blob: 2a39bd94bbc2cd85fa5fd8c3bcc2dd635d72b1ae [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_VIEW
#include <SkCanvas.h>
#include <algorithm>
#include <utils/Trace.h>
#include "Debug.h"
#include "DisplayList.h"
#include "DisplayListOp.h"
#include "DisplayListLogBuffer.h"
namespace android {
namespace uirenderer {
void DisplayList::outputLogBuffer(int fd) {
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
if (logBuffer.isEmpty()) {
return;
}
FILE *file = fdopen(fd, "a");
fprintf(file, "\nRecent DisplayList operations\n");
logBuffer.outputCommands(file);
String8 cachesLog;
Caches::getInstance().dumpMemoryUsage(cachesLog);
fprintf(file, "\nCaches:\n%s", cachesLog.string());
fprintf(file, "\n");
fflush(file);
}
DisplayList::DisplayList(const DisplayListRenderer& recorder) :
mDestroyed(false), mTransformMatrix(NULL), mTransformCamera(NULL), mTransformMatrix3D(NULL),
mStaticMatrix(NULL), mAnimationMatrix(NULL) {
initFromDisplayListRenderer(recorder);
}
DisplayList::~DisplayList() {
mDestroyed = true;
clearResources();
}
void DisplayList::destroyDisplayListDeferred(DisplayList* displayList) {
if (displayList) {
DISPLAY_LIST_LOGD("Deferring display list destruction");
Caches::getInstance().deleteDisplayListDeferred(displayList);
}
}
void DisplayList::clearResources() {
mDisplayListData = NULL;
delete mTransformMatrix;
delete mTransformCamera;
delete mTransformMatrix3D;
delete mStaticMatrix;
delete mAnimationMatrix;
mTransformMatrix = NULL;
mTransformCamera = NULL;
mTransformMatrix3D = NULL;
mStaticMatrix = NULL;
mAnimationMatrix = NULL;
Caches& caches = Caches::getInstance();
caches.unregisterFunctors(mFunctorCount);
caches.resourceCache.lock();
for (size_t i = 0; i < mBitmapResources.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mBitmapResources.itemAt(i));
}
for (size_t i = 0; i < mOwnedBitmapResources.size(); i++) {
const SkBitmap* bitmap = mOwnedBitmapResources.itemAt(i);
caches.resourceCache.decrementRefcountLocked(bitmap);
caches.resourceCache.destructorLocked(bitmap);
}
for (size_t i = 0; i < mFilterResources.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mFilterResources.itemAt(i));
}
for (size_t i = 0; i < mPatchResources.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mPatchResources.itemAt(i));
}
for (size_t i = 0; i < mShaders.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mShaders.itemAt(i));
caches.resourceCache.destructorLocked(mShaders.itemAt(i));
}
for (size_t i = 0; i < mSourcePaths.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mSourcePaths.itemAt(i));
}
for (size_t i = 0; i < mLayers.size(); i++) {
caches.resourceCache.decrementRefcountLocked(mLayers.itemAt(i));
}
caches.resourceCache.unlock();
for (size_t i = 0; i < mPaints.size(); i++) {
delete mPaints.itemAt(i);
}
for (size_t i = 0; i < mRegions.size(); i++) {
delete mRegions.itemAt(i);
}
for (size_t i = 0; i < mPaths.size(); i++) {
delete mPaths.itemAt(i);
}
for (size_t i = 0; i < mMatrices.size(); i++) {
delete mMatrices.itemAt(i);
}
mBitmapResources.clear();
mOwnedBitmapResources.clear();
mFilterResources.clear();
mPatchResources.clear();
mShaders.clear();
mSourcePaths.clear();
mPaints.clear();
mRegions.clear();
mPaths.clear();
mMatrices.clear();
mLayers.clear();
}
void DisplayList::reset() {
clearResources();
init();
}
void DisplayList::initFromDisplayListRenderer(const DisplayListRenderer& recorder, bool reusing) {
if (reusing) {
// re-using display list - clear out previous allocations
clearResources();
}
init();
mDisplayListData = recorder.getDisplayListData();
mSize = mDisplayListData->allocator.usedSize();
if (mSize == 0) {
return;
}
mFunctorCount = recorder.getFunctorCount();
Caches& caches = Caches::getInstance();
caches.registerFunctors(mFunctorCount);
caches.resourceCache.lock();
