|  | /* | 
|  | * Copyright (C) 2015 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "VectorDrawable.h" | 
|  |  | 
|  | #include "PathParser.h" | 
|  | #include "SkColorFilter.h" | 
|  | #include "SkImageInfo.h" | 
|  | #include "SkShader.h" | 
|  | #include <utils/Log.h> | 
|  | #include "utils/Macros.h" | 
|  | #include "utils/TraceUtils.h" | 
|  | #include "utils/VectorDrawableUtils.h" | 
|  |  | 
|  | #include <math.h> | 
|  | #include <string.h> | 
|  |  | 
|  | namespace android { | 
|  | namespace uirenderer { | 
|  | namespace VectorDrawable { | 
|  |  | 
|  | const int Tree::MAX_CACHED_BITMAP_SIZE = 2048; | 
|  |  | 
|  | void Path::dump() { | 
|  | ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size()); | 
|  | } | 
|  |  | 
|  | // Called from UI thread during the initial setup/theme change. | 
|  | Path::Path(const char* pathStr, size_t strLength) { | 
|  | PathParser::ParseResult result; | 
|  | Data data; | 
|  | PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength); | 
|  | mStagingProperties.setData(data); | 
|  | } | 
|  |  | 
|  | Path::Path(const Path& path) : Node(path) { | 
|  | mStagingProperties.syncProperties(path.mStagingProperties); | 
|  | } | 
|  |  | 
|  | const SkPath& Path::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) { | 
|  | if (useStagingData) { | 
|  | tempStagingPath->reset(); | 
|  | VectorDrawableUtils::verbsToPath(tempStagingPath, mStagingProperties.getData()); | 
|  | return *tempStagingPath; | 
|  | } else { | 
|  | if (mSkPathDirty) { | 
|  | mSkPath.reset(); | 
|  | VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData()); | 
|  | mSkPathDirty = false; | 
|  | } | 
|  | return mSkPath; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Path::syncProperties() { | 
|  | if (mStagingPropertiesDirty) { | 
|  | mProperties.syncProperties(mStagingProperties); | 
|  | } else { | 
|  | mStagingProperties.syncProperties(mProperties); | 
|  | } | 
|  | mStagingPropertiesDirty = false; | 
|  | } | 
|  |  | 
|  | FullPath::FullPath(const FullPath& path) : Path(path) { | 
|  | mStagingProperties.syncProperties(path.mStagingProperties); | 
|  | } | 
|  |  | 
|  | static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd, | 
|  | float trimPathOffset) { | 
|  | if (trimPathStart == 0.0f && trimPathEnd == 1.0f) { | 
|  | *outPath = inPath; | 
|  | return; | 
|  | } | 
|  | outPath->reset(); | 
|  | if (trimPathStart == trimPathEnd) { | 
|  | // Trimmed path should be empty. | 
|  | return; | 
|  | } | 
|  | SkPathMeasure measure(inPath, false); | 
|  | float len = SkScalarToFloat(measure.getLength()); | 
|  | float start = len * fmod((trimPathStart + trimPathOffset), 1.0f); | 
|  | float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f); | 
|  |  | 
|  | if (start > end) { | 
|  | measure.getSegment(start, len, outPath, true); | 
|  | if (end > 0) { | 
|  | measure.getSegment(0, end, outPath, true); | 
|  | } | 
|  | } else { | 
|  | measure.getSegment(start, end, outPath, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | const SkPath& FullPath::getUpdatedPath(bool useStagingData, SkPath* tempStagingPath) { | 
|  | if (!useStagingData && !mSkPathDirty && !mProperties.mTrimDirty) { | 
|  | return mTrimmedSkPath; | 
|  | } | 
|  | Path::getUpdatedPath(useStagingData, tempStagingPath); | 
|  | SkPath *outPath; | 
|  | if (useStagingData) { | 
|  | SkPath inPath = *tempStagingPath; | 
|  | applyTrim(tempStagingPath, inPath, mStagingProperties.getTrimPathStart(), | 
|  | mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset()); | 
|  | outPath = tempStagingPath; | 
|  | } else { | 
|  | if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) { | 
|  | mProperties.mTrimDirty = false; | 
|  | applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(), | 
|  | mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset()); | 
|  | outPath = &mTrimmedSkPath; | 
|  | } else { | 
|  | outPath = &mSkPath; | 
|  | } | 
|  | } | 
