blob: 636e9774156e9b89deb7178d86e00358e6f60a08 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ResourceTable.h"
#include "ResourceValues.h"
#include "ValueVisitor.h"
#include "flatten/ChunkWriter.h"
#include "flatten/ResourceTypeExtensions.h"
#include "flatten/TableFlattener.h"
#include "util/BigBuffer.h"
#include <base/macros.h>
#include <type_traits>
#include <numeric>
using namespace android;
namespace aapt {
namespace {
template <typename T>
static bool cmpIds(const T* a, const T* b) {
return a->id.value() < b->id.value();
}
static void strcpy16_htod(uint16_t* dst, size_t len, const StringPiece16& src) {
if (len == 0) {
return;
}
size_t i;
const char16_t* srcData = src.data();
for (i = 0; i < len - 1 && i < src.size(); i++) {
dst[i] = util::hostToDevice16((uint16_t) srcData[i]);
}
dst[i] = 0;
}
struct FlatEntry {
ResourceEntry* entry;
Value* value;
// The entry string pool index to the entry's name.
uint32_t entryKey;
// The source string pool index to the source file path.
uint32_t sourcePathKey;
uint32_t sourceLine;
// The source string pool index to the comment.
uint32_t commentKey;
};
class SymbolWriter {
public:
struct Entry {
StringPool::Ref name;
size_t offset;
};
std::vector<Entry> symbols;
explicit SymbolWriter(StringPool* pool) : mPool(pool) {
}
void addSymbol(const Reference& ref, size_t offset) {
const ResourceName& name = ref.name.value();
std::u16string fullName;
if (ref.privateReference) {
fullName += u"*";
}
if (!name.package.empty()) {
fullName += name.package + u":";
}
fullName += toString(name.type).toString() + u"/" + name.entry;
symbols.push_back(Entry{ mPool->makeRef(fullName), offset });
}
void shiftAllOffsets(size_t offset) {
for (Entry& entry : symbols) {
entry.offset += offset;
}
}
private:
StringPool* mPool;
};
struct MapFlattenVisitor : public RawValueVisitor {
using RawValueVisitor::visit;
SymbolWriter* mSymbols;
FlatEntry* mEntry;
BigBuffer* mBuffer;
bool mUseExtendedChunks;
size_t mEntryCount = 0;
Maybe<uint32_t> mParentIdent;
Maybe<ResourceNameRef> mParentName;
MapFlattenVisitor(SymbolWriter* symbols, FlatEntry* entry, BigBuffer* buffer,
bool useExtendedChunks) :
mSymbols(symbols), mEntry(entry), mBuffer(buffer),
mUseExtendedChunks(useExtendedChunks) {
}
void flattenKey(Reference* key, ResTable_map* outEntry) {
if (!key->id || (key->privateReference && mUseExtendedChunks)) {
assert(key->name && "reference must have a name");
outEntry->name.ident = util::hostToDevice32(0);
mSymbols->addSymbol(*key, (mBuffer->size() - sizeof(ResTable_map)) +
offsetof(ResTable_map, name));
} else {
outEntry->name.ident = util::hostToDevice32(key->id.value().id);
}
}
void flattenValue(Item* value, ResTable_map* outEntry) {
bool privateRef = false;
if (Reference* ref = valueCast<Reference>(value)) {
privateRef = ref->privateReference && mUseExtendedChunks;
if (!ref->id || privateRef) {
assert(ref->name && "reference must have a name");
mSymbols->addSymbol(*ref, (mBuffer->size() - sizeof(ResTable_map)) +
offsetof(ResTable_map, value) + offsetof(Res_value, data));
}
}
bool result = value->flatten(&outEntry->value);
if (privateRef) {
outEntry->value.data = 0;
}
assert(result && "flatten failed");
}
void flattenEntry(Reference* key, Item* value) {
ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
flattenKey(key, outEntry);
flattenValue(value, outEntry);
outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
mEntryCount++;
}
void visit(Attribute* attr) override {
{
Reference key(ResourceId{ ResTable_map::ATTR_TYPE });
BinaryPrimitive val(Res_value::TYPE_INT_DEC, attr->typeMask);
flattenEntry(&key, &val);
}
for (Attribute::Symbol& s : attr->symbols) {
BinaryPrimitive val(Res_value::TYPE_INT_DEC, s.value);
flattenEntry(&s.symbol, &val);
}
}
static bool cmpStyleEntries(const Style::Entry& a, const Style::Entry& b) {
if (a.key.id) {
if (b.key.id) {
return a.key.id.value() < b.key.id.value();
}
return true;
} else if (!b.key.id) {
return a.key.name.value() < b.key.name.value();
}
return false;
}
void visit(Style* style) override {
if (style->parent) {
bool privateRef = style->parent.value().privateReference && mUseExtendedChunks;
if (!style->parent.value().id || privateRef) {
assert(style->parent.value().name && "reference must have a name");
mParentName = style->parent.value().name;
} else {
mParentIdent = style->parent.value().id.value().id;
}
}
// Sort the style.
