blob: 87a08020b5bef9cf243876a7b6d1e88254b16aa0 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HARDWARE_CAMERA_HARDWARE_INTERFACE_H
#define ANDROID_HARDWARE_CAMERA_HARDWARE_INTERFACE_H
#include <binder/IMemory.h>
#include <binder/MemoryBase.h>
#include <binder/MemoryHeapBase.h>
#include <utils/RefBase.h>
#include <ui/GraphicBuffer.h>
#include <camera/Camera.h>
#include <camera/CameraParameters.h>
#include <system/window.h>
#include <hardware/camera.h>
namespace android {
typedef void (*notify_callback)(int32_t msgType,
int32_t ext1,
int32_t ext2,
void* user);
typedef void (*data_callback)(int32_t msgType,
const sp<IMemory> &dataPtr,
camera_frame_metadata_t *metadata,
void* user);
typedef void (*data_callback_timestamp)(nsecs_t timestamp,
int32_t msgType,
const sp<IMemory> &dataPtr,
void *user);
/**
* CameraHardwareInterface.h defines the interface to the
* camera hardware abstraction layer, used for setting and getting
* parameters, live previewing, and taking pictures.
*
* It is a referenced counted interface with RefBase as its base class.
* CameraService calls openCameraHardware() to retrieve a strong pointer to the
* instance of this interface and may be called multiple times. The
* following steps describe a typical sequence:
*
* -# After CameraService calls openCameraHardware(), getParameters() and
* setParameters() are used to initialize the camera instance.
* CameraService calls getPreviewHeap() to establish access to the
* preview heap so it can be registered with SurfaceFlinger for
* efficient display updating while in preview mode.
* -# startPreview() is called. The camera instance then periodically
* sends the message CAMERA_MSG_PREVIEW_FRAME (if enabled) each time
* a new preview frame is available. If data callback code needs to use
* this memory after returning, it must copy the data.
*
* Prior to taking a picture, CameraService calls autofocus(). When auto
* focusing has completed, the camera instance sends a CAMERA_MSG_FOCUS notification,
* which informs the application whether focusing was successful. The camera instance
* only sends this message once and it is up to the application to call autoFocus()
* again if refocusing is desired.
*
* CameraService calls takePicture() to request the camera instance take a
* picture. At this point, if a shutter, postview, raw, and/or compressed callback
* is desired, the corresponding message must be enabled. As with CAMERA_MSG_PREVIEW_FRAME,
* any memory provided in a data callback must be copied if it's needed after returning.
*/
class CameraHardwareInterface : public virtual RefBase {
public:
CameraHardwareInterface(const char *name)
{
mDevice = 0;
mName = name;
}
~CameraHardwareInterface()
{
ALOGI("Destroying camera %s", mName.string());
if(mDevice) {
int rc = mDevice->common.close(&mDevice->common);
if (rc != OK)
ALOGE("Could not close camera %s: %d", mName.string(), rc);
}
}
status_t initialize(hw_module_t *module)
{
ALOGI("Opening camera %s", mName.string());
int rc = module->methods->open(module, mName.string(),
(hw_device_t **)&mDevice);
if (rc != OK) {
ALOGE("Could not open camera %s: %d", mName.string(), rc);
return rc;
}
initHalPreviewWindow();
return rc;
}
/** Set the ANativeWindow to which preview frames are sent */
status_t setPreviewWindow(const sp<ANativeWindow>& buf)
{
ALOGV("%s(%s) buf %p", __FUNCTION__, mName.string(), buf.get());
if (mDevice->ops->set_preview_window) {
mPreviewWindow = buf;
mHalPreviewWindow.user = this;
ALOGV("%s &mHalPreviewWindow %p mHalPreviewWindow.user %p", __FUNCTION__,
&mHalPreviewWindow, mHalPreviewWindow.user);
return mDevice->ops->set_preview_window(mDevice,
buf.get() ? &mHalPreviewWindow.nw : 0);
}
return INVALID_OPERATION;
}
/** Set the notification and data callbacks */
void setCallbacks(notify_callback notify_cb,
data_callback data_cb,
data_callback_timestamp data_cb_timestamp,
void* user)
{
mNotifyCb = notify_cb;
mDataCb = data_cb;
mDataCbTimestamp = data_cb_timestamp;
mCbUser = user;
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->set_callbacks) {
mDevice->ops->set_callbacks(mDevice,
__notify_cb,
__data_cb,
__data_cb_timestamp,
__get_memory,
this);
}
}
/**
* The following three functions all take a msgtype,
* which is a bitmask of the messages defined in
* include/ui/Camera.h
*/
/**
* Enable a message, or set of messages.