|  | const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; | 
|  | bool setFillPath = properties.getFillGradient() != nullptr | 
|  | || properties.getFillColor() != SK_ColorTRANSPARENT; | 
|  | if (setFillPath) { | 
|  | SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType()); | 
|  | outPath->setFillType(ft); | 
|  | } | 
|  | return *outPath; | 
|  | } | 
|  |  | 
|  | void FullPath::dump() { | 
|  | Path::dump(); | 
|  | ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f", | 
|  | mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(), | 
|  | mProperties.getFillColor(), mProperties.getFillAlpha()); | 
|  | } | 
|  |  | 
|  |  | 
|  | inline SkColor applyAlpha(SkColor color, float alpha) { | 
|  | int alphaBytes = SkColorGetA(color); | 
|  | return SkColorSetA(color, alphaBytes * alpha); | 
|  | } | 
|  |  | 
|  | void FullPath::draw(SkCanvas* outCanvas, bool useStagingData) { | 
|  | const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; | 
|  | SkPath tempStagingPath; | 
|  | const SkPath& renderPath = getUpdatedPath(useStagingData, &tempStagingPath); | 
|  |  | 
|  | // Draw path's fill, if fill color or gradient is valid | 
|  | bool needsFill = false; | 
|  | SkPaint paint; | 
|  | if (properties.getFillGradient() != nullptr) { | 
|  | paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha())); | 
|  | paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getFillGradient()))); | 
|  | needsFill = true; | 
|  | } else if (properties.getFillColor() != SK_ColorTRANSPARENT) { | 
|  | paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha())); | 
|  | needsFill = true; | 
|  | } | 
|  |  | 
|  | if (needsFill) { | 
|  | paint.setStyle(SkPaint::Style::kFill_Style); | 
|  | paint.setAntiAlias(true); | 
|  | outCanvas->drawPath(renderPath, paint); | 
|  | } | 
|  |  | 
|  | // Draw path's stroke, if stroke color or Gradient is valid | 
|  | bool needsStroke = false; | 
|  | if (properties.getStrokeGradient() != nullptr) { | 
|  | paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha())); | 
|  | paint.setShader(sk_sp<SkShader>(SkSafeRef(properties.getStrokeGradient()))); | 
|  | needsStroke = true; | 
|  | } else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) { | 
|  | paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha())); | 
|  | needsStroke = true; | 
|  | } | 
|  | if (needsStroke) { | 
|  | paint.setStyle(SkPaint::Style::kStroke_Style); | 
|  | paint.setAntiAlias(true); | 
|  | paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin())); | 
|  | paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap())); | 
|  | paint.setStrokeMiter(properties.getStrokeMiterLimit()); | 
|  | paint.setStrokeWidth(properties.getStrokeWidth()); | 
|  | outCanvas->drawPath(renderPath, paint); | 
|  | } | 
|  | } | 
|  |  | 
|  | void FullPath::syncProperties() { | 
|  | Path::syncProperties(); | 
|  |  | 
|  | if (mStagingPropertiesDirty) { | 
|  | mProperties.syncProperties(mStagingProperties); | 
|  | } else { | 
|  | // Update staging property with property values from animation. | 
|  | mStagingProperties.syncProperties(mProperties); | 
|  | } | 
|  | mStagingPropertiesDirty = false; | 
|  | } | 
|  |  | 
|  | REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields); | 
|  |  | 
|  | static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t"); | 
|  | static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t"); | 
|  |  | 
|  | bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const { | 
|  | int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields); | 
|  | if (length != propertyDataSize) { | 
|  | LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", | 
|  | propertyDataSize, length); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); | 
|  | *out = mPrimitiveFields; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) { | 
|  | Property currentProperty = static_cast<Property>(propertyId); | 
|  | if (currentProperty == Property::strokeColor) { | 
|  | setStrokeColor(value); | 