std::sort(style->entries.begin(), style->entries.end(), cmpStyleEntries);
for (Style::Entry& entry : style->entries) {
flattenEntry(&entry.key, entry.value.get());
}
}
void visit(Styleable* styleable) override {
for (auto& attrRef : styleable->entries) {
BinaryPrimitive val(Res_value{});
flattenEntry(&attrRef, &val);
}
}
void visit(Array* array) override {
for (auto& item : array->items) {
ResTable_map* outEntry = mBuffer->nextBlock<ResTable_map>();
flattenValue(item.get(), outEntry);
outEntry->value.size = util::hostToDevice16(sizeof(outEntry->value));
mEntryCount++;
}
}
void visit(Plural* plural) override {
const size_t count = plural->values.size();
for (size_t i = 0; i < count; i++) {
if (!plural->values[i]) {
continue;
}
ResourceId q;
switch (i) {
case Plural::Zero:
q.id = android::ResTable_map::ATTR_ZERO;
break;
case Plural::One:
q.id = android::ResTable_map::ATTR_ONE;
break;
case Plural::Two:
q.id = android::ResTable_map::ATTR_TWO;
break;
case Plural::Few:
q.id = android::ResTable_map::ATTR_FEW;
break;
case Plural::Many:
q.id = android::ResTable_map::ATTR_MANY;
break;
case Plural::Other:
q.id = android::ResTable_map::ATTR_OTHER;
break;
default:
assert(false);
break;
}
Reference key(q);
flattenEntry(&key, plural->values[i].get());
}
}
};
class PackageFlattener {
public:
PackageFlattener(IDiagnostics* diag, TableFlattenerOptions options,
ResourceTablePackage* package, SymbolWriter* symbolWriter,
StringPool* sourcePool) :
mDiag(diag), mOptions(options), mPackage(package), mSymbols(symbolWriter),
mSourcePool(sourcePool) {
}
bool flattenPackage(BigBuffer* buffer) {
ChunkWriter pkgWriter(buffer);
ResTable_package* pkgHeader = pkgWriter.startChunk<ResTable_package>(
RES_TABLE_PACKAGE_TYPE);
pkgHeader->id = util::hostToDevice32(mPackage->id.value());
if (mPackage->name.size() >= arraysize(pkgHeader->name)) {
mDiag->error(DiagMessage() <<
"package name '" << mPackage->name << "' is too long");
return false;
}
// Copy the package name in device endianness.
strcpy16_htod(pkgHeader->name, arraysize(pkgHeader->name), mPackage->name);
// Serialize the types. We do this now so that our type and key strings
// are populated. We write those first.
