| /* |
| * Copyright (C) 2010 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #define LOG_TAG "InputDispatcher" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log detailed debug messages about each inbound event notification to the dispatcher. |
| #define DEBUG_INBOUND_EVENT_DETAILS 0 |
| |
| // Log detailed debug messages about each outbound event processed by the dispatcher. |
| #define DEBUG_OUTBOUND_EVENT_DETAILS 0 |
| |
| // Log debug messages about batching. |
| #define DEBUG_BATCHING 0 |
| |
| // Log debug messages about the dispatch cycle. |
| #define DEBUG_DISPATCH_CYCLE 0 |
| |
| // Log debug messages about registrations. |
| #define DEBUG_REGISTRATION 0 |
| |
| // Log debug messages about performance statistics. |
| #define DEBUG_PERFORMANCE_STATISTICS 0 |
| |
| // Log debug messages about input event injection. |
| #define DEBUG_INJECTION 0 |
| |
| // Log debug messages about input event throttling. |
| #define DEBUG_THROTTLING 0 |
| |
| // Log debug messages about input focus tracking. |
| #define DEBUG_FOCUS 0 |
| |
| // Log debug messages about the app switch latency optimization. |
| #define DEBUG_APP_SWITCH 0 |
| |
| #include "InputDispatcher.h" |
| |
| #include <cutils/log.h> |
| #include <ui/PowerManager.h> |
| |
| #include <stddef.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <limits.h> |
| |
| #define INDENT " " |
| #define INDENT2 " " |
| |
| namespace android { |
| |
| // Default input dispatching timeout if there is no focused application or paused window |
| // from which to determine an appropriate dispatching timeout. |
| const nsecs_t DEFAULT_INPUT_DISPATCHING_TIMEOUT = 5000 * 1000000LL; // 5 sec |
| |
| // Amount of time to allow for all pending events to be processed when an app switch |
| // key is on the way. This is used to preempt input dispatch and drop input events |
| // when an application takes too long to respond and the user has pressed an app switch key. |
| const nsecs_t APP_SWITCH_TIMEOUT = 500 * 1000000LL; // 0.5sec |
| |
| // Amount of time to allow for an event to be dispatched (measured since its eventTime) |
| // before considering it stale and dropping it. |
| const nsecs_t STALE_EVENT_TIMEOUT = 10000 * 1000000LL; // 10sec |
| |
| |
| static inline nsecs_t now() { |
| return systemTime(SYSTEM_TIME_MONOTONIC); |
| } |
| |
| static inline const char* toString(bool value) { |
| return value ? "true" : "false"; |
| } |
| |
| static inline int32_t getMotionEventActionPointerIndex(int32_t action) { |
| return (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK) |
| >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; |
| } |
| |
| static bool isValidKeyAction(int32_t action) { |
| switch (action) { |
| case AKEY_EVENT_ACTION_DOWN: |
| case AKEY_EVENT_ACTION_UP: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool validateKeyEvent(int32_t action) { |
| if (! isValidKeyAction(action)) { |
| LOGE("Key event has invalid action code 0x%x", action); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isValidMotionAction(int32_t action, size_t pointerCount) { |
| switch (action & AMOTION_EVENT_ACTION_MASK) { |
| case AMOTION_EVENT_ACTION_DOWN: |
| case AMOTION_EVENT_ACTION_UP: |
| case AMOTION_EVENT_ACTION_CANCEL: |
| case AMOTION_EVENT_ACTION_MOVE: |
| case AMOTION_EVENT_ACTION_OUTSIDE: |
| return true; |
| case AMOTION_EVENT_ACTION_POINTER_DOWN: |
| case AMOTION_EVENT_ACTION_POINTER_UP: { |
| int32_t index = getMotionEventActionPointerIndex(action); |
| return index >= 0 && size_t(index) < pointerCount; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| static bool validateMotionEvent(int32_t action, size_t pointerCount, |
| const int32_t* pointerIds) { |
| if (! isValidMotionAction(action, pointerCount)) { |
| LOGE("Motion event has invalid action code 0x%x", action); |
| return false; |
| } |
| if (pointerCount < 1 || pointerCount > MAX_POINTERS) { |
| LOGE("Motion event has invalid pointer count %d; value must be between 1 and %d.", |
| pointerCount, MAX_POINTERS); |
| return false; |
| } |
| BitSet32 pointerIdBits; |
| for (size_t i = 0; i < pointerCount; i++) { |
| int32_t id = pointerIds[i]; |
| if (id < 0 || id > MAX_POINTER_ID) { |
| LOGE("Motion event has invalid pointer id %d; value must be between 0 and %d", |
| id, MAX_POINTER_ID); |
| return false; |
| } |
| if (pointerIdBits.hasBit(id)) { |
| LOGE("Motion event has duplicate pointer id %d", id); |
| return false; |
| } |
| pointerIdBits.markBit(id); |
| } |
| return true; |
| } |
| |
| static void dumpRegion(String8& dump, const SkRegion& region) { |
| if (region.isEmpty()) { |
| dump.append("<empty>"); |
| return; |
| } |
| |
| bool first = true; |
| for (SkRegion::Iterator it(region); !it.done(); it.next()) { |
| if (first) { |
| first = false; |
| } else { |
| dump.append("|"); |
| } |
| const SkIRect& rect = it.rect(); |
| dump.appendFormat("[%d,%d][%d,%d]", rect.fLeft, rect.fTop, rect.fRight, rect.fBottom); |
| } |
| } |
| |
| |
| // --- InputDispatcher --- |
| |
| InputDispatcher::InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy) : |
| mPolicy(policy), |
| mPendingEvent(NULL), mAppSwitchSawKeyDown(false), mAppSwitchDueTime(LONG_LONG_MAX), |
| mNextUnblockedEvent(NULL), |
| mDispatchEnabled(true), mDispatchFrozen(false), |
| mFocusedWindow(NULL), |
| mFocusedApplication(NULL), |
| mCurrentInputTargetsValid(false), |
| mInputTargetWaitCause(INPUT_TARGET_WAIT_CAUSE_NONE) { |
| mLooper = new Looper(false); |
| |
| mInboundQueue.headSentinel.refCount = -1; |
| mInboundQueue.headSentinel.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.headSentinel.eventTime = LONG_LONG_MIN; |
| |
| mInboundQueue.tailSentinel.refCount = -1; |
| mInboundQueue.tailSentinel.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.tailSentinel.eventTime = LONG_LONG_MAX; |
| |
| mKeyRepeatState.lastKeyEntry = NULL; |
| |
| int32_t maxEventsPerSecond = policy->getMaxEventsPerSecond(); |
| mThrottleState.minTimeBetweenEvents = 1000000000LL / maxEventsPerSecond; |
| mThrottleState.lastDeviceId = -1; |
| |
| #if DEBUG_THROTTLING |
| mThrottleState.originalSampleCount = 0; |
| LOGD("Throttling - Max events per second = %d", maxEventsPerSecond); |
| #endif |
| } |
| |
| InputDispatcher::~InputDispatcher() { |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| resetKeyRepeatLocked(); |
| releasePendingEventLocked(); |
| drainInboundQueueLocked(); |
| } |
| |
| while (mConnectionsByReceiveFd.size() != 0) { |
| unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); |
| } |
| } |
| |
| void InputDispatcher::dispatchOnce() { |
| nsecs_t keyRepeatTimeout = mPolicy->getKeyRepeatTimeout(); |
| nsecs_t keyRepeatDelay = mPolicy->getKeyRepeatDelay(); |
| |
| nsecs_t nextWakeupTime = LONG_LONG_MAX; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| dispatchOnceInnerLocked(keyRepeatTimeout, keyRepeatDelay, & nextWakeupTime); |
| |
| if (runCommandsLockedInterruptible()) { |
| nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately |
| } |
| } // release lock |
| |
| // Wait for callback or timeout or wake. (make sure we round up, not down) |
| nsecs_t currentTime = now(); |
| int32_t timeoutMillis; |
| if (nextWakeupTime > currentTime) { |
| uint64_t timeout = uint64_t(nextWakeupTime - currentTime); |
| timeout = (timeout + 999999LL) / 1000000LL; |
| timeoutMillis = timeout > INT_MAX ? -1 : int32_t(timeout); |
| } else { |
| timeoutMillis = 0; |
| } |
| |
| mLooper->pollOnce(timeoutMillis); |
| } |
| |
| void InputDispatcher::dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, |
| nsecs_t keyRepeatDelay, nsecs_t* nextWakeupTime) { |
| nsecs_t currentTime = now(); |
| |
| // Reset the key repeat timer whenever we disallow key events, even if the next event |
| // is not a key. This is to ensure that we abort a key repeat if the device is just coming |
| // out of sleep. |
| if (keyRepeatTimeout < 0) { |
| resetKeyRepeatLocked(); |
| } |
| |
| // If dispatching is frozen, do not process timeouts or try to deliver any new events. |
| if (mDispatchFrozen) { |
| #if DEBUG_FOCUS |
| LOGD("Dispatch frozen. Waiting some more."); |
| #endif |
| return; |
| } |
| |
| // Optimize latency of app switches. |
| // Essentially we start a short timeout when an app switch key (HOME / ENDCALL) has |
| // been pressed. When it expires, we preempt dispatch and drop all other pending events. |
| bool isAppSwitchDue = mAppSwitchDueTime <= currentTime; |
| if (mAppSwitchDueTime < *nextWakeupTime) { |
| *nextWakeupTime = mAppSwitchDueTime; |
| } |
| |
| // Ready to start a new event. |
| // If we don't already have a pending event, go grab one. |
| if (! mPendingEvent) { |
| if (mInboundQueue.isEmpty()) { |
| if (isAppSwitchDue) { |
| // The inbound queue is empty so the app switch key we were waiting |
| // for will never arrive. Stop waiting for it. |
| resetPendingAppSwitchLocked(false); |
| isAppSwitchDue = false; |
| } |
| |
| // Synthesize a key repeat if appropriate. |
| if (mKeyRepeatState.lastKeyEntry) { |
| if (currentTime >= mKeyRepeatState.nextRepeatTime) { |
| mPendingEvent = synthesizeKeyRepeatLocked(currentTime, keyRepeatDelay); |
| } else { |
| if (mKeyRepeatState.nextRepeatTime < *nextWakeupTime) { |
| *nextWakeupTime = mKeyRepeatState.nextRepeatTime; |
| } |
| } |
| } |
| if (! mPendingEvent) { |
| return; |
| } |
| } else { |
| // Inbound queue has at least one entry. |
| EventEntry* entry = mInboundQueue.headSentinel.next; |
| |
| // Throttle the entry if it is a move event and there are no |
| // other events behind it in the queue. Due to movement batching, additional |
| // samples may be appended to this event by the time the throttling timeout |
| // expires. |
| // TODO Make this smarter and consider throttling per device independently. |
| if (entry->type == EventEntry::TYPE_MOTION |
| && !isAppSwitchDue |
| && mDispatchEnabled |
| && (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) |
| && !entry->isInjected()) { |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| int32_t deviceId = motionEntry->deviceId; |
| uint32_t source = motionEntry->source; |
| if (! isAppSwitchDue |
| && motionEntry->next == & mInboundQueue.tailSentinel // exactly one event |
| && motionEntry->action == AMOTION_EVENT_ACTION_MOVE |
| && deviceId == mThrottleState.lastDeviceId |
| && source == mThrottleState.lastSource) { |
| nsecs_t nextTime = mThrottleState.lastEventTime |
| + mThrottleState.minTimeBetweenEvents; |
| if (currentTime < nextTime) { |
| // Throttle it! |
| #if DEBUG_THROTTLING |
| LOGD("Throttling - Delaying motion event for " |
| "device %d, source 0x%08x by up to %0.3fms.", |
| deviceId, source, (nextTime - currentTime) * 0.000001); |
| #endif |
| if (nextTime < *nextWakeupTime) { |
| *nextWakeupTime = nextTime; |
| } |
| if (mThrottleState.originalSampleCount == 0) { |
| mThrottleState.originalSampleCount = |
| motionEntry->countSamples(); |
| } |
| return; |
| } |
| } |
| |
| #if DEBUG_THROTTLING |
| if (mThrottleState.originalSampleCount != 0) { |
| uint32_t count = motionEntry->countSamples(); |
| LOGD("Throttling - Motion event sample count grew by %d from %d to %d.", |
| count - mThrottleState.originalSampleCount, |
| mThrottleState.originalSampleCount, count); |
| mThrottleState.originalSampleCount = 0; |
| } |
| #endif |
| |
| mThrottleState.lastEventTime = entry->eventTime < currentTime |
| ? entry->eventTime : currentTime; |
| mThrottleState.lastDeviceId = deviceId; |
| mThrottleState.lastSource = source; |
| } |
| |
| mInboundQueue.dequeue(entry); |
| mPendingEvent = entry; |
| } |
| |
| // Poke user activity for this event. |
| if (mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER) { |
| pokeUserActivityLocked(mPendingEvent); |
| } |
| } |
| |
| // Now we have an event to dispatch. |
| // All events are eventually dequeued and processed this way, even if we intend to drop them. |
| assert(mPendingEvent != NULL); |
| bool done = false; |
| DropReason dropReason = DROP_REASON_NOT_DROPPED; |
| if (!(mPendingEvent->policyFlags & POLICY_FLAG_PASS_TO_USER)) { |
| dropReason = DROP_REASON_POLICY; |
| } else if (!mDispatchEnabled) { |
| dropReason = DROP_REASON_DISABLED; |
| } |
| |
| if (mNextUnblockedEvent == mPendingEvent) { |
| mNextUnblockedEvent = NULL; |
| } |
| |