const Vector<const SkBitmap*>& bitmapResources = recorder.getBitmapResources();
for (size_t i = 0; i < bitmapResources.size(); i++) {
const SkBitmap* resource = bitmapResources.itemAt(i);
mBitmapResources.add(resource);
caches.resourceCache.incrementRefcountLocked(resource);
}
const Vector<const SkBitmap*>& ownedBitmapResources = recorder.getOwnedBitmapResources();
for (size_t i = 0; i < ownedBitmapResources.size(); i++) {
const SkBitmap* resource = ownedBitmapResources.itemAt(i);
mOwnedBitmapResources.add(resource);
caches.resourceCache.incrementRefcountLocked(resource);
}
const Vector<SkiaColorFilter*>& filterResources = recorder.getFilterResources();
for (size_t i = 0; i < filterResources.size(); i++) {
SkiaColorFilter* resource = filterResources.itemAt(i);
mFilterResources.add(resource);
caches.resourceCache.incrementRefcountLocked(resource);
}
const Vector<const Res_png_9patch*>& patchResources = recorder.getPatchResources();
for (size_t i = 0; i < patchResources.size(); i++) {
const Res_png_9patch* resource = patchResources.itemAt(i);
mPatchResources.add(resource);
caches.resourceCache.incrementRefcountLocked(resource);
}
const Vector<SkiaShader*>& shaders = recorder.getShaders();
for (size_t i = 0; i < shaders.size(); i++) {
SkiaShader* resource = shaders.itemAt(i);
mShaders.add(resource);
caches.resourceCache.incrementRefcountLocked(resource);
}
const SortedVector<const SkPath*>& sourcePaths = recorder.getSourcePaths();
for (size_t i = 0; i < sourcePaths.size(); i++) {
mSourcePaths.add(sourcePaths.itemAt(i));
caches.resourceCache.incrementRefcountLocked(sourcePaths.itemAt(i));
}
const Vector<Layer*>& layers = recorder.getLayers();
for (size_t i = 0; i < layers.size(); i++) {
mLayers.add(layers.itemAt(i));
caches.resourceCache.incrementRefcountLocked(layers.itemAt(i));
}
caches.resourceCache.unlock();
mPaints.appendVector(recorder.getPaints());
mRegions.appendVector(recorder.getRegions());
mPaths.appendVector(recorder.getPaths());
mMatrices.appendVector(recorder.getMatrices());
}
void DisplayList::init() {
mSize = 0;
mIsRenderable = true;
mFunctorCount = 0;
mLeft = 0;
mTop = 0;
mRight = 0;
mBottom = 0;
mClipToBounds = true;
mIsolatedZVolume = true;
mProjectBackwards = false;
mProjectionReceiver = false;
mOutline.rewind();
mClipToOutline = false;
mAlpha = 1;
mHasOverlappingRendering = true;
mTranslationX = 0;
mTranslationY = 0;
mTranslationZ = 0;
mRotation = 0;
mRotationX = 0;
mRotationY= 0;
mScaleX = 1;
mScaleY = 1;
mPivotX = 0;
mPivotY = 0;
mCameraDistance = 0;
mMatrixDirty = false;
mMatrixFlags = 0;
mPrevWidth = -1;
mPrevHeight = -1;
mWidth = 0;
mHeight = 0;
mPivotExplicitlySet = false;
mCaching = false;
}
size_t DisplayList::getSize() {
return mSize;
}
/**
* This function is a simplified version of replay(), where we simply retrieve and log the
* display list. This function should remain in sync with the replay() function.
*/
void DisplayList::output(uint32_t level) {
ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this,
mName.string(), isRenderable());
ALOGD("%*s%s %d", level * 2, "", "Save",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
outputViewProperties(level);
int flags = DisplayListOp::kOpLogFlag_Recurse;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
mDisplayListData->displayListOps[i]->output(level, flags);
}
ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string());
}
float DisplayList::getPivotX() {
updateMatrix();
return mPivotX;
}
float DisplayList::getPivotY() {
updateMatrix();
return mPivotY;
}
void DisplayList::updateMatrix() {
if (mMatrixDirty) {
// NOTE: mTransformMatrix won't be up to date if a DisplayList goes from a complex transform
// to a pure translate. This is safe because the matrix isn't read in pure translate cases.