*/
void enableMsgType(int32_t msgType)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->enable_msg_type)
mDevice->ops->enable_msg_type(mDevice, msgType);
}
/**
* Disable a message, or a set of messages.
*
* Once received a call to disableMsgType(CAMERA_MSG_VIDEO_FRAME), camera hal
* should not rely on its client to call releaseRecordingFrame() to release
* video recording frames sent out by the cameral hal before and after the
* disableMsgType(CAMERA_MSG_VIDEO_FRAME) call. Camera hal clients must not
* modify/access any video recording frame after calling
* disableMsgType(CAMERA_MSG_VIDEO_FRAME).
*/
void disableMsgType(int32_t msgType)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->disable_msg_type)
mDevice->ops->disable_msg_type(mDevice, msgType);
}
/**
* Query whether a message, or a set of messages, is enabled.
* Note that this is operates as an AND, if any of the messages
* queried are off, this will return false.
*/
int msgTypeEnabled(int32_t msgType)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->msg_type_enabled)
return mDevice->ops->msg_type_enabled(mDevice, msgType);
return false;
}
/**
* Start preview mode.
*/
status_t startPreview()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->start_preview)
return mDevice->ops->start_preview(mDevice);
return INVALID_OPERATION;
}
/**
* Stop a previously started preview.
*/
void stopPreview()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->stop_preview)
mDevice->ops->stop_preview(mDevice);
}
/**
* Returns true if preview is enabled.
*/
int previewEnabled()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->preview_enabled)
return mDevice->ops->preview_enabled(mDevice);
return false;
}
/**
* Request the camera hal to store meta data or real YUV data in
* the video buffers send out via CAMERA_MSG_VIDEO_FRRAME for a
* recording session. If it is not called, the default camera
* hal behavior is to store real YUV data in the video buffers.
*
* This method should be called before startRecording() in order
* to be effective.
*
* If meta data is stored in the video buffers, it is up to the
* receiver of the video buffers to interpret the contents and
* to find the actual frame data with the help of the meta data
* in the buffer. How this is done is outside of the scope of
* this method.
*
* Some camera hal may not support storing meta data in the video
* buffers, but all camera hal should support storing real YUV data
* in the video buffers. If the camera hal does not support storing
* the meta data in the video buffers when it is requested to do
* do, INVALID_OPERATION must be returned. It is very useful for
* the camera hal to pass meta data rather than the actual frame
* data directly to the video encoder, since the amount of the
* uncompressed frame data can be very large if video size is large.
*
* @param enable if true to instruct the camera hal to store
* meta data in the video buffers; false to instruct
* the camera hal to store real YUV data in the video
* buffers.
*
* @return OK on success.
*/
status_t storeMetaDataInBuffers(int enable)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->store_meta_data_in_buffers)
return mDevice->ops->store_meta_data_in_buffers(mDevice, enable);
return enable ? INVALID_OPERATION: OK;
}
/**
* Start record mode. When a record image is available a CAMERA_MSG_VIDEO_FRAME
* message is sent with the corresponding frame. Every record frame must be released
* by a cameral hal client via releaseRecordingFrame() before the client calls
* disableMsgType(CAMERA_MSG_VIDEO_FRAME). After the client calls
* disableMsgType(CAMERA_MSG_VIDEO_FRAME), it is camera hal's responsibility
* to manage the life-cycle of the video recording frames, and the client must
* not modify/access any video recording frames.