| switch (mPendingEvent->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: { |
| ConfigurationChangedEntry* typedEntry = |
| static_cast<ConfigurationChangedEntry*>(mPendingEvent); |
| done = dispatchConfigurationChangedLocked(currentTime, typedEntry); |
| dropReason = DROP_REASON_NOT_DROPPED; // configuration changes are never dropped |
| break; |
| } |
| |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* typedEntry = static_cast<KeyEntry*>(mPendingEvent); |
| if (isAppSwitchDue) { |
| if (isAppSwitchKeyEventLocked(typedEntry)) { |
| resetPendingAppSwitchLocked(true); |
| isAppSwitchDue = false; |
| } else if (dropReason == DROP_REASON_NOT_DROPPED) { |
| dropReason = DROP_REASON_APP_SWITCH; |
| } |
| } |
| if (dropReason == DROP_REASON_NOT_DROPPED |
| && isStaleEventLocked(currentTime, typedEntry)) { |
| dropReason = DROP_REASON_STALE; |
| } |
| if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) { |
| dropReason = DROP_REASON_BLOCKED; |
| } |
| done = dispatchKeyLocked(currentTime, typedEntry, keyRepeatTimeout, |
| &dropReason, nextWakeupTime); |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* typedEntry = static_cast<MotionEntry*>(mPendingEvent); |
| if (dropReason == DROP_REASON_NOT_DROPPED && isAppSwitchDue) { |
| dropReason = DROP_REASON_APP_SWITCH; |
| } |
| if (dropReason == DROP_REASON_NOT_DROPPED |
| && isStaleEventLocked(currentTime, typedEntry)) { |
| dropReason = DROP_REASON_STALE; |
| } |
| if (dropReason == DROP_REASON_NOT_DROPPED && mNextUnblockedEvent) { |
| dropReason = DROP_REASON_BLOCKED; |
| } |
| done = dispatchMotionLocked(currentTime, typedEntry, |
| &dropReason, nextWakeupTime); |
| break; |
| } |
| |
| default: |
| assert(false); |
| break; |
| } |
| |
| if (done) { |
| if (dropReason != DROP_REASON_NOT_DROPPED) { |
| dropInboundEventLocked(mPendingEvent, dropReason); |
| } |
| |
| releasePendingEventLocked(); |
| *nextWakeupTime = LONG_LONG_MIN; // force next poll to wake up immediately |
| } |
| } |
| |
| bool InputDispatcher::enqueueInboundEventLocked(EventEntry* entry) { |
| bool needWake = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(entry); |
| |
| switch (entry->type) { |
| case EventEntry::TYPE_KEY: { |
| // Optimize app switch latency. |
| // If the application takes too long to catch up then we drop all events preceding |
| // the app switch key. |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(entry); |
| if (isAppSwitchKeyEventLocked(keyEntry)) { |
| if (keyEntry->action == AKEY_EVENT_ACTION_DOWN) { |
| mAppSwitchSawKeyDown = true; |
| } else if (keyEntry->action == AKEY_EVENT_ACTION_UP) { |
| if (mAppSwitchSawKeyDown) { |
| #if DEBUG_APP_SWITCH |
| LOGD("App switch is pending!"); |
| #endif |
| mAppSwitchDueTime = keyEntry->eventTime + APP_SWITCH_TIMEOUT; |
| mAppSwitchSawKeyDown = false; |
| needWake = true; |
| } |
| } |
| } |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| // Optimize case where the current application is unresponsive and the user |
| // decides to touch a window in a different application. |
| // If the application takes too long to catch up then we drop all events preceding |
| // the touch into the other window. |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| if (motionEntry->action == AMOTION_EVENT_ACTION_DOWN |
| && (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) |
| && mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY |
| && mInputTargetWaitApplication != NULL) { |
| int32_t x = int32_t(motionEntry->firstSample.pointerCoords[0]. |
| getAxisValue(AINPUT_MOTION_AXIS_X)); |
| int32_t y = int32_t(motionEntry->firstSample.pointerCoords[0]. |
| getAxisValue(AINPUT_MOTION_AXIS_Y)); |
| const InputWindow* touchedWindow = findTouchedWindowAtLocked(x, y); |
| if (touchedWindow |
| && touchedWindow->inputWindowHandle != NULL |
| && touchedWindow->inputWindowHandle->getInputApplicationHandle() |
| != mInputTargetWaitApplication) { |
| // User touched a different application than the one we are waiting on. |
| // Flag the event, and start pruning the input queue. |
| mNextUnblockedEvent = motionEntry; |
| needWake = true; |
| } |
| } |
| break; |
| } |
| } |
| |
| return needWake; |
| } |
| |
| const InputWindow* InputDispatcher::findTouchedWindowAtLocked(int32_t x, int32_t y) { |
| // Traverse windows from front to back to find touched window. |
| size_t numWindows = mWindows.size(); |
| for (size_t i = 0; i < numWindows; i++) { |
| const InputWindow* window = & mWindows.editItemAt(i); |
| int32_t flags = window->layoutParamsFlags; |
| |
| if (window->visible) { |
| if (!(flags & InputWindow::FLAG_NOT_TOUCHABLE)) { |
| bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE |
| | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0; |
| if (isTouchModal || window->touchableRegionContainsPoint(x, y)) { |
| // Found window. |
| return window; |
| } |
| } |
| } |
| |
| if (flags & InputWindow::FLAG_SYSTEM_ERROR) { |
| // Error window is on top but not visible, so touch is dropped. |
| return NULL; |
| } |
| } |
| return NULL; |
| } |
| |
| void InputDispatcher::dropInboundEventLocked(EventEntry* entry, DropReason dropReason) { |
| const char* reason; |
| switch (dropReason) { |
| case DROP_REASON_POLICY: |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("Dropped event because policy consumed it."); |
| #endif |
| reason = "inbound event was dropped because the policy consumed it"; |
| break; |
| case DROP_REASON_DISABLED: |
| LOGI("Dropped event because input dispatch is disabled."); |
| reason = "inbound event was dropped because input dispatch is disabled"; |
| break; |
| case DROP_REASON_APP_SWITCH: |
| LOGI("Dropped event because of pending overdue app switch."); |
| reason = "inbound event was dropped because of pending overdue app switch"; |
| break; |
| case DROP_REASON_BLOCKED: |
| LOGI("Dropped event because the current application is not responding and the user " |
| "has started interating with a different application."); |
| reason = "inbound event was dropped because the current application is not responding " |
| "and the user has started interating with a different application"; |
| break; |
| case DROP_REASON_STALE: |
| LOGI("Dropped event because it is stale."); |
| reason = "inbound event was dropped because it is stale"; |
| break; |
| default: |
| assert(false); |
| return; |
| } |
| |
| switch (entry->type) { |
| case EventEntry::TYPE_KEY: |
| synthesizeCancelationEventsForAllConnectionsLocked( |
| InputState::CANCEL_NON_POINTER_EVENTS, reason); |
| break; |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { |
| synthesizeCancelationEventsForAllConnectionsLocked( |
| InputState::CANCEL_POINTER_EVENTS, reason); |
| } else { |
| synthesizeCancelationEventsForAllConnectionsLocked( |
| InputState::CANCEL_NON_POINTER_EVENTS, reason); |
| } |
| break; |
| } |
| } |
| } |
| |
| bool InputDispatcher::isAppSwitchKeyCode(int32_t keyCode) { |
| return keyCode == AKEYCODE_HOME || keyCode == AKEYCODE_ENDCALL; |
| } |
| |
| bool InputDispatcher::isAppSwitchKeyEventLocked(KeyEntry* keyEntry) { |
| return ! (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) |
| && isAppSwitchKeyCode(keyEntry->keyCode) |
| && (keyEntry->policyFlags & POLICY_FLAG_TRUSTED) |
| && (keyEntry->policyFlags & POLICY_FLAG_PASS_TO_USER); |
| } |
| |
| bool InputDispatcher::isAppSwitchPendingLocked() { |
| return mAppSwitchDueTime != LONG_LONG_MAX; |
| } |
| |
| void InputDispatcher::resetPendingAppSwitchLocked(bool handled) { |
| mAppSwitchDueTime = LONG_LONG_MAX; |
| |
| #if DEBUG_APP_SWITCH |
| if (handled) { |
| LOGD("App switch has arrived."); |
| } else { |
| LOGD("App switch was abandoned."); |
| } |
| #endif |
| } |
| |
| bool InputDispatcher::isStaleEventLocked(nsecs_t currentTime, EventEntry* entry) { |
| return currentTime - entry->eventTime >= STALE_EVENT_TIMEOUT; |
| } |
| |
| bool InputDispatcher::runCommandsLockedInterruptible() { |
| if (mCommandQueue.isEmpty()) { |
| return false; |
| } |
| |
| do { |
| CommandEntry* commandEntry = mCommandQueue.dequeueAtHead(); |
| |
| Command command = commandEntry->command; |
| (this->*command)(commandEntry); // commands are implicitly 'LockedInterruptible' |
| |
| commandEntry->connection.clear(); |
| mAllocator.releaseCommandEntry(commandEntry); |
| } while (! mCommandQueue.isEmpty()); |
| return true; |
| } |
| |
| InputDispatcher::CommandEntry* InputDispatcher::postCommandLocked(Command command) { |
| CommandEntry* commandEntry = mAllocator.obtainCommandEntry(command); |
| mCommandQueue.enqueueAtTail(commandEntry); |
| return commandEntry; |
| } |
| |
| void InputDispatcher::drainInboundQueueLocked() { |
| while (! mInboundQueue.isEmpty()) { |
| EventEntry* entry = mInboundQueue.dequeueAtHead(); |
| releaseInboundEventLocked(entry); |
| } |
| } |
| |
| void InputDispatcher::releasePendingEventLocked() { |
| if (mPendingEvent) { |
| releaseInboundEventLocked(mPendingEvent); |
| mPendingEvent = NULL; |
| } |
| } |
| |
| void InputDispatcher::releaseInboundEventLocked(EventEntry* entry) { |
| InjectionState* injectionState = entry->injectionState; |
| if (injectionState && injectionState->injectionResult == INPUT_EVENT_INJECTION_PENDING) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("Injected inbound event was dropped."); |
| #endif |
| setInjectionResultLocked(entry, INPUT_EVENT_INJECTION_FAILED); |
| } |
| mAllocator.releaseEventEntry(entry); |
| } |
| |
| void InputDispatcher::resetKeyRepeatLocked() { |
| if (mKeyRepeatState.lastKeyEntry) { |
| mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); |
| mKeyRepeatState.lastKeyEntry = NULL; |
| } |
| } |
| |
| InputDispatcher::KeyEntry* InputDispatcher::synthesizeKeyRepeatLocked( |
| nsecs_t currentTime, nsecs_t keyRepeatDelay) { |
| KeyEntry* entry = mKeyRepeatState.lastKeyEntry; |
| |
| // Reuse the repeated key entry if it is otherwise unreferenced. |
| uint32_t policyFlags = (entry->policyFlags & POLICY_FLAG_RAW_MASK) |
| | POLICY_FLAG_PASS_TO_USER | POLICY_FLAG_TRUSTED; |
| if (entry->refCount == 1) { |
| mAllocator.recycleKeyEntry(entry); |
| entry->eventTime = currentTime; |
| entry->policyFlags = policyFlags; |
| entry->repeatCount += 1; |
| } else { |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(currentTime, |
| entry->deviceId, entry->source, policyFlags, |
| entry->action, entry->flags, entry->keyCode, entry->scanCode, |
| entry->metaState, entry->repeatCount + 1, entry->downTime); |
| |
| mKeyRepeatState.lastKeyEntry = newEntry; |
| mAllocator.releaseKeyEntry(entry); |
| |
| entry = newEntry; |
| } |
| entry->syntheticRepeat = true; |
| |
| // Increment reference count since we keep a reference to the event in |
| // mKeyRepeatState.lastKeyEntry in addition to the one we return. |
| entry->refCount += 1; |
| |
| if (entry->repeatCount == 1) { |
| entry->flags |= AKEY_EVENT_FLAG_LONG_PRESS; |
| } |
| |
| mKeyRepeatState.nextRepeatTime = currentTime + keyRepeatDelay; |
| return entry; |
| } |
| |
| bool InputDispatcher::dispatchConfigurationChangedLocked( |
| nsecs_t currentTime, ConfigurationChangedEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("dispatchConfigurationChanged - eventTime=%lld", entry->eventTime); |
| #endif |
| |
| // Reset key repeating in case a keyboard device was added or removed or something. |
| resetKeyRepeatLocked(); |
| |
| // Enqueue a command to run outside the lock to tell the policy that the configuration changed. |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyConfigurationChangedInterruptible); |
| commandEntry->eventTime = entry->eventTime; |
| return true; |
| } |
| |
| bool InputDispatcher::dispatchKeyLocked( |
| nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout, |
| DropReason* dropReason, nsecs_t* nextWakeupTime) { |
| // Preprocessing. |
| if (! entry->dispatchInProgress) { |
| if (entry->repeatCount == 0 |
| && entry->action == AKEY_EVENT_ACTION_DOWN |
| && (entry->policyFlags & POLICY_FLAG_TRUSTED) |
| && !entry->isInjected()) { |
| if (mKeyRepeatState.lastKeyEntry |
| && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { |
| // We have seen two identical key downs in a row which indicates that the device |
| // driver is automatically generating key repeats itself. We take note of the |
| // repeat here, but we disable our own next key repeat timer since it is clear that |