if (mMatrixFlags && mMatrixFlags != TRANSLATION) {
if (!mTransformMatrix) {
// only allocate a matrix if we have a complex transform
mTransformMatrix = new Matrix4();
}
if (!mPivotExplicitlySet) {
if (mWidth != mPrevWidth || mHeight != mPrevHeight) {
mPrevWidth = mWidth;
mPrevHeight = mHeight;
mPivotX = mPrevWidth / 2.0f;
mPivotY = mPrevHeight / 2.0f;
}
}
const bool perspectiveEnabled = Caches::getInstance().propertyEnable3d;
if (!perspectiveEnabled && (mMatrixFlags & ROTATION_3D) == 0) {
mTransformMatrix->loadTranslate(
mPivotX + mTranslationX,
mPivotY + mTranslationY,
0);
mTransformMatrix->rotate(mRotation, 0, 0, 1);
mTransformMatrix->scale(mScaleX, mScaleY, 1);
mTransformMatrix->translate(-mPivotX, -mPivotY);
} else {
if (perspectiveEnabled) {
mTransformMatrix->loadTranslate(
mPivotX + mTranslationX,
mPivotY + mTranslationY,
mTranslationZ);
mTransformMatrix->rotate(mRotationX, 1, 0, 0);
mTransformMatrix->rotate(mRotationY, 0, 1, 0);
mTransformMatrix->rotate(mRotation, 0, 0, 1);
mTransformMatrix->scale(mScaleX, mScaleY, 1);
mTransformMatrix->translate(-mPivotX, -mPivotY);
} else {
/* TODO: support this old transform approach, based on API level */
if (!mTransformCamera) {
mTransformCamera = new Sk3DView();
mTransformMatrix3D = new SkMatrix();
}
SkMatrix transformMatrix;
transformMatrix.reset();
mTransformCamera->save();
transformMatrix.preScale(mScaleX, mScaleY, mPivotX, mPivotY);
mTransformCamera->rotateX(mRotationX);
mTransformCamera->rotateY(mRotationY);
mTransformCamera->rotateZ(-mRotation);
mTransformCamera->getMatrix(mTransformMatrix3D);
mTransformMatrix3D->preTranslate(-mPivotX, -mPivotY);
mTransformMatrix3D->postTranslate(mPivotX + mTranslationX,
mPivotY + mTranslationY);
transformMatrix.postConcat(*mTransformMatrix3D);
mTransformCamera->restore();
mTransformMatrix->load(transformMatrix);
}
}
}
mMatrixDirty = false;
}
}
void DisplayList::outputViewProperties(const int level) {
updateMatrix();
if (mLeft != 0 || mTop != 0) {
ALOGD("%*sTranslate (left, top) %d, %d", level * 2, "", mLeft, mTop);
}
if (mStaticMatrix) {
ALOGD("%*sConcatMatrix (static) %p: " SK_MATRIX_STRING,
level * 2, "", mStaticMatrix, SK_MATRIX_ARGS(mStaticMatrix));
}
if (mAnimationMatrix) {
ALOGD("%*sConcatMatrix (animation) %p: " SK_MATRIX_STRING,
level * 2, "", mAnimationMatrix, SK_MATRIX_ARGS(mAnimationMatrix));
}
if (mMatrixFlags != 0) {
if (mMatrixFlags == TRANSLATION) {
ALOGD("%*sTranslate %.2f, %.2f, %.2f",
level * 2, "", mTranslationX, mTranslationY, mTranslationZ);
} else {
ALOGD("%*sConcatMatrix %p: " MATRIX_4_STRING,
level * 2, "", mTransformMatrix, MATRIX_4_ARGS(mTransformMatrix));
}
}
bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
if (mAlpha < 1) {
if (mCaching) {
ALOGD("%*sSetOverrideLayerAlpha %.2f", level * 2, "", mAlpha);
} else if (!mHasOverlappingRendering) {
ALOGD("%*sScaleAlpha %.2f", level * 2, "", mAlpha);
} else {
int flags = SkCanvas::kHasAlphaLayer_SaveFlag;
if (clipToBoundsNeeded) {
flags |= SkCanvas::kClipToLayer_SaveFlag;
clipToBoundsNeeded = false; // clipping done by save layer
}
ALOGD("%*sSaveLayerAlpha %.2f, %.2f, %.2f, %.2f, %d, 0x%x", level * 2, "",
(float) 0, (float) 0, (float) mRight - mLeft, (float) mBottom - mTop,
(int)(mAlpha * 255), flags);
}
}
if (clipToBoundsNeeded) {
ALOGD("%*sClipRect %.2f, %.2f, %.2f, %.2f", level * 2, "", 0.0f, 0.0f,
(float) mRight - mLeft, (float) mBottom - mTop);
}
}
/*
* For property operations, we pass a savecount of 0, since the operations aren't part of the
* displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in
* base saveCount (i.e., how RestoreToCount uses saveCount + mCount)
*/
#define PROPERTY_SAVECOUNT 0
template <class T>
void DisplayList::setViewProperties(OpenGLRenderer& renderer, T& handler,
const int level) {
#if DEBUG_DISPLAY_LIST
outputViewProperties(level);
#endif
updateMatrix();
if (mLeft != 0 || mTop != 0) {
renderer.translate(mLeft, mTop);
}
if (mStaticMatrix) {
renderer.concatMatrix(mStaticMatrix);
} else if (mAnimationMatrix) {
renderer.concatMatrix(mAnimationMatrix);
}
if (mMatrixFlags != 0) {
if (mMatrixFlags == TRANSLATION) {
renderer.translate(mTranslationX, mTranslationY,
Caches::getInstance().propertyEnable3d ? mTranslationZ : 0.0f); // TODO: necessary?