|  | } else if (currentProperty == Property::fillColor) { | 
|  | setFillColor(value); | 
|  | } else { | 
|  | LOG_ALWAYS_FATAL("Error setting color property on FullPath: No valid property" | 
|  | " with id: %d", propertyId); | 
|  | } | 
|  | } | 
|  |  | 
|  | void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) { | 
|  | Property property = static_cast<Property>(propertyId); | 
|  | switch (property) { | 
|  | case Property::strokeWidth: | 
|  | setStrokeWidth(value); | 
|  | break; | 
|  | case Property::strokeAlpha: | 
|  | setStrokeAlpha(value); | 
|  | break; | 
|  | case Property::fillAlpha: | 
|  | setFillAlpha(value); | 
|  | break; | 
|  | case Property::trimPathStart: | 
|  | setTrimPathStart(value); | 
|  | break; | 
|  | case Property::trimPathEnd: | 
|  | setTrimPathEnd(value); | 
|  | break; | 
|  | case Property::trimPathOffset: | 
|  | setTrimPathOffset(value); | 
|  | break; | 
|  | default: | 
|  | LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ClipPath::draw(SkCanvas* outCanvas, bool useStagingData) { | 
|  | SkPath tempStagingPath; | 
|  | outCanvas->clipPath(getUpdatedPath(useStagingData, &tempStagingPath)); | 
|  | } | 
|  |  | 
|  | Group::Group(const Group& group) : Node(group) { | 
|  | mStagingProperties.syncProperties(group.mStagingProperties); | 
|  | } | 
|  |  | 
|  | void Group::draw(SkCanvas* outCanvas, bool useStagingData) { | 
|  | // Save the current clip and matrix information, which is local to this group. | 
|  | SkAutoCanvasRestore saver(outCanvas, true); | 
|  | // apply the current group's matrix to the canvas | 
|  | SkMatrix stackedMatrix; | 
|  | const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties; | 
|  | getLocalMatrix(&stackedMatrix, prop); | 
|  | outCanvas->concat(stackedMatrix); | 
|  | // Draw the group tree in the same order as the XML file. | 
|  | for (auto& child : mChildren) { | 
|  | child->draw(outCanvas, useStagingData); | 
|  | } | 
|  | // Restore the previous clip and matrix information. | 
|  | } | 
|  |  | 
|  | void Group::dump() { | 
|  | ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size()); | 
|  | ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(), | 
|  | mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY()); | 
|  | for (size_t i = 0; i < mChildren.size(); i++) { | 
|  | mChildren[i]->dump(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Group::syncProperties() { | 
|  | // Copy over the dirty staging properties | 
|  | if (mStagingPropertiesDirty) { | 
|  | mProperties.syncProperties(mStagingProperties); | 
|  | } else { | 
|  | mStagingProperties.syncProperties(mProperties); | 
|  | } | 
|  | mStagingPropertiesDirty = false; | 
|  | for (auto& child : mChildren) { | 
|  | child->syncProperties(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) { | 
|  | outMatrix->reset(); | 
|  | // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of | 
|  | // translating to pivot for rotating and scaling, then translating back. | 
|  | outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY()); | 
|  | outMatrix->postScale(properties.getScaleX(), properties.getScaleY()); | 
|  | outMatrix->postRotate(properties.getRotation(), 0, 0); | 
|  | outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(), | 
|  | properties.getTranslateY() + properties.getPivotY()); | 
|  | } | 
|  |  | 
|  | void Group::addChild(Node* child) { | 
|  | mChildren.emplace_back(child); | 
|  | if (mPropertyChangedListener != nullptr) { | 
|  | child->setPropertyChangedListener(mPropertyChangedListener); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Group::GroupProperties::copyProperties(float* outProperties, int length) const { | 
|  | int propertyCount = static_cast<int>(Property::count); | 
|  | if (length != propertyCount) { | 
|  | LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", | 
|  | propertyCount, length); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); | 