| // we will not need to synthesize key repeats ourselves. |
| entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves |
| } else { |
| // Not a repeat. Save key down state in case we do see a repeat later. |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = entry->eventTime + keyRepeatTimeout; |
| } |
| mKeyRepeatState.lastKeyEntry = entry; |
| entry->refCount += 1; |
| } else if (! entry->syntheticRepeat) { |
| resetKeyRepeatLocked(); |
| } |
| |
| entry->dispatchInProgress = true; |
| resetTargetsLocked(); |
| |
| logOutboundKeyDetailsLocked("dispatchKey - ", entry); |
| } |
| |
| // Give the policy a chance to intercept the key. |
| if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN) { |
| if (entry->policyFlags & POLICY_FLAG_PASS_TO_USER) { |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible); |
| if (mFocusedWindow) { |
| commandEntry->inputWindowHandle = mFocusedWindow->inputWindowHandle; |
| } |
| commandEntry->keyEntry = entry; |
| entry->refCount += 1; |
| return false; // wait for the command to run |
| } else { |
| entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; |
| } |
| } else if (entry->interceptKeyResult == KeyEntry::INTERCEPT_KEY_RESULT_SKIP) { |
| if (*dropReason == DROP_REASON_NOT_DROPPED) { |
| *dropReason = DROP_REASON_POLICY; |
| } |
| } |
| |
| // Clean up if dropping the event. |
| if (*dropReason != DROP_REASON_NOT_DROPPED) { |
| resetTargetsLocked(); |
| setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY |
| ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED); |
| return true; |
| } |
| |
| // Identify targets. |
| if (! mCurrentInputTargetsValid) { |
| int32_t injectionResult = findFocusedWindowTargetsLocked(currentTime, |
| entry, nextWakeupTime); |
| if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { |
| return false; |
| } |
| |
| setInjectionResultLocked(entry, injectionResult); |
| if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { |
| return true; |
| } |
| |
| addMonitoringTargetsLocked(); |
| commitTargetsLocked(); |
| } |
| |
| // Dispatch the key. |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| return true; |
| } |
| |
| void InputDispatcher::logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, " |
| "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " |
| "repeatCount=%d, downTime=%lld", |
| prefix, |
| entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, |
| entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, |
| entry->repeatCount, entry->downTime); |
| #endif |
| } |
| |
| bool InputDispatcher::dispatchMotionLocked( |
| nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime) { |
| // Preprocessing. |
| if (! entry->dispatchInProgress) { |
| entry->dispatchInProgress = true; |
| resetTargetsLocked(); |
| |
| logOutboundMotionDetailsLocked("dispatchMotion - ", entry); |
| } |
| |
| // Clean up if dropping the event. |
| if (*dropReason != DROP_REASON_NOT_DROPPED) { |
| resetTargetsLocked(); |
| setInjectionResultLocked(entry, *dropReason == DROP_REASON_POLICY |
| ? INPUT_EVENT_INJECTION_SUCCEEDED : INPUT_EVENT_INJECTION_FAILED); |
| return true; |
| } |
| |
| bool isPointerEvent = entry->source & AINPUT_SOURCE_CLASS_POINTER; |
| |
| // Identify targets. |
| if (! mCurrentInputTargetsValid) { |
| int32_t injectionResult; |
| if (isPointerEvent) { |
| // Pointer event. (eg. touchscreen) |
| injectionResult = findTouchedWindowTargetsLocked(currentTime, |
| entry, nextWakeupTime); |
| } else { |
| // Non touch event. (eg. trackball) |
| injectionResult = findFocusedWindowTargetsLocked(currentTime, |
| entry, nextWakeupTime); |
| } |
| if (injectionResult == INPUT_EVENT_INJECTION_PENDING) { |
| return false; |
| } |
| |
| setInjectionResultLocked(entry, injectionResult); |
| if (injectionResult != INPUT_EVENT_INJECTION_SUCCEEDED) { |
| return true; |
| } |
| |
| addMonitoringTargetsLocked(); |
| commitTargetsLocked(); |
| } |
| |
| // Dispatch the motion. |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| return true; |
| } |
| |
| |
| void InputDispatcher::logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("%seventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, " |
| "action=0x%x, flags=0x%x, " |
| "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", |
| prefix, |
| entry->eventTime, entry->deviceId, entry->source, entry->policyFlags, |
| entry->action, entry->flags, |
| entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, |
| entry->downTime); |
| |
| // Print the most recent sample that we have available, this may change due to batching. |
| size_t sampleCount = 1; |
| const MotionSample* sample = & entry->firstSample; |
| for (; sample->next != NULL; sample = sample->next) { |
| sampleCount += 1; |
| } |
| for (uint32_t i = 0; i < entry->pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " |
| "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " |
| "orientation=%f", |
| i, entry->pointerIds[i], |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_X), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_Y), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_PRESSURE), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_SIZE), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOUCH_MAJOR), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOUCH_MINOR), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOOL_MAJOR), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOOL_MINOR), |
| sample->pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_ORIENTATION)); |
| } |
| |
| // Keep in mind that due to batching, it is possible for the number of samples actually |
| // dispatched to change before the application finally consumed them. |
| if (entry->action == AMOTION_EVENT_ACTION_MOVE) { |
| LOGD(" ... Total movement samples currently batched %d ...", sampleCount); |
| } |
| #endif |
| } |
| |
| void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, |
| EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("dispatchEventToCurrentInputTargets - " |
| "resumeWithAppendedMotionSample=%s", |
| toString(resumeWithAppendedMotionSample)); |
| #endif |
| |
| assert(eventEntry->dispatchInProgress); // should already have been set to true |
| |
| pokeUserActivityLocked(eventEntry); |
| |
| for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { |
| const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); |
| |
| ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| prepareDispatchCycleLocked(currentTime, connection, eventEntry, & inputTarget, |
| resumeWithAppendedMotionSample); |
| } else { |
| #if DEBUG_FOCUS |
| LOGD("Dropping event delivery to target with channel '%s' because it " |
| "is no longer registered with the input dispatcher.", |
| inputTarget.inputChannel->getName().string()); |
| #endif |
| } |
| } |
| } |
| |
| void InputDispatcher::resetTargetsLocked() { |
| mCurrentInputTargetsValid = false; |
| mCurrentInputTargets.clear(); |
| mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; |
| mInputTargetWaitApplication.clear(); |
| } |
| |
| void InputDispatcher::commitTargetsLocked() { |
| mCurrentInputTargetsValid = true; |
| } |
| |
| int32_t InputDispatcher::handleTargetsNotReadyLocked(nsecs_t currentTime, |
| const EventEntry* entry, const InputApplication* application, const InputWindow* window, |
| nsecs_t* nextWakeupTime) { |
| if (application == NULL && window == NULL) { |
| if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting for system to become ready for input."); |
| #endif |
| mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY; |
| mInputTargetWaitStartTime = currentTime; |
| mInputTargetWaitTimeoutTime = LONG_LONG_MAX; |
| mInputTargetWaitTimeoutExpired = false; |
| mInputTargetWaitApplication.clear(); |
| } |
| } else { |
| if (mInputTargetWaitCause != INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting for application to become ready for input: %s", |
| getApplicationWindowLabelLocked(application, window).string()); |
| #endif |
| nsecs_t timeout = window ? window->dispatchingTimeout : |
| application ? application->dispatchingTimeout : DEFAULT_INPUT_DISPATCHING_TIMEOUT; |
| |
| mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY; |
| mInputTargetWaitStartTime = currentTime; |
| mInputTargetWaitTimeoutTime = currentTime + timeout; |
| mInputTargetWaitTimeoutExpired = false; |
| mInputTargetWaitApplication.clear(); |
| |
| if (window && window->inputWindowHandle != NULL) { |
| mInputTargetWaitApplication = |
| window->inputWindowHandle->getInputApplicationHandle(); |
| } |
| if (mInputTargetWaitApplication == NULL && application) { |
| mInputTargetWaitApplication = application->inputApplicationHandle; |
| } |
| } |
| } |
| |
| if (mInputTargetWaitTimeoutExpired) { |
| return INPUT_EVENT_INJECTION_TIMED_OUT; |
| } |
| |
| if (currentTime >= mInputTargetWaitTimeoutTime) { |
| onANRLocked(currentTime, application, window, entry->eventTime, mInputTargetWaitStartTime); |
| |
| // Force poll loop to wake up immediately on next iteration once we get the |
| // ANR response back from the policy. |
| *nextWakeupTime = LONG_LONG_MIN; |
| return INPUT_EVENT_INJECTION_PENDING; |
| } else { |
| // Force poll loop to wake up when timeout is due. |
| if (mInputTargetWaitTimeoutTime < *nextWakeupTime) { |
| *nextWakeupTime = mInputTargetWaitTimeoutTime; |
| } |
| return INPUT_EVENT_INJECTION_PENDING; |
| } |
| } |
| |
| void InputDispatcher::resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout, |
| const sp<InputChannel>& inputChannel) { |
| if (newTimeout > 0) { |
| // Extend the timeout. |
| mInputTargetWaitTimeoutTime = now() + newTimeout; |
| } else { |
| // Give up. |
| mInputTargetWaitTimeoutExpired = true; |
| |
| // Release the touch targets. |
| mTouchState.reset(); |
| |
| // Input state will not be realistic. Mark it out of sync. |
| if (inputChannel.get()) { |
| ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (connection->status == Connection::STATUS_NORMAL) { |
| synthesizeCancelationEventsForConnectionLocked( |
| connection, InputState::CANCEL_ALL_EVENTS, |
| "application not responding"); |
| } |
| } |
| } |
| } |
| } |
| |
| nsecs_t InputDispatcher::getTimeSpentWaitingForApplicationLocked( |
| nsecs_t currentTime) { |
| if (mInputTargetWaitCause == INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY) { |
| return currentTime - mInputTargetWaitStartTime; |
| } |
| return 0; |
| } |
| |
| void InputDispatcher::resetANRTimeoutsLocked() { |
| #if DEBUG_FOCUS |
| LOGD("Resetting ANR timeouts."); |
| #endif |
| |
| // Reset input target wait timeout. |
| mInputTargetWaitCause = INPUT_TARGET_WAIT_CAUSE_NONE; |
| } |
| |
| int32_t InputDispatcher::findFocusedWindowTargetsLocked(nsecs_t currentTime, |
| const EventEntry* entry, nsecs_t* nextWakeupTime) { |
| mCurrentInputTargets.clear(); |
| |
| int32_t injectionResult; |
| |
| // If there is no currently focused window and no focused application |
| // then drop the event. |
| if (! mFocusedWindow) { |
| if (mFocusedApplication) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because there is no focused window but there is a " |
| "focused application that may eventually add a window: %s.", |
| getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| mFocusedApplication, NULL, nextWakeupTime); |
| goto Unresponsive; |
| } |
| |
| LOGI("Dropping event because there is no focused window or focused application."); |
| injectionResult = INPUT_EVENT_INJECTION_FAILED; |
| goto Failed; |
| } |
| |
| // Check permissions. |
| if (! checkInjectionPermission(mFocusedWindow, entry->injectionState)) { |
| injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; |
| goto Failed; |
| } |
| |
| // If the currently focused window is paused then keep waiting. |
| if (mFocusedWindow->paused) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because focused window is paused."); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| mFocusedApplication, mFocusedWindow, nextWakeupTime); |
| goto Unresponsive; |
| } |
| |
| // If the currently focused window is still working on previous events then keep waiting. |