} else {
renderer.concatMatrix(*mTransformMatrix);
}
}
bool clipToBoundsNeeded = mCaching ? false : mClipToBounds;
if (mAlpha < 1) {
if (mCaching) {
renderer.setOverrideLayerAlpha(mAlpha);
} else if (!mHasOverlappingRendering) {
renderer.scaleAlpha(mAlpha);
} else {
// TODO: should be able to store the size of a DL at record time and not
// have to pass it into this call. In fact, this information might be in the
// location/size info that we store with the new native transform data.
int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag;
if (clipToBoundsNeeded) {
saveFlags |= SkCanvas::kClipToLayer_SaveFlag;
clipToBoundsNeeded = false; // clipping done by saveLayer
}
SaveLayerOp* op = new (handler.allocator()) SaveLayerOp(
0, 0, mRight - mLeft, mBottom - mTop, mAlpha * 255, saveFlags);
handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
}
}
if (clipToBoundsNeeded) {
ClipRectOp* op = new (handler.allocator()) ClipRectOp(0, 0,
mRight - mLeft, mBottom - mTop, SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
}
if (CC_UNLIKELY(mClipToOutline && !mOutline.isEmpty())) {
ClipPathOp* op = new (handler.allocator()) ClipPathOp(&mOutline, SkRegion::kIntersect_Op);
handler(op, PROPERTY_SAVECOUNT, mClipToBounds);
}
}
/**
* Apply property-based transformations to input matrix
*/
void DisplayList::applyViewPropertyTransforms(mat4& matrix) {
if (mLeft != 0 || mTop != 0) {
matrix.translate(mLeft, mTop);
}
if (mStaticMatrix) {
mat4 stat(*mStaticMatrix);
matrix.multiply(stat);
} else if (mAnimationMatrix) {
mat4 anim(*mAnimationMatrix);
matrix.multiply(anim);
}
if (mMatrixFlags != 0) {
updateMatrix();
if (mMatrixFlags == TRANSLATION) {
matrix.translate(mTranslationX, mTranslationY, mTranslationZ);
} else {
matrix.multiply(*mTransformMatrix);
}
}
}
/**
* Organizes the DisplayList hierarchy to prepare for Z-based draw order.
*
* This should be called before a call to defer() or drawDisplayList()
*
* Each DisplayList that serves as a 3d root builds its list of composited children,
* which are flagged to not draw in the standard draw loop.
*/
void DisplayList::computeOrdering() {
ATRACE_CALL();
m3dNodes.clear();
mProjectedNodes.clear();
// TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that
// transform properties are applied correctly to top level children
if (mDisplayListData == NULL) return;
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
DrawDisplayListOp* childOp = mDisplayListData->children[i];
childOp->mDisplayList->computeOrderingImpl(childOp,
&m3dNodes, &mat4::identity(),
&mProjectedNodes, &mat4::identity());
}
}
void DisplayList::computeOrderingImpl(
DrawDisplayListOp* opState,
Vector<ZDrawDisplayListOpPair>* compositedChildrenOf3dRoot,
const mat4* transformFrom3dRoot,
Vector<DrawDisplayListOp*>* compositedChildrenOfProjectionSurface,
const mat4* transformFromProjectionSurface) {
m3dNodes.clear();
mProjectedNodes.clear();
if (mDisplayListData == NULL || mSize == 0) return;
// TODO: should avoid this calculation in most cases
// TODO: just calculate single matrix, down to all leaf composited elements
Matrix4 localTransformFrom3dRoot(*transformFrom3dRoot);
localTransformFrom3dRoot.multiply(opState->mTransformFromParent);
Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface);
localTransformFromProjectionSurface.multiply(opState->mTransformFromParent);
if (mTranslationZ != 0.0f) { // TODO: other signals for 3d compositing, such as custom matrix4
// composited 3d layer, flag for out of order draw and save matrix...
