ca8b717ccda073ba81f4 [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_RS_BUILD_FOR_HOST
#include "rsContext.h"
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#else
#include "rsContextHostStub.h"
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#endif //ANDROID_RS_BUILD_FOR_HOST
#include "rsProgram.h"
using namespace android;
using namespace android::renderscript;
Program::Program(Context *rsc) : ObjectBase(rsc) {
initMemberVars();
}
Program::Program(Context *rsc, const char * shaderText, uint32_t shaderLength,
const uint32_t * params, uint32_t paramLength)
: ObjectBase(rsc) {
initMemberVars();
for (uint32_t ct=0; ct < paramLength; ct+=2) {
if (params[ct] == RS_PROGRAM_PARAM_INPUT) {
mInputCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_OUTPUT) {
mOutputCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_CONSTANT) {
mConstantCount++;
}
if (params[ct] == RS_PROGRAM_PARAM_TEXTURE_TYPE) {
mTextureCount++;
}
}
mTextures = new ObjectBaseRef<Allocation>[mTextureCount];
mSamplers = new ObjectBaseRef<Sampler>[mTextureCount];
mTextureTargets = new RsTextureTarget[mTextureCount];
mInputElements = new ObjectBaseRef<Element>[mInputCount];
mOutputElements = new ObjectBaseRef<Element>[mOutputCount];
mConstantTypes = new ObjectBaseRef<Type>[mConstantCount];
mConstants = new ObjectBaseRef<Allocation>[mConstantCount];
uint32_t input = 0;
uint32_t output = 0;
uint32_t constant = 0;
uint32_t texture = 0;
for (uint32_t ct=0; ct < paramLength; ct+=2) {
if (params[ct] == RS_PROGRAM_PARAM_INPUT) {
mInputElements[input++].set(reinterpret_cast<Element *>(params[ct+1]));
}
if (params[ct] == RS_PROGRAM_PARAM_OUTPUT) {
mOutputElements[output++].set(reinterpret_cast<Element *>(params[ct+1]));
}
if (params[ct] == RS_PROGRAM_PARAM_CONSTANT) {
mConstantTypes[constant++].set(reinterpret_cast<Type *>(params[ct+1]));
}
if (params[ct] == RS_PROGRAM_PARAM_TEXTURE_TYPE) {
mTextureTargets[texture++] = (RsTextureTarget)params[ct+1];
}
}
mIsInternal = false;
uint32_t internalTokenLen = strlen(RS_SHADER_INTERNAL);
if (shaderLength > internalTokenLen &&
strncmp(RS_SHADER_INTERNAL, shaderText, internalTokenLen) == 0) {
mIsInternal = true;
shaderText += internalTokenLen;
shaderLength -= internalTokenLen;
}
mUserShader.setTo(shaderText, shaderLength);
initAttribAndUniformArray();
}
Program::~Program() {
if (mRSC->props.mLogShaders) {
LOGV("Program::~Program with shader id %u", mShaderID);
}
if (mShaderID) {
glDeleteShader(mShaderID);
}
for (uint32_t ct=0; ct < mConstantCount; ct++) {
bindAllocation(NULL, NULL, ct);
}
for (uint32_t ct=0; ct < mTextureCount; ct++) {
bindTexture(NULL, ct, NULL);
bindSampler(NULL, ct, NULL);
}
delete[] mTextures;
delete[] mSamplers;
delete[] mTextureTargets;
delete[] mInputElements;
delete[] mOutputElements;
delete[] mConstantTypes;
delete[] mConstants;
delete[] mAttribNames;
delete[] mUniformNames;
delete[] mUniformArraySizes;
mInputCount = 0;
mOutputCount = 0;
mConstantCount = 0;
}
void Program::initMemberVars() {
mDirty = true;
mShaderID = 0;
mAttribCount = 0;
mUniformCount = 0;
mTextureCount = 0;
mTextures = NULL;
mSamplers = NULL;
mTextureTargets = NULL;
mInputElements = NULL;
mOutputElements = NULL;
mConstantTypes = NULL;
mConstants = NULL;
mAttribNames = NULL;
mUniformNames = NULL;
mUniformArraySizes = NULL;
mInputCount = 0;