| if (! isWindowFinishedWithPreviousInputLocked(mFocusedWindow)) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because focused window still processing previous input."); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| mFocusedApplication, mFocusedWindow, nextWakeupTime); |
| goto Unresponsive; |
| } |
| |
| // Success! Output targets. |
| injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; |
| addWindowTargetLocked(mFocusedWindow, InputTarget::FLAG_FOREGROUND, BitSet32(0)); |
| |
| // Done. |
| Failed: |
| Unresponsive: |
| nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); |
| updateDispatchStatisticsLocked(currentTime, entry, |
| injectionResult, timeSpentWaitingForApplication); |
| #if DEBUG_FOCUS |
| LOGD("findFocusedWindow finished: injectionResult=%d, " |
| "timeSpendWaitingForApplication=%0.1fms", |
| injectionResult, timeSpentWaitingForApplication / 1000000.0); |
| #endif |
| return injectionResult; |
| } |
| |
| int32_t InputDispatcher::findTouchedWindowTargetsLocked(nsecs_t currentTime, |
| const MotionEntry* entry, nsecs_t* nextWakeupTime) { |
| enum InjectionPermission { |
| INJECTION_PERMISSION_UNKNOWN, |
| INJECTION_PERMISSION_GRANTED, |
| INJECTION_PERMISSION_DENIED |
| }; |
| |
| mCurrentInputTargets.clear(); |
| |
| nsecs_t startTime = now(); |
| |
| // For security reasons, we defer updating the touch state until we are sure that |
| // event injection will be allowed. |
| // |
| // FIXME In the original code, screenWasOff could never be set to true. |
| // The reason is that the POLICY_FLAG_WOKE_HERE |
| // and POLICY_FLAG_BRIGHT_HERE flags were set only when preprocessing raw |
| // EV_KEY, EV_REL and EV_ABS events. As it happens, the touch event was |
| // actually enqueued using the policyFlags that appeared in the final EV_SYN |
| // events upon which no preprocessing took place. So policyFlags was always 0. |
| // In the new native input dispatcher we're a bit more careful about event |
| // preprocessing so the touches we receive can actually have non-zero policyFlags. |
| // Unfortunately we obtain undesirable behavior. |
| // |
| // Here's what happens: |
| // |
| // When the device dims in anticipation of going to sleep, touches |
| // in windows which have FLAG_TOUCHABLE_WHEN_WAKING cause |
| // the device to brighten and reset the user activity timer. |
| // Touches on other windows (such as the launcher window) |
| // are dropped. Then after a moment, the device goes to sleep. Oops. |
| // |
| // Also notice how screenWasOff was being initialized using POLICY_FLAG_BRIGHT_HERE |
| // instead of POLICY_FLAG_WOKE_HERE... |
| // |
| bool screenWasOff = false; // original policy: policyFlags & POLICY_FLAG_BRIGHT_HERE; |
| |
| int32_t action = entry->action; |
| int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; |
| |
| // Update the touch state as needed based on the properties of the touch event. |
| int32_t injectionResult = INPUT_EVENT_INJECTION_PENDING; |
| InjectionPermission injectionPermission = INJECTION_PERMISSION_UNKNOWN; |
| bool isSplit, wrongDevice; |
| if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { |
| mTempTouchState.reset(); |
| mTempTouchState.down = true; |
| mTempTouchState.deviceId = entry->deviceId; |
| mTempTouchState.source = entry->source; |
| isSplit = false; |
| wrongDevice = false; |
| } else { |
| mTempTouchState.copyFrom(mTouchState); |
| isSplit = mTempTouchState.split; |
| wrongDevice = mTempTouchState.down |
| && (mTempTouchState.deviceId != entry->deviceId |
| || mTempTouchState.source != entry->source); |
| if (wrongDevice) { |
| #if DEBUG_INPUT_DISPATCHER_POLICY |
| LOGD("Dropping event because a pointer for a different device is already down."); |
| #endif |
| injectionResult = INPUT_EVENT_INJECTION_FAILED; |
| goto Failed; |
| } |
| } |
| |
| if (maskedAction == AMOTION_EVENT_ACTION_DOWN |
| || (isSplit && maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN)) { |
| /* Case 1: New splittable pointer going down. */ |
| |
| int32_t pointerIndex = getMotionEventActionPointerIndex(action); |
| int32_t x = int32_t(entry->firstSample.pointerCoords[pointerIndex]. |
| getAxisValue(AINPUT_MOTION_AXIS_X)); |
| int32_t y = int32_t(entry->firstSample.pointerCoords[pointerIndex]. |
| getAxisValue(AINPUT_MOTION_AXIS_Y)); |
| const InputWindow* newTouchedWindow = NULL; |
| const InputWindow* topErrorWindow = NULL; |
| |
| // Traverse windows from front to back to find touched window and outside targets. |
| size_t numWindows = mWindows.size(); |
| for (size_t i = 0; i < numWindows; i++) { |
| const InputWindow* window = & mWindows.editItemAt(i); |
| int32_t flags = window->layoutParamsFlags; |
| |
| if (flags & InputWindow::FLAG_SYSTEM_ERROR) { |
| if (! topErrorWindow) { |
| topErrorWindow = window; |
| } |
| } |
| |
| if (window->visible) { |
| if (! (flags & InputWindow::FLAG_NOT_TOUCHABLE)) { |
| bool isTouchModal = (flags & (InputWindow::FLAG_NOT_FOCUSABLE |
| | InputWindow::FLAG_NOT_TOUCH_MODAL)) == 0; |
| if (isTouchModal || window->touchableRegionContainsPoint(x, y)) { |
| if (! screenWasOff || flags & InputWindow::FLAG_TOUCHABLE_WHEN_WAKING) { |
| newTouchedWindow = window; |
| } |
| break; // found touched window, exit window loop |
| } |
| } |
| |
| if (maskedAction == AMOTION_EVENT_ACTION_DOWN |
| && (flags & InputWindow::FLAG_WATCH_OUTSIDE_TOUCH)) { |
| int32_t outsideTargetFlags = InputTarget::FLAG_OUTSIDE; |
| if (isWindowObscuredAtPointLocked(window, x, y)) { |
| outsideTargetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; |
| } |
| |
| mTempTouchState.addOrUpdateWindow(window, outsideTargetFlags, BitSet32(0)); |
| } |
| } |
| } |
| |
| // If there is an error window but it is not taking focus (typically because |
| // it is invisible) then wait for it. Any other focused window may in |
| // fact be in ANR state. |
| if (topErrorWindow && newTouchedWindow != topErrorWindow) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because system error window is pending."); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| NULL, NULL, nextWakeupTime); |
| injectionPermission = INJECTION_PERMISSION_UNKNOWN; |
| goto Unresponsive; |
| } |
| |
| // Figure out whether splitting will be allowed for this window. |
| if (newTouchedWindow && newTouchedWindow->supportsSplitTouch()) { |
| // New window supports splitting. |
| isSplit = true; |
| } else if (isSplit) { |
| // New window does not support splitting but we have already split events. |
| // Assign the pointer to the first foreground window we find. |
| // (May be NULL which is why we put this code block before the next check.) |
| newTouchedWindow = mTempTouchState.getFirstForegroundWindow(); |
| } |
| |
| // If we did not find a touched window then fail. |
| if (! newTouchedWindow) { |
| if (mFocusedApplication) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because there is no touched window but there is a " |
| "focused application that may eventually add a new window: %s.", |
| getApplicationWindowLabelLocked(mFocusedApplication, NULL).string()); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| mFocusedApplication, NULL, nextWakeupTime); |
| goto Unresponsive; |
| } |
| |
| LOGI("Dropping event because there is no touched window or focused application."); |
| injectionResult = INPUT_EVENT_INJECTION_FAILED; |
| goto Failed; |
| } |
| |
| // Set target flags. |
| int32_t targetFlags = InputTarget::FLAG_FOREGROUND; |
| if (isSplit) { |
| targetFlags |= InputTarget::FLAG_SPLIT; |
| } |
| if (isWindowObscuredAtPointLocked(newTouchedWindow, x, y)) { |
| targetFlags |= InputTarget::FLAG_WINDOW_IS_OBSCURED; |
| } |
| |
| // Update the temporary touch state. |
| BitSet32 pointerIds; |
| if (isSplit) { |
| uint32_t pointerId = entry->pointerIds[pointerIndex]; |
| pointerIds.markBit(pointerId); |
| } |
| mTempTouchState.addOrUpdateWindow(newTouchedWindow, targetFlags, pointerIds); |
| } else { |
| /* Case 2: Pointer move, up, cancel or non-splittable pointer down. */ |
| |
| // If the pointer is not currently down, then ignore the event. |
| if (! mTempTouchState.down) { |
| #if DEBUG_INPUT_DISPATCHER_POLICY |
| LOGD("Dropping event because the pointer is not down or we previously " |
| "dropped the pointer down event."); |
| #endif |
| injectionResult = INPUT_EVENT_INJECTION_FAILED; |
| goto Failed; |
| } |
| } |
| |
| // Check permission to inject into all touched foreground windows and ensure there |
| // is at least one touched foreground window. |
| { |
| bool haveForegroundWindow = false; |
| for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { |
| const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; |
| if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { |
| haveForegroundWindow = true; |
| if (! checkInjectionPermission(touchedWindow.window, entry->injectionState)) { |
| injectionResult = INPUT_EVENT_INJECTION_PERMISSION_DENIED; |
| injectionPermission = INJECTION_PERMISSION_DENIED; |
| goto Failed; |
| } |
| } |
| } |
| if (! haveForegroundWindow) { |
| #if DEBUG_INPUT_DISPATCHER_POLICY |
| LOGD("Dropping event because there is no touched foreground window to receive it."); |
| #endif |
| injectionResult = INPUT_EVENT_INJECTION_FAILED; |
| goto Failed; |
| } |
| |
| // Permission granted to injection into all touched foreground windows. |
| injectionPermission = INJECTION_PERMISSION_GRANTED; |
| } |
| |
| // Ensure all touched foreground windows are ready for new input. |
| for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { |
| const TouchedWindow& touchedWindow = mTempTouchState.windows[i]; |
| if (touchedWindow.targetFlags & InputTarget::FLAG_FOREGROUND) { |
| // If the touched window is paused then keep waiting. |
| if (touchedWindow.window->paused) { |
| #if DEBUG_INPUT_DISPATCHER_POLICY |
| LOGD("Waiting because touched window is paused."); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| NULL, touchedWindow.window, nextWakeupTime); |
| goto Unresponsive; |
| } |
| |
| // If the touched window is still working on previous events then keep waiting. |
| if (! isWindowFinishedWithPreviousInputLocked(touchedWindow.window)) { |
| #if DEBUG_FOCUS |
| LOGD("Waiting because touched window still processing previous input."); |
| #endif |
| injectionResult = handleTargetsNotReadyLocked(currentTime, entry, |
| NULL, touchedWindow.window, nextWakeupTime); |
| goto Unresponsive; |
| } |
| } |
| } |
| |
| // If this is the first pointer going down and the touched window has a wallpaper |
| // then also add the touched wallpaper windows so they are locked in for the duration |
| // of the touch gesture. |
| if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { |
| const InputWindow* foregroundWindow = mTempTouchState.getFirstForegroundWindow(); |
| if (foregroundWindow->hasWallpaper) { |
| for (size_t i = 0; i < mWindows.size(); i++) { |
| const InputWindow* window = & mWindows[i]; |
| if (window->layoutParamsType == InputWindow::TYPE_WALLPAPER) { |
| mTempTouchState.addOrUpdateWindow(window, |
| InputTarget::FLAG_WINDOW_IS_OBSCURED, BitSet32(0)); |
| } |
| } |
| } |
| } |
| |
| // Success! Output targets. |
| injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; |
| |
| for (size_t i = 0; i < mTempTouchState.windows.size(); i++) { |
| const TouchedWindow& touchedWindow = mTempTouchState.windows.itemAt(i); |
| addWindowTargetLocked(touchedWindow.window, touchedWindow.targetFlags, |
| touchedWindow.pointerIds); |
| } |
| |
| // Drop the outside touch window since we will not care about them in the next iteration. |
| mTempTouchState.removeOutsideTouchWindows(); |
| |
| Failed: |
| // Check injection permission once and for all. |
| if (injectionPermission == INJECTION_PERMISSION_UNKNOWN) { |
| if (checkInjectionPermission(NULL, entry->injectionState)) { |
| injectionPermission = INJECTION_PERMISSION_GRANTED; |
| } else { |
| injectionPermission = INJECTION_PERMISSION_DENIED; |
| } |
| } |
| |
| // Update final pieces of touch state if the injector had permission. |
| if (injectionPermission == INJECTION_PERMISSION_GRANTED) { |
| if (!wrongDevice) { |
| if (maskedAction == AMOTION_EVENT_ACTION_UP |
| || maskedAction == AMOTION_EVENT_ACTION_CANCEL) { |
| // All pointers up or canceled. |
| mTempTouchState.reset(); |
| } else if (maskedAction == AMOTION_EVENT_ACTION_DOWN) { |
| // First pointer went down. |
| if (mTouchState.down) { |