opState->mSkipInOrderDraw = true;
opState->mTransformFromCompositingAncestor.load(localTransformFrom3dRoot);
// ... and insert into current 3d root, keyed with pivot z for later sorting
Vector3 pivot(mPivotX, mPivotY, 0.0f);
mat4 totalTransform(localTransformFrom3dRoot);
applyViewPropertyTransforms(totalTransform);
totalTransform.mapPoint3d(pivot);
compositedChildrenOf3dRoot->add(ZDrawDisplayListOpPair(pivot.z, opState));
} else if (mProjectBackwards) {
// composited projectee, flag for out of order draw, save matrix, and store in proj surface
opState->mSkipInOrderDraw = true;
opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface);
compositedChildrenOfProjectionSurface->add(opState);
} else {
// standard in order draw
opState->mSkipInOrderDraw = false;
}
if (mDisplayListData->children.size() > 0) {
if (mIsolatedZVolume) {
// create a new 3d space for descendents by collecting them
compositedChildrenOf3dRoot = &m3dNodes;
transformFrom3dRoot = &mat4::identity();
} else {
applyViewPropertyTransforms(localTransformFrom3dRoot);
transformFrom3dRoot = &localTransformFrom3dRoot;
}
const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0;
bool haveAppliedPropertiesToProjection = false;
for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) {
DrawDisplayListOp* childOp = mDisplayListData->children[i];
DisplayList* child = childOp->mDisplayList;
Vector<DrawDisplayListOp*>* projectionChildren = NULL;
const mat4* projectionTransform = NULL;
if (isProjectionReceiver && !child->mProjectBackwards) {
// if receiving projections, collect projecting descendent
// Note that if a direct descendent is projecting backwards, we pass it's
// grandparent projection collection, since it shouldn't project onto it's
// parent, where it will already be drawing.
projectionChildren = &mProjectedNodes;
projectionTransform = &mat4::identity();
} else {
if (!haveAppliedPropertiesToProjection) {
applyViewPropertyTransforms(localTransformFromProjectionSurface);
haveAppliedPropertiesToProjection = true;
}
projectionChildren = compositedChildrenOfProjectionSurface;
projectionTransform = &localTransformFromProjectionSurface;
}
child->computeOrderingImpl(childOp,
compositedChildrenOf3dRoot, transformFrom3dRoot,
projectionChildren, projectionTransform);
}
}
}
class DeferOperationHandler {
public:
DeferOperationHandler(DeferStateStruct& deferStruct, int level)
: mDeferStruct(deferStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); }
private:
DeferStateStruct& mDeferStruct;
const int mLevel;
};
void DisplayList::defer(DeferStateStruct& deferStruct, const int level) {
DeferOperationHandler handler(deferStruct, level);
iterate<DeferOperationHandler>(deferStruct.mRenderer, handler, level);
}
class ReplayOperationHandler {
public:
ReplayOperationHandler(ReplayStateStruct& replayStruct, int level)
: mReplayStruct(replayStruct), mLevel(level) {}
inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) {
#if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS
mReplayStruct.mRenderer.eventMark(operation->name());
#endif
operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds);
}
inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); }
private:
ReplayStateStruct& mReplayStruct;
const int mLevel;
};
void DisplayList::replay(ReplayStateStruct& replayStruct, const int level) {
ReplayOperationHandler handler(replayStruct, level);
replayStruct.mRenderer.startMark(mName.string());
iterate<ReplayOperationHandler>(replayStruct.mRenderer, handler, level);
replayStruct.mRenderer.endMark();
DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(),
replayStruct.mDrawGlStatus);
}
template <class T>
void DisplayList::iterate3dChildren(ChildrenSelectMode mode, OpenGLRenderer& renderer,
T& handler, const int level) {
if (m3dNodes.size() == 0 ||
(mode == kNegativeZChildren && m3dNodes[0].key > 0.0f) ||
(mode == kPositiveZChildren && m3dNodes[m3dNodes.size() - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
LinearAllocator& alloc = handler.allocator();
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
SkRegion::kIntersect_Op); // clip to 3d root bounds for now
handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
for (size_t i = 0; i < m3dNodes.size(); i++) {
const float zValue = m3dNodes[i].key;
DrawDisplayListOp* childOp = m3dNodes[i].value;
if (mode == kPositiveZChildren && zValue < 0.0f) continue;