mOutputCount = 0;
mConstantCount = 0;
mIsValid = false;
mIsInternal = false;
}
void Program::bindAllocation(Context *rsc, Allocation *alloc, uint32_t slot) {
if (alloc != NULL) {
if (slot >= mConstantCount) {
LOGE("Attempt to bind alloc at slot %u, on shader id %u, but const count is %u",
slot, (uint32_t)this, mConstantCount);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind allocation");
return;
}
if (!alloc->getType()->isEqual(mConstantTypes[slot].get())) {
LOGE("Attempt to bind alloc at slot %u, on shader id %u, but types mismatch",
slot, (uint32_t)this);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind allocation");
return;
}
}
if (mConstants[slot].get() == alloc) {
return;
}
if (mConstants[slot].get()) {
mConstants[slot].get()->removeProgramToDirty(this);
}
mConstants[slot].set(alloc);
if (alloc) {
alloc->addProgramToDirty(this);
}
mDirty = true;
}
void Program::bindTexture(Context *rsc, uint32_t slot, Allocation *a) {
if (slot >= mTextureCount) {
LOGE("Attempt to bind texture to slot %u but tex count is %u", slot, mTextureCount);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind texture");
return;
}
if (a && a->getType()->getDimFaces() && mTextureTargets[slot] != RS_TEXTURE_CUBE) {
LOGE("Attempt to bind cubemap to slot %u but 2d texture needed", slot);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind cubemap to 2d texture slot");
return;
}
//LOGE("bindtex %i %p", slot, a);
mTextures[slot].set(a);
mDirty = true;
}
void Program::bindSampler(Context *rsc, uint32_t slot, Sampler *s) {
if (slot >= mTextureCount) {
LOGE("Attempt to bind sampler to slot %u but tex count is %u", slot, mTextureCount);
rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind sampler");
return;
}
mSamplers[slot].set(s);
mDirty = true;
}
String8 Program::getGLSLInputString() const {
String8 s;
for (uint32_t ct=0; ct < mInputCount; ct++) {
const Element *e = mInputElements[ct].get();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
// Cannot be complex
rsAssert(!f->getFieldCount());
switch (f->getComponent().getVectorSize()) {
case 1: s.append("attribute float ATTRIB_"); break;
case 2: s.append("attribute vec2 ATTRIB_"); break;
case 3: s.append("attribute vec3 ATTRIB_"); break;
case 4: s.append("attribute vec4 ATTRIB_"); break;
default:
rsAssert(0);
}
s.append(e->getFieldName(field));
s.append(";\n");
}
}
return s;
}
String8 Program::getGLSLOutputString() const {
return String8();
}
String8 Program::getGLSLConstantString() const {
return String8();
}
void Program::createShader() {
}
bool Program::loadShader(Context *rsc, uint32_t type) {
mShaderID = glCreateShader(type);
rsAssert(mShaderID);
if (rsc->props.mLogShaders) {
LOGV("Loading shader type %x, ID %i", type, mShaderID);
LOGV("%s", mShader.string());
}
if (mShaderID) {
const char * ss = mShader.string();
glShaderSource(mShaderID, 1, &ss, NULL);
glCompileShader(mShaderID);
GLint compiled = 0;
glGetShaderiv(mShaderID, GL_COMPILE_STATUS, &compiled);
if (!compiled) {
GLint infoLen = 0;
glGetShaderiv(mShaderID, GL_INFO_LOG_LENGTH, &infoLen);
if (infoLen) {
char* buf = (char*) malloc(infoLen);
if (buf) {
glGetShaderInfoLog(mShaderID, infoLen, NULL, buf);
LOGE("Could not compile shader \n%s\n", buf);
free(buf);
}
glDeleteShader(mShaderID);
mShaderID = 0;