| #if DEBUG_FOCUS |
| LOGD("Pointer down received while already down."); |
| #endif |
| } |
| } else if (maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { |
| // One pointer went up. |
| if (isSplit) { |
| int32_t pointerIndex = getMotionEventActionPointerIndex(action); |
| uint32_t pointerId = entry->pointerIds[pointerIndex]; |
| |
| for (size_t i = 0; i < mTempTouchState.windows.size(); ) { |
| TouchedWindow& touchedWindow = mTempTouchState.windows.editItemAt(i); |
| if (touchedWindow.targetFlags & InputTarget::FLAG_SPLIT) { |
| touchedWindow.pointerIds.clearBit(pointerId); |
| if (touchedWindow.pointerIds.isEmpty()) { |
| mTempTouchState.windows.removeAt(i); |
| continue; |
| } |
| } |
| i += 1; |
| } |
| } |
| } |
| |
| // Save changes to touch state. |
| mTouchState.copyFrom(mTempTouchState); |
| } |
| } else { |
| #if DEBUG_FOCUS |
| LOGD("Not updating touch focus because injection was denied."); |
| #endif |
| } |
| |
| Unresponsive: |
| // Reset temporary touch state to ensure we release unnecessary references to input channels. |
| mTempTouchState.reset(); |
| |
| nsecs_t timeSpentWaitingForApplication = getTimeSpentWaitingForApplicationLocked(currentTime); |
| updateDispatchStatisticsLocked(currentTime, entry, |
| injectionResult, timeSpentWaitingForApplication); |
| #if DEBUG_FOCUS |
| LOGD("findTouchedWindow finished: injectionResult=%d, injectionPermission=%d, " |
| "timeSpentWaitingForApplication=%0.1fms", |
| injectionResult, injectionPermission, timeSpentWaitingForApplication / 1000000.0); |
| #endif |
| return injectionResult; |
| } |
| |
| void InputDispatcher::addWindowTargetLocked(const InputWindow* window, int32_t targetFlags, |
| BitSet32 pointerIds) { |
| mCurrentInputTargets.push(); |
| |
| InputTarget& target = mCurrentInputTargets.editTop(); |
| target.inputChannel = window->inputChannel; |
| target.flags = targetFlags; |
| target.xOffset = - window->frameLeft; |
| target.yOffset = - window->frameTop; |
| target.pointerIds = pointerIds; |
| } |
| |
| void InputDispatcher::addMonitoringTargetsLocked() { |
| for (size_t i = 0; i < mMonitoringChannels.size(); i++) { |
| mCurrentInputTargets.push(); |
| |
| InputTarget& target = mCurrentInputTargets.editTop(); |
| target.inputChannel = mMonitoringChannels[i]; |
| target.flags = 0; |
| target.xOffset = 0; |
| target.yOffset = 0; |
| } |
| } |
| |
| bool InputDispatcher::checkInjectionPermission(const InputWindow* window, |
| const InjectionState* injectionState) { |
| if (injectionState |
| && (window == NULL || window->ownerUid != injectionState->injectorUid) |
| && !hasInjectionPermission(injectionState->injectorPid, injectionState->injectorUid)) { |
| if (window) { |
| LOGW("Permission denied: injecting event from pid %d uid %d to window " |
| "with input channel %s owned by uid %d", |
| injectionState->injectorPid, injectionState->injectorUid, |
| window->inputChannel->getName().string(), |
| window->ownerUid); |
| } else { |
| LOGW("Permission denied: injecting event from pid %d uid %d", |
| injectionState->injectorPid, injectionState->injectorUid); |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool InputDispatcher::isWindowObscuredAtPointLocked( |
| const InputWindow* window, int32_t x, int32_t y) const { |
| size_t numWindows = mWindows.size(); |
| for (size_t i = 0; i < numWindows; i++) { |
| const InputWindow* other = & mWindows.itemAt(i); |
| if (other == window) { |
| break; |
| } |
| if (other->visible && ! other->isTrustedOverlay() && other->frameContainsPoint(x, y)) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool InputDispatcher::isWindowFinishedWithPreviousInputLocked(const InputWindow* window) { |
| ssize_t connectionIndex = getConnectionIndexLocked(window->inputChannel); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| return connection->outboundQueue.isEmpty(); |
| } else { |
| return true; |
| } |
| } |
| |
| String8 InputDispatcher::getApplicationWindowLabelLocked(const InputApplication* application, |
| const InputWindow* window) { |
| if (application) { |
| if (window) { |
| String8 label(application->name); |
| label.append(" - "); |
| label.append(window->name); |
| return label; |
| } else { |
| return application->name; |
| } |
| } else if (window) { |
| return window->name; |
| } else { |
| return String8("<unknown application or window>"); |
| } |
| } |
| |
| void InputDispatcher::pokeUserActivityLocked(const EventEntry* eventEntry) { |
| int32_t eventType = POWER_MANAGER_BUTTON_EVENT; |
| switch (eventEntry->type) { |
| case EventEntry::TYPE_MOTION: { |
| const MotionEntry* motionEntry = static_cast<const MotionEntry*>(eventEntry); |
| if (motionEntry->action == AMOTION_EVENT_ACTION_CANCEL) { |
| return; |
| } |
| |
| if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { |
| eventType = POWER_MANAGER_TOUCH_EVENT; |
| } |
| break; |
| } |
| case EventEntry::TYPE_KEY: { |
| const KeyEntry* keyEntry = static_cast<const KeyEntry*>(eventEntry); |
| if (keyEntry->flags & AKEY_EVENT_FLAG_CANCELED) { |
| return; |
| } |
| break; |
| } |
| } |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doPokeUserActivityLockedInterruptible); |
| commandEntry->eventTime = eventEntry->eventTime; |
| commandEntry->userActivityEventType = eventType; |
| } |
| |
| void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection, EventEntry* eventEntry, const InputTarget* inputTarget, |
| bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ prepareDispatchCycle - flags=%d, " |
| "xOffset=%f, yOffset=%f, " |
| "pointerIds=0x%x, " |
| "resumeWithAppendedMotionSample=%s", |
| connection->getInputChannelName(), inputTarget->flags, |
| inputTarget->xOffset, inputTarget->yOffset, |
| inputTarget->pointerIds.value, |
| toString(resumeWithAppendedMotionSample)); |
| #endif |
| |
| // Make sure we are never called for streaming when splitting across multiple windows. |
| bool isSplit = inputTarget->flags & InputTarget::FLAG_SPLIT; |
| assert(! (resumeWithAppendedMotionSample && isSplit)); |
| |
| // Skip this event if the connection status is not normal. |
| // We don't want to enqueue additional outbound events if the connection is broken. |
| if (connection->status != Connection::STATUS_NORMAL) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Dropping event because the channel status is %s", |
| connection->getInputChannelName(), connection->getStatusLabel()); |
| #endif |
| return; |
| } |
| |
| // Split a motion event if needed. |
| if (isSplit) { |
| assert(eventEntry->type == EventEntry::TYPE_MOTION); |
| |
| MotionEntry* originalMotionEntry = static_cast<MotionEntry*>(eventEntry); |
| if (inputTarget->pointerIds.count() != originalMotionEntry->pointerCount) { |
| MotionEntry* splitMotionEntry = splitMotionEvent( |
| originalMotionEntry, inputTarget->pointerIds); |
| if (!splitMotionEntry) { |
| return; // split event was dropped |
| } |
| #if DEBUG_FOCUS |
| LOGD("channel '%s' ~ Split motion event.", |
| connection->getInputChannelName()); |
| logOutboundMotionDetailsLocked(" ", splitMotionEntry); |
| #endif |
| eventEntry = splitMotionEntry; |
| } |
| } |
| |
| // Resume the dispatch cycle with a freshly appended motion sample. |
| // First we check that the last dispatch entry in the outbound queue is for the same |
| // motion event to which we appended the motion sample. If we find such a dispatch |
| // entry, and if it is currently in progress then we try to stream the new sample. |
| bool wasEmpty = connection->outboundQueue.isEmpty(); |
| |
| if (! wasEmpty && resumeWithAppendedMotionSample) { |
| DispatchEntry* motionEventDispatchEntry = |
| connection->findQueuedDispatchEntryForEvent(eventEntry); |
| if (motionEventDispatchEntry) { |
| // If the dispatch entry is not in progress, then we must be busy dispatching an |
| // earlier event. Not a problem, the motion event is on the outbound queue and will |
| // be dispatched later. |
| if (! motionEventDispatchEntry->inProgress) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because the motion event has " |
| "not yet been dispatched. " |
| "(Waiting for earlier events to be consumed.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // If the dispatch entry is in progress but it already has a tail of pending |
| // motion samples, then it must mean that the shared memory buffer filled up. |
| // Not a problem, when this dispatch cycle is finished, we will eventually start |
| // a new dispatch cycle to process the tail and that tail includes the newly |
| // appended motion sample. |
| if (motionEventDispatchEntry->tailMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because no new samples can " |
| "be appended to the motion event in this dispatch cycle. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // The dispatch entry is in progress and is still potentially open for streaming. |
| // Try to stream the new motion sample. This might fail if the consumer has already |
| // consumed the motion event (or if the channel is broken). |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry); |
| MotionSample* appendedMotionSample = motionEntry->lastSample; |
| status_t status = connection->inputPublisher.appendMotionSample( |
| appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); |
| if (status == OK) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Successfully streamed new motion sample.", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| #if DEBUG_BATCHING |
| if (status == NO_MEMORY) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event because the shared memory buffer is full. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else if (status == status_t(FAILED_TRANSACTION)) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event because the event has already been consumed. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event due to an error, status=%d. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName(), status); |
| } |
| #endif |
| // Failed to stream. Start a new tail of pending motion samples to dispatch |
| // in the next cycle. |
| motionEventDispatchEntry->tailMotionSample = appendedMotionSample; |
| return; |
| } |
| } |
| |
| // This is a new event. |
| // Enqueue a new dispatch entry onto the outbound queue for this connection. |
| DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry, // increments ref |
| inputTarget->flags, inputTarget->xOffset, inputTarget->yOffset); |
| if (dispatchEntry->hasForegroundTarget()) { |
| incrementPendingForegroundDispatchesLocked(eventEntry); |
| } |
| |
| // Handle the case where we could not stream a new motion sample because the consumer has |
| // already consumed the motion event (otherwise the corresponding dispatch entry would |
| // still be in the outbound queue for this connection). We set the head motion sample |
| // to the list starting with the newly appended motion sample. |
| if (resumeWithAppendedMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " |
| "that cannot be streamed because the motion event has already been consumed.", |
| connection->getInputChannelName()); |
| #endif |
| MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; |
| dispatchEntry->headMotionSample = appendedMotionSample; |
| } |
| |
| // Enqueue the dispatch entry. |
| connection->outboundQueue.enqueueAtTail(dispatchEntry); |
| |
| // If the outbound queue was previously empty, start the dispatch cycle going. |
| if (wasEmpty) { |
| activateConnectionLocked(connection.get()); |
| startDispatchCycleLocked(currentTime, connection); |
| } |
| } |
| |
| void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ startDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| assert(connection->status == Connection::STATUS_NORMAL); |
| assert(! connection->outboundQueue.isEmpty()); |
| |
| DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; |
| assert(! dispatchEntry->inProgress); |
| |
| // Mark the dispatch entry as in progress. |
| dispatchEntry->inProgress = true; |
| |
| // Update the connection's input state. |
| EventEntry* eventEntry = dispatchEntry->eventEntry; |
| InputState::Consistency consistency = connection->inputState.trackEvent(eventEntry); |
| |
| #if FILTER_INPUT_EVENTS |
| // Filter out inconsistent sequences of input events. |