|  | *out = mPrimitiveFields; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: Consider animating the properties as float pointers | 
|  | // Called on render thread | 
|  | float Group::GroupProperties::getPropertyValue(int propertyId) const { | 
|  | Property currentProperty = static_cast<Property>(propertyId); | 
|  | switch (currentProperty) { | 
|  | case Property::rotate: | 
|  | return getRotation(); | 
|  | case Property::pivotX: | 
|  | return getPivotX(); | 
|  | case Property::pivotY: | 
|  | return getPivotY(); | 
|  | case Property::scaleX: | 
|  | return getScaleX(); | 
|  | case Property::scaleY: | 
|  | return getScaleY(); | 
|  | case Property::translateX: | 
|  | return getTranslateX(); | 
|  | case Property::translateY: | 
|  | return getTranslateY(); | 
|  | default: | 
|  | LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Called on render thread | 
|  | void Group::GroupProperties::setPropertyValue(int propertyId, float value) { | 
|  | Property currentProperty = static_cast<Property>(propertyId); | 
|  | switch (currentProperty) { | 
|  | case Property::rotate: | 
|  | setRotation(value); | 
|  | break; | 
|  | case Property::pivotX: | 
|  | setPivotX(value); | 
|  | break; | 
|  | case Property::pivotY: | 
|  | setPivotY(value); | 
|  | break; | 
|  | case Property::scaleX: | 
|  | setScaleX(value); | 
|  | break; | 
|  | case Property::scaleY: | 
|  | setScaleY(value); | 
|  | break; | 
|  | case Property::translateX: | 
|  | setTranslateX(value); | 
|  | break; | 
|  | case Property::translateY: | 
|  | setTranslateY(value); | 
|  | break; | 
|  | default: | 
|  | LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Group::isValidProperty(int propertyId) { | 
|  | return GroupProperties::isValidProperty(propertyId); | 
|  | } | 
|  |  | 
|  | bool Group::GroupProperties::isValidProperty(int propertyId) { | 
|  | return propertyId >= 0 && propertyId < static_cast<int>(Property::count); | 
|  | } | 
|  |  | 
|  | int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, | 
|  | const SkRect& bounds, bool needsMirroring, bool canReuseCache) { | 
|  | // The imageView can scale the canvas in different ways, in order to | 
|  | // avoid blurry scaling, we have to draw into a bitmap with exact pixel | 
|  | // size first. This bitmap size is determined by the bounds and the | 
|  | // canvas scale. | 
|  | SkMatrix canvasMatrix; | 
|  | outCanvas->getMatrix(&canvasMatrix); | 
|  | float canvasScaleX = 1.0f; | 
|  | float canvasScaleY = 1.0f; | 
|  | if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) { | 
|  | // Only use the scale value when there's no skew or rotation in the canvas matrix. | 
|  | // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors. | 
|  | canvasScaleX = fabs(canvasMatrix.getScaleX()); | 
|  | canvasScaleY = fabs(canvasMatrix.getScaleY()); | 
|  | } | 
|  | int scaledWidth = (int) (bounds.width() * canvasScaleX); | 
|  | int scaledHeight = (int) (bounds.height() * canvasScaleY); | 
|  | scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth); | 
|  | scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight); | 
|  |  | 
|  | if (scaledWidth <= 0 || scaledHeight <= 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mStagingProperties.setScaledSize(scaledWidth, scaledHeight); | 
|  | int saveCount = outCanvas->save(SaveFlags::MatrixClip); | 
|  | outCanvas->translate(bounds.fLeft, bounds.fTop); | 
|  |  | 
|  | // Handle RTL mirroring. | 
|  | if (needsMirroring) { | 
|  | outCanvas->translate(bounds.width(), 0); | 
|  | outCanvas->scale(-1.0f, 1.0f); | 
|  | } | 
|  | mStagingProperties.setColorFilter(colorFilter); | 
|  |  | 
|  | // At this point, canvas has been translated to the right position. | 
|  | // And we use this bound for the destination rect for the drawBitmap, so | 
|  | // we offset to (0, 0); | 
|  | SkRect tmpBounds = bounds; | 
|  | tmpBounds.offsetTo(0, 0); | 
|  | mStagingProperties.setBounds(tmpBounds); | 
|  | outCanvas->drawVectorDrawable(this); | 
|  | outCanvas->restoreToCount(saveCount); | 