BigBuffer typeBuffer(1024);
flattenTypes(&typeBuffer);
pkgHeader->typeStrings = util::hostToDevice32(pkgWriter.size());
StringPool::flattenUtf16(pkgWriter.getBuffer(), mTypePool);
pkgHeader->keyStrings = util::hostToDevice32(pkgWriter.size());
StringPool::flattenUtf16(pkgWriter.getBuffer(), mKeyPool);
// Add the ResTable_package header/type/key strings to the offset.
mSymbols->shiftAllOffsets(pkgWriter.size());
// Append the types.
buffer->appendBuffer(std::move(typeBuffer));
pkgWriter.finish();
return true;
}
private:
IDiagnostics* mDiag;
TableFlattenerOptions mOptions;
ResourceTablePackage* mPackage;
StringPool mTypePool;
StringPool mKeyPool;
SymbolWriter* mSymbols;
StringPool* mSourcePool;
template <typename T, bool IsItem>
T* writeEntry(FlatEntry* entry, BigBuffer* buffer) {
static_assert(std::is_same<ResTable_entry, T>::value ||
std::is_same<ResTable_entry_ext, T>::value,
"T must be ResTable_entry or ResTable_entry_ext");
T* result = buffer->nextBlock<T>();
ResTable_entry* outEntry = (ResTable_entry*)(result);
if (entry->entry->symbolStatus.state == SymbolState::kPublic) {
outEntry->flags |= ResTable_entry::FLAG_PUBLIC;
}
if (entry->value->isWeak()) {
outEntry->flags |= ResTable_entry::FLAG_WEAK;
}
if (!IsItem) {
outEntry->flags |= ResTable_entry::FLAG_COMPLEX;
}
outEntry->key.index = util::hostToDevice32(entry->entryKey);
outEntry->size = sizeof(T);
if (mOptions.useExtendedChunks) {
// Write the extra source block. This will be ignored by the Android runtime.
ResTable_entry_source* sourceBlock = buffer->nextBlock<ResTable_entry_source>();
sourceBlock->path.index = util::hostToDevice32(entry->sourcePathKey);
sourceBlock->line = util::hostToDevice32(entry->sourceLine);
sourceBlock->comment.index = util::hostToDevice32(entry->commentKey);
outEntry->size += sizeof(*sourceBlock);
}
outEntry->flags = util::hostToDevice16(outEntry->flags);
outEntry->size = util::hostToDevice16(outEntry->size);
return result;
}
bool flattenValue(FlatEntry* entry, BigBuffer* buffer) {
if (Item* item = valueCast<Item>(entry->value)) {
writeEntry<ResTable_entry, true>(entry, buffer);
bool privateRef = false;
if (Reference* ref = valueCast<Reference>(entry->value)) {
// If there is no ID or the reference is private and we allow extended chunks,
// write out a 0 and mark the symbol table with the name of the reference.
privateRef = (ref->privateReference && mOptions.useExtendedChunks);
if (!ref->id || privateRef) {
assert(ref->name && "reference must have at least a name");
mSymbols->addSymbol(*ref, buffer->size() + offsetof(Res_value, data));
}
}
Res_value* outValue = buffer->nextBlock<Res_value>();
bool result = item->flatten(outValue);
assert(result && "flatten failed");
if (privateRef) {
// Force the value of 0 so we look up the symbol at unflatten time.
outValue->data = 0;
}
outValue->size = util::hostToDevice16(sizeof(*outValue));
} else {
const size_t beforeEntry = buffer->size();
ResTable_entry_ext* outEntry = writeEntry<ResTable_entry_ext, false>(entry, buffer);
MapFlattenVisitor visitor(mSymbols, entry, buffer, mOptions.useExtendedChunks);
entry->value->accept(&visitor);
outEntry->count = util::hostToDevice32(visitor.mEntryCount);
if (visitor.mParentName) {
mSymbols->addSymbol(visitor.mParentName.value(),
beforeEntry + offsetof(ResTable_entry_ext, parent));
} else if (visitor.mParentIdent) {
outEntry->parent.ident = util::hostToDevice32(visitor.mParentIdent.value());
}
}
return true;
}
bool flattenConfig(const ResourceTableType* type, const ConfigDescription& config,
std::vector<FlatEntry>* entries, BigBuffer* buffer) {
ChunkWriter typeWriter(buffer);
ResTable_type* typeHeader = typeWriter.startChunk<ResTable_type>(RES_TABLE_TYPE_TYPE);
typeHeader->id = type->id.value();
typeHeader->config = config;
typeHeader->config.swapHtoD();
auto maxAccum = [](uint32_t max, const std::unique_ptr<ResourceEntry>& a) -> uint32_t {
return std::max(max, (uint32_t) a->id.value());
};
// Find the largest entry ID. That is how many entries we will have.