| // The input system may drop or inject events in a way that could violate implicit |
| // invariants on input state and potentially cause an application to crash |
| // or think that a key or pointer is stuck down. Technically we make no guarantees |
| // of consistency but it would be nice to improve on this where possible. |
| // XXX: This code is a proof of concept only. Not ready for prime time. |
| if (consistency == InputState::TOLERABLE) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Sending an event that is inconsistent with the connection's " |
| "current input state but that is likely to be tolerated by the application.", |
| connection->getInputChannelName()); |
| #endif |
| } else if (consistency == InputState::BROKEN) { |
| LOGI("channel '%s' ~ Dropping an event that is inconsistent with the connection's " |
| "current input state and that is likely to cause the application to crash.", |
| connection->getInputChannelName()); |
| startNextDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| #endif |
| |
| // Publish the event. |
| status_t status; |
| switch (eventEntry->type) { |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(eventEntry); |
| |
| // Apply target flags. |
| int32_t action = keyEntry->action; |
| int32_t flags = keyEntry->flags; |
| |
| // Publish the key event. |
| status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->source, |
| action, flags, keyEntry->keyCode, keyEntry->scanCode, |
| keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, |
| keyEntry->eventTime); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish key event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(eventEntry); |
| |
| // Apply target flags. |
| int32_t action = motionEntry->action; |
| int32_t flags = motionEntry->flags; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { |
| action = AMOTION_EVENT_ACTION_OUTSIDE; |
| } |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_WINDOW_IS_OBSCURED) { |
| flags |= AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED; |
| } |
| |
| // If headMotionSample is non-NULL, then it points to the first new sample that we |
| // were unable to dispatch during the previous cycle so we resume dispatching from |
| // that point in the list of motion samples. |
| // Otherwise, we just start from the first sample of the motion event. |
| MotionSample* firstMotionSample = dispatchEntry->headMotionSample; |
| if (! firstMotionSample) { |
| firstMotionSample = & motionEntry->firstSample; |
| } |
| |
| // Set the X and Y offset depending on the input source. |
| float xOffset, yOffset; |
| if (motionEntry->source & AINPUT_SOURCE_CLASS_POINTER) { |
| xOffset = dispatchEntry->xOffset; |
| yOffset = dispatchEntry->yOffset; |
| } else { |
| xOffset = 0.0f; |
| yOffset = 0.0f; |
| } |
| |
| // Publish the motion event and the first motion sample. |
| status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, |
| motionEntry->source, action, flags, motionEntry->edgeFlags, motionEntry->metaState, |
| xOffset, yOffset, |
| motionEntry->xPrecision, motionEntry->yPrecision, |
| motionEntry->downTime, firstMotionSample->eventTime, |
| motionEntry->pointerCount, motionEntry->pointerIds, |
| firstMotionSample->pointerCoords); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish motion event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| |
| // Append additional motion samples. |
| MotionSample* nextMotionSample = firstMotionSample->next; |
| for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { |
| status = connection->inputPublisher.appendMotionSample( |
| nextMotionSample->eventTime, nextMotionSample->pointerCoords); |
| if (status == NO_MEMORY) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will " |
| "be sent in the next dispatch cycle.", |
| connection->getInputChannelName()); |
| #endif |
| break; |
| } |
| if (status != OK) { |
| LOGE("channel '%s' ~ Could not append motion sample " |
| "for a reason other than out of memory, status=%d", |
| connection->getInputChannelName(), status); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| } |
| |
| // Remember the next motion sample that we could not dispatch, in case we ran out |
| // of space in the shared memory buffer. |
| dispatchEntry->tailMotionSample = nextMotionSample; |
| break; |
| } |
| |
| default: { |
| assert(false); |
| } |
| } |
| |
| // Send the dispatch signal. |
| status = connection->inputPublisher.sendDispatchSignal(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", |
| connection->getInputChannelName(), status); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| |
| // Record information about the newly started dispatch cycle. |
| connection->lastEventTime = eventEntry->eventTime; |
| connection->lastDispatchTime = currentTime; |
| |
| // Notify other system components. |
| onDispatchCycleStartedLocked(currentTime, connection); |
| } |
| |
| void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection, bool handled) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ finishDispatchCycle - %01.1fms since event, " |
| "%01.1fms since dispatch, handled=%s", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime), |
| toString(handled)); |
| #endif |
| |
| if (connection->status == Connection::STATUS_BROKEN |
| || connection->status == Connection::STATUS_ZOMBIE) { |
| return; |
| } |
| |
| // Reset the publisher since the event has been consumed. |
| // We do this now so that the publisher can release some of its internal resources |
| // while waiting for the next dispatch cycle to begin. |
| status_t status = connection->inputPublisher.reset(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not reset publisher, status=%d", |
| connection->getInputChannelName(), status); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| |
| // Notify other system components and prepare to start the next dispatch cycle. |
| onDispatchCycleFinishedLocked(currentTime, connection, handled); |
| } |
| |
| void InputDispatcher::startNextDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| // Start the next dispatch cycle for this connection. |
| while (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; |
| if (dispatchEntry->inProgress) { |
| // Finish or resume current event in progress. |
| if (dispatchEntry->tailMotionSample) { |
| // We have a tail of undispatched motion samples. |
| // Reuse the same DispatchEntry and start a new cycle. |
| dispatchEntry->inProgress = false; |
| dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; |
| dispatchEntry->tailMotionSample = NULL; |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| // Finished. |
| connection->outboundQueue.dequeueAtHead(); |
| if (dispatchEntry->hasForegroundTarget()) { |
| decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); |
| } |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } else { |
| // If the head is not in progress, then we must have already dequeued the in |
| // progress event, which means we actually aborted it. |
| // So just start the next event for this connection. |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| } |
| |
| // Outbound queue is empty, deactivate the connection. |
| deactivateConnectionLocked(connection.get()); |
| } |
| |
| void InputDispatcher::abortBrokenDispatchCycleLocked(nsecs_t currentTime, |
| const sp<Connection>& connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ abortBrokenDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| // Clear the outbound queue. |
| drainOutboundQueueLocked(connection.get()); |
| |
| // The connection appears to be unrecoverably broken. |
| // Ignore already broken or zombie connections. |
| if (connection->status == Connection::STATUS_NORMAL) { |
| connection->status = Connection::STATUS_BROKEN; |
| |
| // Notify other system components. |
| onDispatchCycleBrokenLocked(currentTime, connection); |
| } |
| } |
| |
| void InputDispatcher::drainOutboundQueueLocked(Connection* connection) { |
| while (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead(); |
| if (dispatchEntry->hasForegroundTarget()) { |
| decrementPendingForegroundDispatchesLocked(dispatchEntry->eventEntry); |
| } |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } |
| |
| deactivateConnectionLocked(connection); |
| } |
| |
| int InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { |
| InputDispatcher* d = static_cast<InputDispatcher*>(data); |
| |
| { // acquire lock |
| AutoMutex _l(d->mLock); |
| |
| ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); |
| if (connectionIndex < 0) { |
| LOGE("Received spurious receive callback for unknown input channel. " |
| "fd=%d, events=0x%x", receiveFd, events); |
| return 0; // remove the callback |
| } |
| |
| nsecs_t currentTime = now(); |
| |
| sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (events & (ALOOPER_EVENT_ERROR | ALOOPER_EVENT_HANGUP)) { |
| LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| d->abortBrokenDispatchCycleLocked(currentTime, connection); |
| d->runCommandsLockedInterruptible(); |
| return 0; // remove the callback |
| } |
| |
| if (! (events & ALOOPER_EVENT_INPUT)) { |
| LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| return 1; |
| } |
| |
| bool handled = false; |
| status_t status = connection->inputPublisher.receiveFinishedSignal(&handled); |
| if (status) { |
| LOGE("channel '%s' ~ Failed to receive finished signal. status=%d", |
| connection->getInputChannelName(), status); |
| d->abortBrokenDispatchCycleLocked(currentTime, connection); |
| d->runCommandsLockedInterruptible(); |
| return 0; // remove the callback |
| } |
| |
| d->finishDispatchCycleLocked(currentTime, connection, handled); |
| d->runCommandsLockedInterruptible(); |
| return 1; |
| } // release lock |
| } |
| |
| void InputDispatcher::synthesizeCancelationEventsForAllConnectionsLocked( |
| InputState::CancelationOptions options, const char* reason) { |
| for (size_t i = 0; i < mConnectionsByReceiveFd.size(); i++) { |
| synthesizeCancelationEventsForConnectionLocked( |
| mConnectionsByReceiveFd.valueAt(i), options, reason); |
| } |
| } |
| |
| void InputDispatcher::synthesizeCancelationEventsForInputChannelLocked( |
| const sp<InputChannel>& channel, InputState::CancelationOptions options, |
| const char* reason) { |
| ssize_t index = getConnectionIndexLocked(channel); |
| if (index >= 0) { |
| synthesizeCancelationEventsForConnectionLocked( |
| mConnectionsByReceiveFd.valueAt(index), options, reason); |
| } |
| } |
| |
| void InputDispatcher::synthesizeCancelationEventsForConnectionLocked( |
| const sp<Connection>& connection, InputState::CancelationOptions options, |
| const char* reason) { |
| nsecs_t currentTime = now(); |
| |
| mTempCancelationEvents.clear(); |
| connection->inputState.synthesizeCancelationEvents(currentTime, & mAllocator, |
| mTempCancelationEvents, options); |
| |
| if (! mTempCancelationEvents.isEmpty() |
| && connection->status != Connection::STATUS_BROKEN) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("channel '%s' ~ Synthesized %d cancelation events to bring channel back in sync " |
| "with reality: %s, options=%d.", |
| connection->getInputChannelName(), mTempCancelationEvents.size(), reason, options); |
| #endif |
| for (size_t i = 0; i < mTempCancelationEvents.size(); i++) { |
| EventEntry* cancelationEventEntry = mTempCancelationEvents.itemAt(i); |
| switch (cancelationEventEntry->type) { |
| case EventEntry::TYPE_KEY: |
| logOutboundKeyDetailsLocked("cancel - ", |
| static_cast<KeyEntry*>(cancelationEventEntry)); |
| break; |
| case EventEntry::TYPE_MOTION: |
| logOutboundMotionDetailsLocked("cancel - ", |
| static_cast<MotionEntry*>(cancelationEventEntry)); |
| break; |
| } |
| |
| int32_t xOffset, yOffset; |
| const InputWindow* window = getWindowLocked(connection->inputChannel); |
| if (window) { |
| xOffset = -window->frameLeft; |
| yOffset = -window->frameTop; |
| } else { |
| xOffset = 0; |
| yOffset = 0; |
| } |
| |
| DispatchEntry* cancelationDispatchEntry = |
| mAllocator.obtainDispatchEntry(cancelationEventEntry, // increments ref |
| 0, xOffset, yOffset); |
| connection->outboundQueue.enqueueAtTail(cancelationDispatchEntry); |
| |
| mAllocator.releaseEventEntry(cancelationEventEntry); |
| } |
| |