rsc->setError(RS_ERROR_BAD_SHADER, "Error returned from GL driver loading shader text,");
return false;
}
}
}
if (rsc->props.mLogShaders) {
LOGV("--Shader load result %x ", glGetError());
}
mIsValid = true;
return true;
}
void Program::setShader(const char *txt, uint32_t len) {
mUserShader.setTo(txt, len);
}
void Program::appendUserConstants() {
for (uint32_t ct=0; ct < mConstantCount; ct++) {
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fn = e->getFieldName(field);
if (fn[0] == '#') {
continue;
}
// Cannot be complex
rsAssert(!f->getFieldCount());
if (f->getType() == RS_TYPE_MATRIX_4X4) {
mShader.append("uniform mat4 UNI_");
} else if (f->getType() == RS_TYPE_MATRIX_3X3) {
mShader.append("uniform mat3 UNI_");
} else if (f->getType() == RS_TYPE_MATRIX_2X2) {
mShader.append("uniform mat2 UNI_");
} else {
switch (f->getComponent().getVectorSize()) {
case 1: mShader.append("uniform float UNI_"); break;
case 2: mShader.append("uniform vec2 UNI_"); break;
case 3: mShader.append("uniform vec3 UNI_"); break;
case 4: mShader.append("uniform vec4 UNI_"); break;
default:
rsAssert(0);
}
}
mShader.append(fn);
if (e->getFieldArraySize(field) > 1) {
mShader.appendFormat("[%d]", e->getFieldArraySize(field));
}
mShader.append(";\n");
}
}
}
void Program::logUniform(const Element *field, const float *fd, uint32_t arraySize ) {
RsDataType dataType = field->getType();
uint32_t elementSize = field->getSizeBytes() / sizeof(float);
for (uint32_t i = 0; i < arraySize; i ++) {
if (arraySize > 1) {
LOGV("Array Element [%u]", i);
}
if (dataType == RS_TYPE_MATRIX_4X4) {
LOGV("Matrix4x4");
LOGV("{%f, %f, %f, %f", fd[0], fd[4], fd[8], fd[12]);
LOGV(" %f, %f, %f, %f", fd[1], fd[5], fd[9], fd[13]);
LOGV(" %f, %f, %f, %f", fd[2], fd[6], fd[10], fd[14]);
LOGV(" %f, %f, %f, %f}", fd[3], fd[7], fd[11], fd[15]);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
LOGV("Matrix3x3");
LOGV("{%f, %f, %f", fd[0], fd[3], fd[6]);
LOGV(" %f, %f, %f", fd[1], fd[4], fd[7]);
LOGV(" %f, %f, %f}", fd[2], fd[5], fd[8]);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
LOGV("Matrix2x2");
LOGV("{%f, %f", fd[0], fd[2]);
LOGV(" %f, %f}", fd[1], fd[3]);
} else {
switch (field->getComponent().getVectorSize()) {
case 1:
LOGV("Uniform 1 = %f", fd[0]);
break;
case 2:
LOGV("Uniform 2 = %f %f", fd[0], fd[1]);
break;
case 3:
LOGV("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]);
break;
case 4:
LOGV("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]);
break;
default:
rsAssert(0);
}
}
LOGE("Element size %u data=%p", elementSize, fd);
fd += elementSize;
LOGE("New data=%p", fd);
}
}
void Program::setUniform(Context *rsc, const Element *field, const float *fd,
int32_t slot, uint32_t arraySize ) {
RsDataType dataType = field->getType();
if (dataType == RS_TYPE_MATRIX_4X4) {
glUniformMatrix4fv(slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_3X3) {
glUniformMatrix3fv(slot, arraySize, GL_FALSE, fd);
} else if (dataType == RS_TYPE_MATRIX_2X2) {
glUniformMatrix2fv(slot, arraySize, GL_FALSE, fd);
} else {
switch (field->getComponent().getVectorSize()) {
case 1:
glUniform1fv(slot, arraySize, fd);
break;
case 2:
glUniform2fv(slot, arraySize, fd);
break;
case 3:
glUniform3fv(slot, arraySize, fd);
break;
case 4:
glUniform4fv(slot, arraySize, fd);
break;
default:
rsAssert(0);
}
}
}