*/
status_t startRecording()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->start_recording)
return mDevice->ops->start_recording(mDevice);
return INVALID_OPERATION;
}
/**
* Stop a previously started recording.
*/
void stopRecording()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->stop_recording)
mDevice->ops->stop_recording(mDevice);
}
/**
* Returns true if recording is enabled.
*/
int recordingEnabled()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->recording_enabled)
return mDevice->ops->recording_enabled(mDevice);
return false;
}
/**
* Release a record frame previously returned by CAMERA_MSG_VIDEO_FRAME.
*
* It is camera hal client's responsibility to release video recording
* frames sent out by the camera hal before the camera hal receives
* a call to disableMsgType(CAMERA_MSG_VIDEO_FRAME). After it receives
* the call to disableMsgType(CAMERA_MSG_VIDEO_FRAME), it is camera hal's
* responsibility of managing the life-cycle of the video recording
* frames.
*/
void releaseRecordingFrame(const sp<IMemory>& mem)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->release_recording_frame) {
ssize_t offset;
size_t size;
sp<IMemoryHeap> heap = mem->getMemory(&offset, &size);
void *data = ((uint8_t *)heap->base()) + offset;
return mDevice->ops->release_recording_frame(mDevice, data);
}
}
/**
* Start auto focus, the notification callback routine is called
* with CAMERA_MSG_FOCUS once when focusing is complete. autoFocus()
* will be called again if another auto focus is needed.
*/
status_t autoFocus()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->auto_focus)
return mDevice->ops->auto_focus(mDevice);
return INVALID_OPERATION;
}
/**
* Cancels auto-focus function. If the auto-focus is still in progress,
* this function will cancel it. Whether the auto-focus is in progress
* or not, this function will return the focus position to the default.
* If the camera does not support auto-focus, this is a no-op.
*/
status_t cancelAutoFocus()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->cancel_auto_focus)
return mDevice->ops->cancel_auto_focus(mDevice);
return INVALID_OPERATION;
}
/**
* Take a picture.
*/
status_t takePicture()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->take_picture)
return mDevice->ops->take_picture(mDevice);
return INVALID_OPERATION;
}
/**
* Cancel a picture that was started with takePicture. Calling this
* method when no picture is being taken is a no-op.
*/
status_t cancelPicture()
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->cancel_picture)
return mDevice->ops->cancel_picture(mDevice);
return INVALID_OPERATION;
}
/**
* Set the camera parameters. This returns BAD_VALUE if any parameter is
* invalid or not supported. */
status_t setParameters(const CameraParameters &params)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->set_parameters)
return mDevice->ops->set_parameters(mDevice,
params.flatten().string());
return INVALID_OPERATION;
}
/** Return the camera parameters. */
CameraParameters getParameters() const
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
CameraParameters parms;
if (mDevice->ops->get_parameters) {
char *temp = mDevice->ops->get_parameters(mDevice);
String8 str_parms(temp);
if (mDevice->ops->put_parameters)
mDevice->ops->put_parameters(mDevice, temp);
else
free(temp);
parms.unflatten(str_parms);
}
return parms;
}
/**
* Send command to camera driver.
*/
status_t sendCommand(int32_t cmd, int32_t arg1, int32_t arg2)
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->send_command)
return mDevice->ops->send_command(mDevice, cmd, arg1, arg2);
return INVALID_OPERATION;
}
/**
* Release the hardware resources owned by this object. Note that this is
* *not* done in the destructor.