| if (!connection->outboundQueue.headSentinel.next->inProgress) { |
| startDispatchCycleLocked(currentTime, connection); |
| } |
| } |
| } |
| |
| InputDispatcher::MotionEntry* |
| InputDispatcher::splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds) { |
| assert(pointerIds.value != 0); |
| |
| uint32_t splitPointerIndexMap[MAX_POINTERS]; |
| int32_t splitPointerIds[MAX_POINTERS]; |
| PointerCoords splitPointerCoords[MAX_POINTERS]; |
| |
| uint32_t originalPointerCount = originalMotionEntry->pointerCount; |
| uint32_t splitPointerCount = 0; |
| |
| for (uint32_t originalPointerIndex = 0; originalPointerIndex < originalPointerCount; |
| originalPointerIndex++) { |
| int32_t pointerId = uint32_t(originalMotionEntry->pointerIds[originalPointerIndex]); |
| if (pointerIds.hasBit(pointerId)) { |
| splitPointerIndexMap[splitPointerCount] = originalPointerIndex; |
| splitPointerIds[splitPointerCount] = pointerId; |
| splitPointerCoords[splitPointerCount] = |
| originalMotionEntry->firstSample.pointerCoords[originalPointerIndex]; |
| splitPointerCount += 1; |
| } |
| } |
| |
| if (splitPointerCount != pointerIds.count()) { |
| // This is bad. We are missing some of the pointers that we expected to deliver. |
| // Most likely this indicates that we received an ACTION_MOVE events that has |
| // different pointer ids than we expected based on the previous ACTION_DOWN |
| // or ACTION_POINTER_DOWN events that caused us to decide to split the pointers |
| // in this way. |
| LOGW("Dropping split motion event because the pointer count is %d but " |
| "we expected there to be %d pointers. This probably means we received " |
| "a broken sequence of pointer ids from the input device.", |
| splitPointerCount, pointerIds.count()); |
| return NULL; |
| } |
| |
| int32_t action = originalMotionEntry->action; |
| int32_t maskedAction = action & AMOTION_EVENT_ACTION_MASK; |
| if (maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN |
| || maskedAction == AMOTION_EVENT_ACTION_POINTER_UP) { |
| int32_t originalPointerIndex = getMotionEventActionPointerIndex(action); |
| int32_t pointerId = originalMotionEntry->pointerIds[originalPointerIndex]; |
| if (pointerIds.hasBit(pointerId)) { |
| if (pointerIds.count() == 1) { |
| // The first/last pointer went down/up. |
| action = maskedAction == AMOTION_EVENT_ACTION_POINTER_DOWN |
| ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; |
| } else { |
| // A secondary pointer went down/up. |
| uint32_t splitPointerIndex = 0; |
| while (pointerId != splitPointerIds[splitPointerIndex]) { |
| splitPointerIndex += 1; |
| } |
| action = maskedAction | (splitPointerIndex |
| << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); |
| } |
| } else { |
| // An unrelated pointer changed. |
| action = AMOTION_EVENT_ACTION_MOVE; |
| } |
| } |
| |
| MotionEntry* splitMotionEntry = mAllocator.obtainMotionEntry( |
| originalMotionEntry->eventTime, |
| originalMotionEntry->deviceId, |
| originalMotionEntry->source, |
| originalMotionEntry->policyFlags, |
| action, |
| originalMotionEntry->flags, |
| originalMotionEntry->metaState, |
| originalMotionEntry->edgeFlags, |
| originalMotionEntry->xPrecision, |
| originalMotionEntry->yPrecision, |
| originalMotionEntry->downTime, |
| splitPointerCount, splitPointerIds, splitPointerCoords); |
| |
| for (MotionSample* originalMotionSample = originalMotionEntry->firstSample.next; |
| originalMotionSample != NULL; originalMotionSample = originalMotionSample->next) { |
| for (uint32_t splitPointerIndex = 0; splitPointerIndex < splitPointerCount; |
| splitPointerIndex++) { |
| uint32_t originalPointerIndex = splitPointerIndexMap[splitPointerIndex]; |
| splitPointerCoords[splitPointerIndex] = |
| originalMotionSample->pointerCoords[originalPointerIndex]; |
| } |
| |
| mAllocator.appendMotionSample(splitMotionEntry, originalMotionSample->eventTime, |
| splitPointerCoords); |
| } |
| |
| return splitMotionEntry; |
| } |
| |
| void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyConfigurationChanged - eventTime=%lld", eventTime); |
| #endif |
| |
| bool needWake; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(eventTime); |
| needWake = enqueueInboundEventLocked(newEntry); |
| } // release lock |
| |
| if (needWake) { |
| mLooper->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source, |
| uint32_t policyFlags, int32_t action, int32_t flags, |
| int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyKey - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, action=0x%x, " |
| "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", |
| eventTime, deviceId, source, policyFlags, action, flags, |
| keyCode, scanCode, metaState, downTime); |
| #endif |
| if (! validateKeyEvent(action)) { |
| return; |
| } |
| |
| if ((policyFlags & POLICY_FLAG_VIRTUAL) || (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY)) { |
| policyFlags |= POLICY_FLAG_VIRTUAL; |
| flags |= AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; |
| } |
| |
| policyFlags |= POLICY_FLAG_TRUSTED; |
| |
| KeyEvent event; |
| event.initialize(deviceId, source, action, flags, keyCode, scanCode, |
| metaState, 0, downTime, eventTime); |
| |
| mPolicy->interceptKeyBeforeQueueing(&event, /*byref*/ policyFlags); |
| |
| if (policyFlags & POLICY_FLAG_WOKE_HERE) { |
| flags |= AKEY_EVENT_FLAG_WOKE_HERE; |
| } |
| |
| bool needWake; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| int32_t repeatCount = 0; |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(eventTime, |
| deviceId, source, policyFlags, action, flags, keyCode, scanCode, |
| metaState, repeatCount, downTime); |
| |
| needWake = enqueueInboundEventLocked(newEntry); |
| } // release lock |
| |
| if (needWake) { |
| mLooper->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source, |
| uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t edgeFlags, |
| uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, |
| float xPrecision, float yPrecision, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyMotion - eventTime=%lld, deviceId=%d, source=0x%x, policyFlags=0x%x, " |
| "action=0x%x, flags=0x%x, metaState=0x%x, edgeFlags=0x%x, " |
| "xPrecision=%f, yPrecision=%f, downTime=%lld", |
| eventTime, deviceId, source, policyFlags, action, flags, metaState, edgeFlags, |
| xPrecision, yPrecision, downTime); |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f, " |
| "touchMajor=%f, touchMinor=%f, toolMajor=%f, toolMinor=%f, " |
| "orientation=%f", |
| i, pointerIds[i], |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_X), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_Y), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_PRESSURE), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_SIZE), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOUCH_MAJOR), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOUCH_MINOR), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOOL_MAJOR), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_TOOL_MINOR), |
| pointerCoords[i].getAxisValue(AINPUT_MOTION_AXIS_ORIENTATION)); |
| } |
| #endif |
| if (! validateMotionEvent(action, pointerCount, pointerIds)) { |
| return; |
| } |
| |
| policyFlags |= POLICY_FLAG_TRUSTED; |
| mPolicy->interceptGenericBeforeQueueing(eventTime, /*byref*/ policyFlags); |
| |
| bool needWake; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Attempt batching and streaming of move events. |
| if (action == AMOTION_EVENT_ACTION_MOVE) { |
| // BATCHING CASE |
| // |
| // Try to append a move sample to the tail of the inbound queue for this device. |
| // Give up if we encounter a non-move motion event for this device since that |
| // means we cannot append any new samples until a new motion event has started. |
| for (EventEntry* entry = mInboundQueue.tailSentinel.prev; |
| entry != & mInboundQueue.headSentinel; entry = entry->prev) { |
| if (entry->type != EventEntry::TYPE_MOTION) { |
| // Keep looking for motion events. |
| continue; |
| } |
| |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| if (motionEntry->deviceId != deviceId) { |
| // Keep looking for this device. |
| continue; |
| } |
| |
| if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE |
| || motionEntry->source != source |
| || motionEntry->pointerCount != pointerCount |
| || motionEntry->isInjected()) { |
| // Last motion event in the queue for this device is not compatible for |
| // appending new samples. Stop here. |
| goto NoBatchingOrStreaming; |
| } |
| |
| // The last motion event is a move and is compatible for appending. |
| // Do the batching magic. |
| mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recent " |
| "motion event for this device in the inbound queue."); |
| #endif |
| return; // done! |
| } |
| |
| // STREAMING CASE |
| // |
| // There is no pending motion event (of any kind) for this device in the inbound queue. |
| // Search the outbound queue for the current foreground targets to find a dispatched |
| // motion event that is still in progress. If found, then, appen the new sample to |
| // that event and push it out to all current targets. The logic in |
| // prepareDispatchCycleLocked takes care of the case where some targets may |
| // already have consumed the motion event by starting a new dispatch cycle if needed. |
| if (mCurrentInputTargetsValid) { |
| for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { |
| const InputTarget& inputTarget = mCurrentInputTargets[i]; |
| if ((inputTarget.flags & InputTarget::FLAG_FOREGROUND) == 0) { |
| // Skip non-foreground targets. We only want to stream if there is at |
| // least one foreground target whose dispatch is still in progress. |
| continue; |
| } |
| |
| ssize_t connectionIndex = getConnectionIndexLocked(inputTarget.inputChannel); |
| if (connectionIndex < 0) { |
| // Connection must no longer be valid. |
| continue; |
| } |
| |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (connection->outboundQueue.isEmpty()) { |
| // This foreground target has an empty outbound queue. |
| continue; |
| } |
| |
| DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; |
| if (! dispatchEntry->inProgress |
| || dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION |
| || dispatchEntry->isSplit()) { |
| // No motion event is being dispatched, or it is being split across |
| // windows in which case we cannot stream. |
| continue; |
| } |
| |
| MotionEntry* motionEntry = static_cast<MotionEntry*>( |
| dispatchEntry->eventEntry); |
| if (motionEntry->action != AMOTION_EVENT_ACTION_MOVE |
| || motionEntry->deviceId != deviceId |
| || motionEntry->source != source |
| || motionEntry->pointerCount != pointerCount |
| || motionEntry->isInjected()) { |
| // The motion event is not compatible with this move. |
| continue; |
| } |
| |
| // Hurray! This foreground target is currently dispatching a move event |
| // that we can stream onto. Append the motion sample and resume dispatch. |
| mAllocator.appendMotionSample(motionEntry, eventTime, pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recently dispatched " |
| "motion event for this device in the outbound queues. " |
| "Attempting to stream the motion sample."); |
| #endif |
| nsecs_t currentTime = now(); |
| dispatchEventToCurrentInputTargetsLocked(currentTime, motionEntry, |
| true /*resumeWithAppendedMotionSample*/); |
| |
| runCommandsLockedInterruptible(); |
| return; // done! |
| } |
| } |
| |
| NoBatchingOrStreaming:; |
| } |
| |
| // Just enqueue a new motion event. |
| MotionEntry* newEntry = mAllocator.obtainMotionEntry(eventTime, |
| deviceId, source, policyFlags, action, flags, metaState, edgeFlags, |
| xPrecision, yPrecision, downTime, |
| pointerCount, pointerIds, pointerCoords); |
| |
| needWake = enqueueInboundEventLocked(newEntry); |
| } // release lock |
| |
| if (needWake) { |
| mLooper->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, |
| uint32_t policyFlags) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifySwitch - switchCode=%d, switchValue=%d, policyFlags=0x%x", |
| switchCode, switchValue, policyFlags); |
| #endif |
| |
| policyFlags |= POLICY_FLAG_TRUSTED; |
| mPolicy->notifySwitch(when, switchCode, switchValue, policyFlags); |
| } |
| |
| int32_t InputDispatcher::injectInputEvent(const InputEvent* event, |