|  | return scaledWidth * scaledHeight; | 
|  | } | 
|  |  | 
|  | void Tree::drawStaging(Canvas* outCanvas) { | 
|  | bool redrawNeeded = allocateBitmapIfNeeded(mStagingCache, | 
|  | mStagingProperties.getScaledWidth(), mStagingProperties.getScaledHeight()); | 
|  | // draw bitmap cache | 
|  | if (redrawNeeded || mStagingCache.dirty) { | 
|  | updateBitmapCache(*mStagingCache.bitmap, true); | 
|  | mStagingCache.dirty = false; | 
|  | } | 
|  |  | 
|  | SkPaint tmpPaint; | 
|  | SkPaint* paint = updatePaint(&tmpPaint, &mStagingProperties); | 
|  | outCanvas->drawBitmap(*mStagingCache.bitmap, 0, 0, | 
|  | mStagingCache.bitmap->width(), mStagingCache.bitmap->height(), | 
|  | mStagingProperties.getBounds().left(), mStagingProperties.getBounds().top(), | 
|  | mStagingProperties.getBounds().right(), mStagingProperties.getBounds().bottom(), paint); | 
|  | } | 
|  |  | 
|  | SkPaint* Tree::getPaint() { | 
|  | return updatePaint(&mPaint, &mProperties); | 
|  | } | 
|  |  | 
|  | // Update the given paint with alpha and color filter. Return nullptr if no color filter is | 
|  | // specified and root alpha is 1. Otherwise, return updated paint. | 
|  | SkPaint* Tree::updatePaint(SkPaint* outPaint, TreeProperties* prop) { | 
|  | if (prop->getRootAlpha() == 1.0f && prop->getColorFilter() == nullptr) { | 
|  | return nullptr; | 
|  | } else { | 
|  | outPaint->setColorFilter(sk_ref_sp(prop->getColorFilter())); | 
|  | outPaint->setFilterQuality(kLow_SkFilterQuality); | 
|  | outPaint->setAlpha(prop->getRootAlpha() * 255); | 
|  | return outPaint; | 
|  | } | 
|  | } | 
|  |  | 
|  | Bitmap& Tree::getBitmapUpdateIfDirty() { | 
|  | bool redrawNeeded = allocateBitmapIfNeeded(mCache, mProperties.getScaledWidth(), | 
|  | mProperties.getScaledHeight()); | 
|  | if (redrawNeeded || mCache.dirty) { | 
|  | updateBitmapCache(*mCache.bitmap, false); | 
|  | mCache.dirty = false; | 
|  | } | 
|  | return *mCache.bitmap; | 
|  | } | 
|  |  | 
|  | void Tree::updateCache(sp<skiapipeline::VectorDrawableAtlas>& atlas, GrContext* context) { | 
|  | SkRect dst; | 
|  | sk_sp<SkSurface> surface = mCache.getSurface(&dst); | 
|  | bool canReuseSurface = surface && dst.width() >= mProperties.getScaledWidth() | 
|  | && dst.height() >= mProperties.getScaledHeight(); | 
|  | if (!canReuseSurface) { | 
|  | int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth()); | 
|  | int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight()); | 
|  | auto atlasEntry = atlas->requestNewEntry(scaledWidth, scaledHeight, context); | 
|  | if (INVALID_ATLAS_KEY != atlasEntry.key) { | 
|  | dst = atlasEntry.rect; | 
|  | surface = atlasEntry.surface; | 
|  | mCache.setAtlas(atlas, atlasEntry.key); | 
|  | } else { | 
|  | //don't draw, if we failed to allocate an offscreen buffer | 
|  | mCache.clear(); | 
|  | surface.reset(); | 
|  | } | 
|  | } | 
|  | if (!canReuseSurface || mCache.dirty) { | 
|  | draw(surface.get(), dst); | 
|  | mCache.dirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | void Tree::draw(SkSurface* surface, const SkRect& dst) { | 
|  | if (surface) { | 
|  | SkCanvas* canvas = surface->getCanvas(); | 
|  | float scaleX = dst.width() / mProperties.getViewportWidth(); | 
|  | float scaleY = dst.height() / mProperties.getViewportHeight(); | 
|  | SkAutoCanvasRestore acr(canvas, true); | 
|  | canvas->translate(dst.fLeft, dst.fTop); | 
|  | canvas->clipRect(SkRect::MakeWH(dst.width(), dst.height())); | 
|  | canvas->clear(SK_ColorTRANSPARENT); | 
|  | canvas->scale(scaleX, scaleY); | 
|  | mRootNode->draw(canvas, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Tree::Cache::setAtlas(sp<skiapipeline::VectorDrawableAtlas> newAtlas, | 
|  | skiapipeline::AtlasKey newAtlasKey) { | 
|  | LOG_ALWAYS_FATAL_IF(newAtlasKey == INVALID_ATLAS_KEY); | 
|  | clear(); | 
|  | mAtlas = newAtlas; | 
|  | mAtlasKey = newAtlasKey; | 
|  | } | 
|  |  | 
|  | sk_sp<SkSurface> Tree::Cache::getSurface(SkRect* bounds) { | 
|  | sk_sp<SkSurface> surface; | 