if (mode == kNegativeZChildren && zValue > 0.0f) break;
if (mode == kPositiveZChildren && zValue > 0.0f) {
/* draw shadow with parent matrix applied, passing in the child's total matrix
*
* TODO:
* -view must opt-in to shadows
* -consider depth in more complex scenarios (neg z, added shadow depth)
*/
mat4 shadowMatrix(childOp->mTransformFromCompositingAncestor);
childOp->mDisplayList->applyViewPropertyTransforms(shadowMatrix);
DisplayList* child = childOp->mDisplayList;
DisplayListOp* shadowOp = new (alloc) DrawShadowOp(shadowMatrix,
child->mAlpha, &(child->mOutline), child->mWidth, child->mHeight);
handler(shadowOp, PROPERTY_SAVECOUNT, mClipToBounds);
}
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
childOp->mSkipInOrderDraw = true;
}
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
}
template <class T>
void DisplayList::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) {
int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
LinearAllocator& alloc = handler.allocator();
ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, mWidth, mHeight,
SkRegion::kReplace_Op); // clip to projection surface root bounds
handler(clipOp, PROPERTY_SAVECOUNT, mClipToBounds);
for (size_t i = 0; i < mProjectedNodes.size(); i++) {
DrawDisplayListOp* childOp = mProjectedNodes[i];
// matrix save, concat, and restore can be done safely without allocating operations
int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag);
renderer.concatMatrix(childOp->mTransformFromCompositingAncestor);
childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone
handler(childOp, renderer.getSaveCount() - 1, mClipToBounds);
childOp->mSkipInOrderDraw = true;
renderer.restoreToCount(restoreTo);
}
handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, mClipToBounds);
}
/**
* This function serves both defer and replay modes, and will organize the displayList's component
* operations for a single frame:
*
* Every 'simple' state operation that affects just the matrix and alpha (or other factors of
* DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom
* defer logic) and operations in displayListOps are issued through the 'handler' which handles the
* defer vs replay logic, per operation
*/
template <class T>
void DisplayList::iterate(OpenGLRenderer& renderer, T& handler, const int level) {
if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging
ALOGW("Error: %s is drawing after destruction, size %d", getName(), mSize);
CRASH();
}
if (mSize == 0 || mAlpha <= 0) {
DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string());
return;
}
#if DEBUG_DISPLAY_LIST
Rect* clipRect = renderer.getClipRect();
DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f",
level * 2, "", this, mName.string(), clipRect->left, clipRect->top,
clipRect->right, clipRect->bottom);
#endif
LinearAllocator& alloc = handler.allocator();
int restoreTo = renderer.getSaveCount();
handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag),
PROPERTY_SAVECOUNT, mClipToBounds);
DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "",
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo);
setViewProperties<T>(renderer, handler, level + 1);
bool quickRejected = mClipToBounds && renderer.quickRejectConservative(0, 0, mWidth, mHeight);
if (!quickRejected) {
// Z sort 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(m3dNodes.begin(), m3dNodes.end());
// for 3d root, draw children with negative z values
iterate3dChildren(kNegativeZChildren, renderer, handler, level);
DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance();
const int saveCountOffset = renderer.getSaveCount() - 1;
const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex;
for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) {
DisplayListOp *op = mDisplayListData->displayListOps[i];
#if DEBUG_DISPLAY_LIST
op->output(level + 1);
#endif
logBuffer.writeCommand(level, op->name());
handler(op, saveCountOffset, mClipToBounds);
if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) {
iterateProjectedChildren(renderer, handler, level);
}
}
// for 3d root, draw children with positive z values
iterate3dChildren(kPositiveZChildren, renderer, handler, level);
}
DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo);
handler(new (alloc) RestoreToCountOp(restoreTo),
PROPERTY_SAVECOUNT, mClipToBounds);
renderer.setOverrideLayerAlpha(1.0f);
}
}; // namespace uirenderer
}; // namespace android