*/
void release() {
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->release)
mDevice->ops->release(mDevice);
}
/**
* Dump state of the camera hardware
*/
status_t dump(int fd, const Vector<String16>& args) const
{
ALOGV("%s(%s)", __FUNCTION__, mName.string());
if (mDevice->ops->dump)
return mDevice->ops->dump(mDevice, fd);
return OK; // It's fine if the HAL doesn't implement dump()
}
private:
camera_device_t *mDevice;
String8 mName;
static void __notify_cb(int32_t msg_type, int32_t ext1,
int32_t ext2, void *user)
{
ALOGV("%s", __FUNCTION__);
CameraHardwareInterface *__this =
static_cast<CameraHardwareInterface *>(user);
__this->mNotifyCb(msg_type, ext1, ext2, __this->mCbUser);
}
static void __data_cb(int32_t msg_type,
const camera_memory_t *data, unsigned int index,
camera_frame_metadata_t *metadata,
void *user)
{
ALOGV("%s", __FUNCTION__);
CameraHardwareInterface *__this =
static_cast<CameraHardwareInterface *>(user);
sp<CameraHeapMemory> mem(static_cast<CameraHeapMemory *>(data->handle));
if (index >= mem->mNumBufs) {
ALOGE("%s: invalid buffer index %d, max allowed is %d", __FUNCTION__,
index, mem->mNumBufs);
return;
}
__this->mDataCb(msg_type, mem->mBuffers[index], metadata, __this->mCbUser);
}
static void __data_cb_timestamp(nsecs_t timestamp, int32_t msg_type,
const camera_memory_t *data, unsigned index,
void *user)
{
ALOGV("%s", __FUNCTION__);
CameraHardwareInterface *__this =
static_cast<CameraHardwareInterface *>(user);
// Start refcounting the heap object from here on. When the clients
// drop all references, it will be destroyed (as well as the enclosed
// MemoryHeapBase.
sp<CameraHeapMemory> mem(static_cast<CameraHeapMemory *>(data->handle));
if (index >= mem->mNumBufs) {
ALOGE("%s: invalid buffer index %d, max allowed is %d", __FUNCTION__,
index, mem->mNumBufs);
return;
}
__this->mDataCbTimestamp(timestamp, msg_type, mem->mBuffers[index], __this->mCbUser);
}
// This is a utility class that combines a MemoryHeapBase and a MemoryBase
// in one. Since we tend to use them in a one-to-one relationship, this is
// handy.
class CameraHeapMemory : public RefBase {
public:
CameraHeapMemory(int fd, size_t buf_size, uint_t num_buffers = 1) :
mBufSize(buf_size),
mNumBufs(num_buffers)
{
mHeap = new MemoryHeapBase(fd, buf_size * num_buffers);
commonInitialization();
}
CameraHeapMemory(size_t buf_size, uint_t num_buffers = 1) :
mBufSize(buf_size),
mNumBufs(num_buffers)
{
mHeap = new MemoryHeapBase(buf_size * num_buffers);
commonInitialization();
}
void commonInitialization()
{
handle.data = mHeap->base();
handle.size = mBufSize * mNumBufs;
handle.handle = this;
mBuffers = new sp<MemoryBase>[mNumBufs];
for (uint_t i = 0; i < mNumBufs; i++)
mBuffers[i] = new MemoryBase(mHeap,
i * mBufSize,
mBufSize);
handle.release = __put_memory;
}
virtual ~CameraHeapMemory()
{
delete [] mBuffers;
}
size_t mBufSize;
uint_t mNumBufs;
sp<MemoryHeapBase> mHeap;
sp<MemoryBase> *mBuffers;
camera_memory_t handle;
};
static camera_memory_t* __get_memory(int fd, size_t buf_size, uint_t num_bufs,
void *user __attribute__((unused)))
{
CameraHeapMemory *mem;
if (fd < 0)
mem = new CameraHeapMemory(buf_size, num_bufs);
else
mem = new CameraHeapMemory(fd, buf_size, num_bufs);
mem->incStrong(mem);
return &mem->handle;
}
static void __put_memory(camera_memory_t *data)
{
if (!data)
return;
CameraHeapMemory *mem = static_cast<CameraHeapMemory *>(data->handle);
mem->decStrong(mem);
}
static ANativeWindow *__to_anw(void *user)
{