const uint32_t entryCount =
std::accumulate(type->entries.begin(), type->entries.end(), 0, maxAccum) + 1;
typeHeader->entryCount = util::hostToDevice32(entryCount);
uint32_t* indices = typeWriter.nextBlock<uint32_t>(entryCount);
assert((size_t) entryCount <= std::numeric_limits<uint16_t>::max() + 1);
memset(indices, 0xff, entryCount * sizeof(uint32_t));
typeHeader->entriesStart = util::hostToDevice32(typeWriter.size());
const size_t entryStart = typeWriter.getBuffer()->size();
for (FlatEntry& flatEntry : *entries) {
assert(flatEntry.entry->id.value() < entryCount);
indices[flatEntry.entry->id.value()] = util::hostToDevice32(
typeWriter.getBuffer()->size() - entryStart);
if (!flattenValue(&flatEntry, typeWriter.getBuffer())) {
mDiag->error(DiagMessage()
<< "failed to flatten resource '"
<< ResourceNameRef(mPackage->name, type->type, flatEntry.entry->name)
<< "' for configuration '" << config << "'");
return false;
}
}
typeWriter.finish();
return true;
}
std::vector<ResourceTableType*> collectAndSortTypes() {
std::vector<ResourceTableType*> sortedTypes;
for (auto& type : mPackage->types) {
if (type->type == ResourceType::kStyleable && !mOptions.useExtendedChunks) {
// Styleables aren't real Resource Types, they are represented in the R.java
// file.
continue;
}
assert(type->id && "type must have an ID set");
sortedTypes.push_back(type.get());
}
std::sort(sortedTypes.begin(), sortedTypes.end(), cmpIds<ResourceTableType>);
return sortedTypes;
}
std::vector<ResourceEntry*> collectAndSortEntries(ResourceTableType* type) {
// Sort the entries by entry ID.
std::vector<ResourceEntry*> sortedEntries;
for (auto& entry : type->entries) {
assert(entry->id && "entry must have an ID set");
sortedEntries.push_back(entry.get());
}
std::sort(sortedEntries.begin(), sortedEntries.end(), cmpIds<ResourceEntry>);
return sortedEntries;
}
bool flattenTypeSpec(ResourceTableType* type, std::vector<ResourceEntry*>* sortedEntries,
BigBuffer* buffer) {
ChunkWriter typeSpecWriter(buffer);
ResTable_typeSpec* specHeader = typeSpecWriter.startChunk<ResTable_typeSpec>(
RES_TABLE_TYPE_SPEC_TYPE);
specHeader->id = type->id.value();
if (sortedEntries->empty()) {
typeSpecWriter.finish();
return true;
}
// We can't just take the size of the vector. There may be holes in the entry ID space.
// Since the entries are sorted by ID, the last one will be the biggest.
const size_t numEntries = sortedEntries->back()->id.value() + 1;
specHeader->entryCount = util::hostToDevice32(numEntries);
// Reserve space for the masks of each resource in this type. These
// show for which configuration axis the resource changes.
uint32_t* configMasks = typeSpecWriter.nextBlock<uint32_t>(numEntries);
const size_t actualNumEntries = sortedEntries->size();
for (size_t entryIndex = 0; entryIndex < actualNumEntries; entryIndex++) {
ResourceEntry* entry = sortedEntries->at(entryIndex);
// Populate the config masks for this entry.