void Program::setupUserConstants(Context *rsc, ShaderCache *sc, bool isFragment) {
uint32_t uidx = 0;
for (uint32_t ct=0; ct < mConstantCount; ct++) {
Allocation *alloc = mConstants[ct].get();
if (!alloc) {
LOGE("Attempting to set constants on shader id %u, but alloc at slot %u is not set", (uint32_t)this, ct);
rsc->setError(RS_ERROR_BAD_SHADER, "No constant allocation bound");
continue;
}
const uint8_t *data = static_cast<const uint8_t *>(alloc->getPtr());
const Element *e = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < e->getFieldCount(); field++) {
const Element *f = e->getField(field);
const char *fieldName = e->getFieldName(field);
// If this field is padding, skip it
if (fieldName[0] == '#') {
continue;
}
uint32_t offset = e->getFieldOffsetBytes(field);
const float *fd = reinterpret_cast<const float *>(&data[offset]);
int32_t slot = -1;
uint32_t arraySize = 1;
if (!isFragment) {
slot = sc->vtxUniformSlot(uidx);
arraySize = sc->vtxUniformSize(uidx);
} else {
slot = sc->fragUniformSlot(uidx);
arraySize = sc->fragUniformSize(uidx);
}
if (rsc->props.mLogShadersUniforms) {
LOGV("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s", slot, offset, ct, field, uidx, fieldName);
}
uidx ++;
if (slot < 0) {
continue;
}
if (rsc->props.mLogShadersUniforms) {
logUniform(f, fd, arraySize);
}
setUniform(rsc, f, fd, slot, arraySize);
}
}
}
void Program::initAttribAndUniformArray() {
mAttribCount = 0;
for (uint32_t ct=0; ct < mInputCount; ct++) {
const Element *elem = mInputElements[ct].get();
for (uint32_t field=0; field < elem->getFieldCount(); field++) {
if (elem->getFieldName(field)[0] != '#') {
mAttribCount ++;
}
}
}
mUniformCount = 0;
for (uint32_t ct=0; ct < mConstantCount; ct++) {
const Element *elem = mConstantTypes[ct]->getElement();
for (uint32_t field=0; field < elem->getFieldCount(); field++) {
if (elem->getFieldName(field)[0] != '#') {
mUniformCount ++;
}
}
}
mUniformCount += mTextureCount;
if (mAttribCount) {
mAttribNames = new String8[mAttribCount];
}
if (mUniformCount) {
mUniformNames = new String8[mUniformCount];
mUniformArraySizes = new uint32_t[mUniformCount];
}
}
void Program::initAddUserElement(const Element *e, String8 *names, uint32_t *arrayLengths, uint32_t *count, const char *prefix) {
rsAssert(e->getFieldCount());
for (uint32_t ct=0; ct < e->getFieldCount(); ct++) {
const Element *ce = e->getField(ct);
if (ce->getFieldCount()) {
initAddUserElement(ce, names, arrayLengths, count, prefix);
} else if (e->getFieldName(ct)[0] != '#') {
String8 tmp(prefix);
tmp.append(e->getFieldName(ct));
names[*count].setTo(tmp.string());
if (arrayLengths) {
arrayLengths[*count] = e->getFieldArraySize(ct);
}
(*count)++;
}
}
}
namespace android {
namespace renderscript {
void rsi_ProgramBindConstants(Context *rsc, RsProgram vp, uint32_t slot, RsAllocation constants) {
Program *p = static_cast<Program *>(vp);
p->bindAllocation(rsc, static_cast<Allocation *>(constants), slot);
}
void rsi_ProgramBindTexture(Context *rsc, RsProgram vpf, uint32_t slot, RsAllocation a) {
Program *p = static_cast<Program *>(vpf);
p->bindTexture(rsc, slot, static_cast<Allocation *>(a));
}
void rsi_ProgramBindSampler(Context *rsc, RsProgram vpf, uint32_t slot, RsSampler s) {
Program *p = static_cast<Program *>(vpf);
p->bindSampler(rsc, slot, static_cast<Sampler *>(s));
}
}
}