CameraHardwareInterface *__this =
reinterpret_cast<CameraHardwareInterface *>(user);
return __this->mPreviewWindow.get();
}
#define anw(n) __to_anw(((struct camera_preview_window *)n)->user)
static int __dequeue_buffer(struct preview_stream_ops* w,
buffer_handle_t** buffer, int *stride)
{
int rc;
ANativeWindow *a = anw(w);
ANativeWindowBuffer* anb;
rc = a->dequeueBuffer(a, &anb);
if (!rc) {
*buffer = &anb->handle;
*stride = anb->stride;
}
return rc;
}
#ifndef container_of
#define container_of(ptr, type, member) ({ \
const typeof(((type *) 0)->member) *__mptr = (ptr); \
(type *) ((char *) __mptr - (char *)(&((type *)0)->member)); })
#endif
static int __lock_buffer(struct preview_stream_ops* w,
buffer_handle_t* buffer)
{
ANativeWindow *a = anw(w);
return a->lockBuffer(a,
container_of(buffer, ANativeWindowBuffer, handle));
}
static int __enqueue_buffer(struct preview_stream_ops* w,
buffer_handle_t* buffer)
{
ANativeWindow *a = anw(w);
return a->queueBuffer(a,
container_of(buffer, ANativeWindowBuffer, handle));
}
static int __cancel_buffer(struct preview_stream_ops* w,
buffer_handle_t* buffer)
{
ANativeWindow *a = anw(w);
return a->cancelBuffer(a,
container_of(buffer, ANativeWindowBuffer, handle));
}
static int __set_buffer_count(struct preview_stream_ops* w, int count)
{
ANativeWindow *a = anw(w);
return native_window_set_buffer_count(a, count);
}
static int __set_buffers_geometry(struct preview_stream_ops* w,
int width, int height, int format)
{
ANativeWindow *a = anw(w);
return native_window_set_buffers_geometry(a,
width, height, format);
}
static int __set_crop(struct preview_stream_ops *w,
int left, int top, int right, int bottom)
{
ANativeWindow *a = anw(w);
android_native_rect_t crop;
crop.left = left;
crop.top = top;
crop.right = right;
crop.bottom = bottom;
return native_window_set_crop(a, &crop);
}
static int __set_timestamp(struct preview_stream_ops *w,
int64_t timestamp) {
ANativeWindow *a = anw(w);
return native_window_set_buffers_timestamp(a, timestamp);
}
static int __set_usage(struct preview_stream_ops* w, int usage)
{
ANativeWindow *a = anw(w);
return native_window_set_usage(a, usage);
}
static int __set_swap_interval(struct preview_stream_ops *w, int interval)
{
ANativeWindow *a = anw(w);
return a->setSwapInterval(a, interval);
}
static int __get_min_undequeued_buffer_count(
const struct preview_stream_ops *w,
int *count)
{
ANativeWindow *a = anw(w);
return a->query(a, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, count);
}
void initHalPreviewWindow()
{
mHalPreviewWindow.nw.cancel_buffer = __cancel_buffer;
mHalPreviewWindow.nw.lock_buffer = __lock_buffer;
mHalPreviewWindow.nw.dequeue_buffer = __dequeue_buffer;
mHalPreviewWindow.nw.enqueue_buffer = __enqueue_buffer;
mHalPreviewWindow.nw.set_buffer_count = __set_buffer_count;
mHalPreviewWindow.nw.set_buffers_geometry = __set_buffers_geometry;
mHalPreviewWindow.nw.set_crop = __set_crop;
mHalPreviewWindow.nw.set_timestamp = __set_timestamp;
mHalPreviewWindow.nw.set_usage = __set_usage;
mHalPreviewWindow.nw.set_swap_interval = __set_swap_interval;
mHalPreviewWindow.nw.get_min_undequeued_buffer_count =
__get_min_undequeued_buffer_count;
}
sp<ANativeWindow> mPreviewWindow;
struct camera_preview_window {
struct preview_stream_ops nw;
void *user;
};
struct camera_preview_window mHalPreviewWindow;
notify_callback mNotifyCb;
data_callback mDataCb;
data_callback_timestamp mDataCbTimestamp;
void *mCbUser;
};
}; // namespace android
#endif