if (entry->symbolStatus.state == SymbolState::kPublic) {
configMasks[entry->id.value()] |=
util::hostToDevice32(ResTable_typeSpec::SPEC_PUBLIC);
}
const size_t configCount = entry->values.size();
for (size_t i = 0; i < configCount; i++) {
const ConfigDescription& config = entry->values[i].config;
for (size_t j = i + 1; j < configCount; j++) {
configMasks[entry->id.value()] |= util::hostToDevice32(
config.diff(entry->values[j].config));
}
}
}
typeSpecWriter.finish();
return true;
}
bool flattenPublic(ResourceTableType* type, std::vector<ResourceEntry*>* sortedEntries,
BigBuffer* buffer) {
ChunkWriter publicWriter(buffer);
Public_header* publicHeader = publicWriter.startChunk<Public_header>(RES_TABLE_PUBLIC_TYPE);
publicHeader->typeId = type->id.value();
for (ResourceEntry* entry : *sortedEntries) {
if (entry->symbolStatus.state != SymbolState::kUndefined) {
// Write the public status of this entry.
Public_entry* publicEntry = publicWriter.nextBlock<Public_entry>();
publicEntry->entryId = util::hostToDevice32(entry->id.value());
publicEntry->key.index = util::hostToDevice32(mKeyPool.makeRef(
entry->name).getIndex());
publicEntry->source.path.index = util::hostToDevice32(mSourcePool->makeRef(
util::utf8ToUtf16(entry->symbolStatus.source.path)).getIndex());
if (entry->symbolStatus.source.line) {
publicEntry->source.line = util::hostToDevice32(
entry->symbolStatus.source.line.value());
}
publicEntry->source.comment.index = util::hostToDevice32(mSourcePool->makeRef(
entry->symbolStatus.comment).getIndex());
switch (entry->symbolStatus.state) {
case SymbolState::kPrivate:
publicEntry->state = Public_entry::kPrivate;
break;
case SymbolState::kPublic:
publicEntry->state = Public_entry::kPublic;
break;
default:
assert(false && "should not serialize any other state");
break;
}
// Don't hostToDevice until the last step.
publicHeader->count += 1;
}
}
publicHeader->count = util::hostToDevice32(publicHeader->count);
publicWriter.finish();
return true;
}
bool flattenTypes(BigBuffer* buffer) {
// Sort the types by their IDs. They will be inserted into the StringPool in this order.
std::vector<ResourceTableType*> sortedTypes = collectAndSortTypes();
size_t expectedTypeId = 1;
for (ResourceTableType* type : sortedTypes) {
// If there is a gap in the type IDs, fill in the StringPool
// with empty values until we reach the ID we expect.
while (type->id.value() > expectedTypeId) {
std::u16string typeName(u"?");
typeName += expectedTypeId;
mTypePool.makeRef(typeName);
expectedTypeId++;
}
expectedTypeId++;
mTypePool.makeRef(toString(type->type));
std::vector<ResourceEntry*> sortedEntries = collectAndSortEntries(type);
if (!flattenTypeSpec(type, &sortedEntries, buffer)) {
return false;
}
if (mOptions.useExtendedChunks) {
if (!flattenPublic(type, &sortedEntries, buffer)) {
return false;
}
}
// The binary resource table lists resource entries for each configuration.
// We store them inverted, where a resource entry lists the values for each
// configuration available. Here we reverse this to match the binary table.
std::map<ConfigDescription, std::vector<FlatEntry>> configToEntryListMap;
for (ResourceEntry* entry : sortedEntries) {
const uint32_t keyIndex = (uint32_t) mKeyPool.makeRef(entry->name).getIndex();
// Group values by configuration.
for (auto& configValue : entry->values) {
Value* value = configValue.value.get();
const StringPool::Ref sourceRef = mSourcePool->makeRef(
util::utf8ToUtf16(value->getSource().path));
uint32_t lineNumber = 0;
if (value->getSource().line) {
lineNumber = value->getSource().line.value();
}
const StringPool::Ref commentRef = mSourcePool->makeRef(value->getComment());
configToEntryListMap[configValue.config]
.push_back(FlatEntry{
entry,
value,
keyIndex,
(uint32_t) sourceRef.getIndex(),
lineNumber,
(uint32_t) commentRef.getIndex() });
}
}
// Flatten a configuration value.
for (auto& entry : configToEntryListMap) {
if (!flattenConfig(type, entry.first, &entry.second, buffer)) {
return false;
}
}
}
return true;
}
};
} // namespace
bool TableFlattener::consume(IAaptContext* context, ResourceTable* table) {
// We must do this before writing the resources, since the string pool IDs may change.
table->stringPool.sort([](const StringPool::Entry& a, const StringPool::Entry& b) -> bool {
int diff = a.context.priority - b.context.priority;
if (diff < 0) return true;
if (diff > 0) return false;
diff = a.context.config.compare(b.context.config);
if (diff < 0) return true;
if (diff > 0) return false;
return a.value < b.value;
});
table->stringPool.prune();
// Write the ResTable header.