|  | sp<skiapipeline::VectorDrawableAtlas> atlas = mAtlas.promote(); | 
|  | if (atlas.get() && mAtlasKey != INVALID_ATLAS_KEY) { | 
|  | auto atlasEntry = atlas->getEntry(mAtlasKey); | 
|  | *bounds = atlasEntry.rect; | 
|  | surface = atlasEntry.surface; | 
|  | mAtlasKey = atlasEntry.key; | 
|  | } | 
|  |  | 
|  | return surface; | 
|  | } | 
|  |  | 
|  | void Tree::Cache::clear() { | 
|  | sp<skiapipeline::VectorDrawableAtlas> lockAtlas = mAtlas.promote(); | 
|  | if (lockAtlas.get()) { | 
|  | lockAtlas->releaseEntry(mAtlasKey); | 
|  | } | 
|  | mAtlas = nullptr; | 
|  | mAtlasKey = INVALID_ATLAS_KEY; | 
|  | } | 
|  |  | 
|  | void Tree::draw(SkCanvas* canvas) { | 
|  | SkRect src; | 
|  | sk_sp<SkSurface> vdSurface = mCache.getSurface(&src); | 
|  | if (vdSurface) { | 
|  | canvas->drawImageRect(vdSurface->makeImageSnapshot().get(), src, | 
|  | mutateProperties()->getBounds(), getPaint()); | 
|  | } else { | 
|  | // Handle the case when VectorDrawableAtlas has been destroyed, because of memory pressure. | 
|  | // We render the VD into a temporary standalone buffer and mark the frame as dirty. Next | 
|  | // frame will be cached into the atlas. | 
|  | int scaledWidth = SkScalarCeilToInt(mProperties.getScaledWidth()); | 
|  | int scaledHeight = SkScalarCeilToInt(mProperties.getScaledHeight()); | 
|  | SkRect src = SkRect::MakeWH(scaledWidth, scaledHeight); | 
|  | #ifndef ANDROID_ENABLE_LINEAR_BLENDING | 
|  | sk_sp<SkColorSpace> colorSpace = nullptr; | 
|  | #else | 
|  | sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeSRGB(); | 
|  | #endif | 
|  | SkImageInfo info = SkImageInfo::MakeN32(scaledWidth, scaledHeight, kPremul_SkAlphaType, | 
|  | colorSpace); | 
|  | sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(canvas->getGrContext(), | 
|  | SkBudgeted::kYes, info); | 
|  | draw(surface.get(), src); | 
|  | mCache.clear(); | 
|  | canvas->drawImageRect(surface->makeImageSnapshot().get(), mutateProperties()->getBounds(), | 
|  | getPaint()); | 
|  | markDirty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Tree::updateBitmapCache(Bitmap& bitmap, bool useStagingData) { | 
|  | SkBitmap outCache; | 
|  | bitmap.getSkBitmap(&outCache); | 
|  | int cacheWidth = outCache.width(); | 
|  | int cacheHeight = outCache.height(); | 
|  | ATRACE_FORMAT("VectorDrawable repaint %dx%d", cacheWidth, cacheHeight); | 
|  | outCache.eraseColor(SK_ColorTRANSPARENT); | 
|  | SkCanvas outCanvas(outCache); | 
|  | float viewportWidth = useStagingData ? | 
|  | mStagingProperties.getViewportWidth() : mProperties.getViewportWidth(); | 
|  | float viewportHeight = useStagingData ? | 
|  | mStagingProperties.getViewportHeight() : mProperties.getViewportHeight(); | 
|  | float scaleX = cacheWidth / viewportWidth; | 
|  | float scaleY = cacheHeight / viewportHeight; | 
|  | outCanvas.scale(scaleX, scaleY); | 
|  | mRootNode->draw(&outCanvas, useStagingData); | 
|  | } | 
|  |  | 
|  | bool Tree::allocateBitmapIfNeeded(Cache& cache, int width, int height) { | 
|  | if (!canReuseBitmap(cache.bitmap.get(), width, height)) { | 
|  | #ifndef ANDROID_ENABLE_LINEAR_BLENDING | 
|  | sk_sp<SkColorSpace> colorSpace = nullptr; | 
|  | #else | 
|  | sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeSRGB(); | 
|  | #endif | 
|  | SkImageInfo info = SkImageInfo::MakeN32(width, height, kPremul_SkAlphaType, colorSpace); | 
|  | cache.bitmap = Bitmap::allocateHeapBitmap(info); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Tree::canReuseBitmap(Bitmap* bitmap, int width, int height) { | 
|  | return bitmap && width <= bitmap->width() && height <= bitmap->height(); | 
|  | } | 
|  |  | 
|  | void Tree::onPropertyChanged(TreeProperties* prop) { | 
|  | if (prop == &mStagingProperties) { | 
|  | mStagingCache.dirty = true; | 
|  | } else { | 
|  | mCache.dirty = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | }; // namespace VectorDrawable | 
|  |  | 
|  | }; // namespace uirenderer | 
|  | }; // namespace android |