ChunkWriter tableWriter(mBuffer);
ResTable_header* tableHeader = tableWriter.startChunk<ResTable_header>(RES_TABLE_TYPE);
tableHeader->packageCount = util::hostToDevice32(table->packages.size());
// Flatten the values string pool.
StringPool::flattenUtf8(tableWriter.getBuffer(), table->stringPool);
// If we have a reference to a symbol that doesn't exist, we don't know its resource ID.
// We encode the name of the symbol along with the offset of where to include the resource ID
// once it is found.
StringPool symbolPool;
std::vector<SymbolWriter::Entry> symbolOffsets;
// String pool holding the source paths of each value.
StringPool sourcePool;
BigBuffer packageBuffer(1024);
// Flatten each package.
for (auto& package : table->packages) {
const size_t beforePackageSize = packageBuffer.size();
// All packages will share a single global symbol pool.
SymbolWriter packageSymbolWriter(&symbolPool);
PackageFlattener flattener(context->getDiagnostics(), mOptions, package.get(),
&packageSymbolWriter, &sourcePool);
if (!flattener.flattenPackage(&packageBuffer)) {
return false;
}
// The symbols are offset only from their own Package start. Offset them from the
// start of the packageBuffer.
packageSymbolWriter.shiftAllOffsets(beforePackageSize);
// Extract all the symbols to offset
symbolOffsets.insert(symbolOffsets.end(),
std::make_move_iterator(packageSymbolWriter.symbols.begin()),
std::make_move_iterator(packageSymbolWriter.symbols.end()));
}
SymbolTable_entry* symbolEntryData = nullptr;
if (mOptions.useExtendedChunks) {
if (!symbolOffsets.empty()) {
// Sort the offsets so we can scan them linearly.
std::sort(symbolOffsets.begin(), symbolOffsets.end(),
[](const SymbolWriter::Entry& a, const SymbolWriter::Entry& b) -> bool {
return a.offset < b.offset;
});
// Write the Symbol header.
ChunkWriter symbolWriter(tableWriter.getBuffer());
SymbolTable_header* symbolHeader = symbolWriter.startChunk<SymbolTable_header>(
RES_TABLE_SYMBOL_TABLE_TYPE);
symbolHeader->count = util::hostToDevice32(symbolOffsets.size());
symbolEntryData = symbolWriter.nextBlock<SymbolTable_entry>(symbolOffsets.size());
StringPool::flattenUtf8(symbolWriter.getBuffer(), symbolPool);
symbolWriter.finish();
}
if (sourcePool.size() > 0) {
// Write out source pool.
ChunkWriter srcWriter(tableWriter.getBuffer());
srcWriter.startChunk<ResChunk_header>(RES_TABLE_SOURCE_POOL_TYPE);
StringPool::flattenUtf8(srcWriter.getBuffer(), sourcePool);
srcWriter.finish();
}
}
const size_t beforePackagesSize = tableWriter.size();
// Finally merge all the packages into the main buffer.
tableWriter.getBuffer()->appendBuffer(std::move(packageBuffer));
// Update the offsets to their final values.
if (symbolEntryData) {
for (SymbolWriter::Entry& entry : symbolOffsets) {
symbolEntryData->name.index = util::hostToDevice32(entry.name.getIndex());
// The symbols were all calculated with the packageBuffer offset. We need to
// add the beginning of the output buffer.
symbolEntryData->offset = util::hostToDevice32(entry.offset + beforePackagesSize);
symbolEntryData++;
}
}
tableWriter.finish();
return true;
}
} // namespace aapt