| int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("injectInputEvent - eventType=%d, injectorPid=%d, injectorUid=%d, " |
| "syncMode=%d, timeoutMillis=%d", |
| event->getType(), injectorPid, injectorUid, syncMode, timeoutMillis); |
| #endif |
| |
| nsecs_t endTime = now() + milliseconds_to_nanoseconds(timeoutMillis); |
| |
| uint32_t policyFlags = POLICY_FLAG_INJECTED; |
| if (hasInjectionPermission(injectorPid, injectorUid)) { |
| policyFlags |= POLICY_FLAG_TRUSTED; |
| } |
| |
| EventEntry* injectedEntry; |
| switch (event->getType()) { |
| case AINPUT_EVENT_TYPE_KEY: { |
| const KeyEvent* keyEvent = static_cast<const KeyEvent*>(event); |
| int32_t action = keyEvent->getAction(); |
| if (! validateKeyEvent(action)) { |
| return INPUT_EVENT_INJECTION_FAILED; |
| } |
| |
| int32_t flags = keyEvent->getFlags(); |
| if (flags & AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY) { |
| policyFlags |= POLICY_FLAG_VIRTUAL; |
| } |
| |
| mPolicy->interceptKeyBeforeQueueing(keyEvent, /*byref*/ policyFlags); |
| |
| if (policyFlags & POLICY_FLAG_WOKE_HERE) { |
| flags |= AKEY_EVENT_FLAG_WOKE_HERE; |
| } |
| |
| mLock.lock(); |
| injectedEntry = mAllocator.obtainKeyEntry(keyEvent->getEventTime(), |
| keyEvent->getDeviceId(), keyEvent->getSource(), |
| policyFlags, action, flags, |
| keyEvent->getKeyCode(), keyEvent->getScanCode(), keyEvent->getMetaState(), |
| keyEvent->getRepeatCount(), keyEvent->getDownTime()); |
| break; |
| } |
| |
| case AINPUT_EVENT_TYPE_MOTION: { |
| const MotionEvent* motionEvent = static_cast<const MotionEvent*>(event); |
| int32_t action = motionEvent->getAction(); |
| size_t pointerCount = motionEvent->getPointerCount(); |
| const int32_t* pointerIds = motionEvent->getPointerIds(); |
| if (! validateMotionEvent(action, pointerCount, pointerIds)) { |
| return INPUT_EVENT_INJECTION_FAILED; |
| } |
| |
| nsecs_t eventTime = motionEvent->getEventTime(); |
| mPolicy->interceptGenericBeforeQueueing(eventTime, /*byref*/ policyFlags); |
| |
| mLock.lock(); |
| const nsecs_t* sampleEventTimes = motionEvent->getSampleEventTimes(); |
| const PointerCoords* samplePointerCoords = motionEvent->getSamplePointerCoords(); |
| MotionEntry* motionEntry = mAllocator.obtainMotionEntry(*sampleEventTimes, |
| motionEvent->getDeviceId(), motionEvent->getSource(), policyFlags, |
| action, motionEvent->getFlags(), |
| motionEvent->getMetaState(), motionEvent->getEdgeFlags(), |
| motionEvent->getXPrecision(), motionEvent->getYPrecision(), |
| motionEvent->getDownTime(), uint32_t(pointerCount), |
| pointerIds, samplePointerCoords); |
| for (size_t i = motionEvent->getHistorySize(); i > 0; i--) { |
| sampleEventTimes += 1; |
| samplePointerCoords += pointerCount; |
| mAllocator.appendMotionSample(motionEntry, *sampleEventTimes, samplePointerCoords); |
| } |
| injectedEntry = motionEntry; |
| break; |
| } |
| |
| default: |
| LOGW("Cannot inject event of type %d", event->getType()); |
| return INPUT_EVENT_INJECTION_FAILED; |
| } |
| |
| InjectionState* injectionState = mAllocator.obtainInjectionState(injectorPid, injectorUid); |
| if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { |
| injectionState->injectionIsAsync = true; |
| } |
| |
| injectionState->refCount += 1; |
| injectedEntry->injectionState = injectionState; |
| |
| bool needWake = enqueueInboundEventLocked(injectedEntry); |
| mLock.unlock(); |
| |
| if (needWake) { |
| mLooper->wake(); |
| } |
| |
| int32_t injectionResult; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (syncMode == INPUT_EVENT_INJECTION_SYNC_NONE) { |
| injectionResult = INPUT_EVENT_INJECTION_SUCCEEDED; |
| } else { |
| for (;;) { |
| injectionResult = injectionState->injectionResult; |
| if (injectionResult != INPUT_EVENT_INJECTION_PENDING) { |
| break; |
| } |
| |
| nsecs_t remainingTimeout = endTime - now(); |
| if (remainingTimeout <= 0) { |
| #if DEBUG_INJECTION |
| LOGD("injectInputEvent - Timed out waiting for injection result " |
| "to become available."); |
| #endif |
| injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; |
| break; |
| } |
| |
| mInjectionResultAvailableCondition.waitRelative(mLock, remainingTimeout); |
| } |
| |
| if (injectionResult == INPUT_EVENT_INJECTION_SUCCEEDED |
| && syncMode == INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED) { |
| while (injectionState->pendingForegroundDispatches != 0) { |
| #if DEBUG_INJECTION |
| LOGD("injectInputEvent - Waiting for %d pending foreground dispatches.", |
| injectionState->pendingForegroundDispatches); |
| #endif |
| nsecs_t remainingTimeout = endTime - now(); |
| if (remainingTimeout <= 0) { |
| #if DEBUG_INJECTION |
| LOGD("injectInputEvent - Timed out waiting for pending foreground " |
| "dispatches to finish."); |
| #endif |
| injectionResult = INPUT_EVENT_INJECTION_TIMED_OUT; |
| break; |
| } |
| |
| mInjectionSyncFinishedCondition.waitRelative(mLock, remainingTimeout); |
| } |
| } |
| } |
| |
| mAllocator.releaseInjectionState(injectionState); |
| } // release lock |
| |
| #if DEBUG_INJECTION |
| LOGD("injectInputEvent - Finished with result %d. " |
| "injectorPid=%d, injectorUid=%d", |
| injectionResult, injectorPid, injectorUid); |
| #endif |
| |
| return injectionResult; |
| } |
| |
| bool InputDispatcher::hasInjectionPermission(int32_t injectorPid, int32_t injectorUid) { |
| return injectorUid == 0 |
| || mPolicy->checkInjectEventsPermissionNonReentrant(injectorPid, injectorUid); |
| } |
| |
| void InputDispatcher::setInjectionResultLocked(EventEntry* entry, int32_t injectionResult) { |
| InjectionState* injectionState = entry->injectionState; |
| if (injectionState) { |
| #if DEBUG_INJECTION |
| LOGD("Setting input event injection result to %d. " |
| "injectorPid=%d, injectorUid=%d", |
| injectionResult, injectionState->injectorPid, injectionState->injectorUid); |
| #endif |
| |
| if (injectionState->injectionIsAsync) { |
| // Log the outcome since the injector did not wait for the injection result. |
| switch (injectionResult) { |
| case INPUT_EVENT_INJECTION_SUCCEEDED: |
| LOGV("Asynchronous input event injection succeeded."); |
| break; |
| case INPUT_EVENT_INJECTION_FAILED: |
| LOGW("Asynchronous input event injection failed."); |
| break; |
| case INPUT_EVENT_INJECTION_PERMISSION_DENIED: |
| LOGW("Asynchronous input event injection permission denied."); |
| break; |
| case INPUT_EVENT_INJECTION_TIMED_OUT: |
| LOGW("Asynchronous input event injection timed out."); |
| break; |
| } |
| } |
| |
| injectionState->injectionResult = injectionResult; |
| mInjectionResultAvailableCondition.broadcast(); |
| } |
| } |
| |
| void InputDispatcher::incrementPendingForegroundDispatchesLocked(EventEntry* entry) { |
| InjectionState* injectionState = entry->injectionState; |
| if (injectionState) { |
| injectionState->pendingForegroundDispatches += 1; |
| } |
| } |
| |
| void InputDispatcher::decrementPendingForegroundDispatchesLocked(EventEntry* entry) { |
| InjectionState* injectionState = entry->injectionState; |
| if (injectionState) { |
| injectionState->pendingForegroundDispatches -= 1; |
| |
| if (injectionState->pendingForegroundDispatches == 0) { |
| mInjectionSyncFinishedCondition.broadcast(); |
| } |
| } |
| } |
| |
| const InputWindow* InputDispatcher::getWindowLocked(const sp<InputChannel>& inputChannel) { |
| for (size_t i = 0; i < mWindows.size(); i++) { |
| const InputWindow* window = & mWindows[i]; |
| if (window->inputChannel == inputChannel) { |
| return window; |
| } |
| } |
| return NULL; |
| } |
| |
| void InputDispatcher::setInputWindows(const Vector<InputWindow>& inputWindows) { |
| #if DEBUG_FOCUS |
| LOGD("setInputWindows"); |
| #endif |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Clear old window pointers. |
| sp<InputChannel> oldFocusedWindowChannel; |
| if (mFocusedWindow) { |
| oldFocusedWindowChannel = mFocusedWindow->inputChannel; |
| mFocusedWindow = NULL; |
| } |
| |
| mWindows.clear(); |
| |
| // Loop over new windows and rebuild the necessary window pointers for |
| // tracking focus and touch. |
| mWindows.appendVector(inputWindows); |
| |
| size_t numWindows = mWindows.size(); |
| for (size_t i = 0; i < numWindows; i++) { |
| const InputWindow* window = & mWindows.itemAt(i); |
| if (window->hasFocus) { |
| mFocusedWindow = window; |
| break; |
| } |
| } |
| |
| if (oldFocusedWindowChannel != NULL) { |
| if (!mFocusedWindow || oldFocusedWindowChannel != mFocusedWindow->inputChannel) { |
| #if DEBUG_FOCUS |
| LOGD("Focus left window: %s", |
| oldFocusedWindowChannel->getName().string()); |
| #endif |
| synthesizeCancelationEventsForInputChannelLocked(oldFocusedWindowChannel, |
| InputState::CANCEL_NON_POINTER_EVENTS, "focus left window"); |
| oldFocusedWindowChannel.clear(); |
| } |
| } |
| if (mFocusedWindow && oldFocusedWindowChannel == NULL) { |
| #if DEBUG_FOCUS |
| LOGD("Focus entered window: %s", |
| mFocusedWindow->inputChannel->getName().string()); |
| #endif |
| } |
| |
| for (size_t i = 0; i < mTouchState.windows.size(); ) { |
| TouchedWindow& touchedWindow = mTouchState.windows.editItemAt(i); |
| const InputWindow* window = getWindowLocked(touchedWindow.channel); |
| if (window) { |
| touchedWindow.window = window; |
| i += 1; |
| } else { |
| #if DEBUG_FOCUS |
| LOGD("Touched window was removed: %s", touchedWindow.channel->getName().string()); |
| #endif |
| synthesizeCancelationEventsForInputChannelLocked(touchedWindow.channel, |
| InputState::CANCEL_POINTER_EVENTS, "touched window was removed"); |
| mTouchState.windows.removeAt(i); |
| } |
| } |
| |
| #if DEBUG_FOCUS |
| //logDispatchStateLocked(); |
| #endif |
| } // release lock |
| |
| // Wake up poll loop since it may need to make new input dispatching choices. |
| mLooper->wake(); |
| } |
| |
| void InputDispatcher::setFocusedApplication(const InputApplication* inputApplication) { |
| #if DEBUG_FOCUS |
| LOGD("setFocusedApplication"); |
| #endif |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| releaseFocusedApplicationLocked(); |
| |
| if (inputApplication) { |
| mFocusedApplicationStorage = *inputApplication; |
| mFocusedApplication = & mFocusedApplicationStorage; |
| } |
| |
| #if DEBUG_FOCUS |
| //logDispatchStateLocked(); |
| #endif |
| } // release lock |
| |
| // Wake up poll loop since it may need to make new input dispatching choices. |
| mLooper->wake(); |
| } |
| |
| void InputDispatcher::releaseFocusedApplicationLocked() { |
| if (mFocusedApplication) { |
| mFocusedApplication = NULL; |
| mFocusedApplicationStorage.inputApplicationHandle.clear(); |
| } |
| } |
| |
| void InputDispatcher::setInputDispatchMode(bool enabled, bool frozen) { |
| #if DEBUG_FOCUS |
| LOGD("setInputDispatchMode: enabled=%d, frozen=%d", enabled, frozen); |
| #endif |
| |
| bool changed; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (mDispatchEnabled != enabled || mDispatchFrozen != frozen) { |
| if (mDispatchFrozen && !frozen) { |
| resetANRTimeoutsLocked(); |
| } |
| |
| if (mDispatchEnabled && !enabled) { |
| resetAndDropEverythingLocked("dispatcher is being disabled"); |
| } |
| |
| mDispatchEnabled = enabled; |
| mDispatchFrozen = frozen; |
| changed = true; |
| } else { |
| changed = false; |
| } |
| |
| #if DEBUG_FOCUS |
| //logDispatchStateLocked(); |
| #endif |
| } // release lock |
| |
| if (changed) { |
| // Wake up poll loop since it may need to make new input dispatching choices. |
| mLooper->wake(); |
| } |
| } |
| |
| bool InputDispatcher::transferTouchFocus(const sp<InputChannel>& fromChannel, |
| const sp<InputChannel>& toChannel) { |
| #if DEBUG_FOCUS |
| LOGD("transferTouchFocus: fromChannel=%s, toChannel=%s", |
| fromChannel->getName().string(), toChannel->getName().string()); |
| #endif |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| const InputWindow* fromWindow = getWindowLocked(fromChannel); |
| const InputWindow* toWindow = getWindowLocked(toChannel); |
| if (! fromWindow || ! toWindow) { |
| #if DEBUG_FOCUS |
| LOGD("Cannot transfer focus because from or to window not found."); |
| #endif |
| return false; |
| } |
| if (fromWindow == toWindow) { |
| #if DEBUG_FOCUS |
| LOGD("Trivial transfer to same window."); |
| #endif |
| return true; |
| } |
| |
| bool found = false; |
| for (size_t i = 0; i < mTouchState.windows.size(); i++) { |
| const TouchedWindow& touchedWindow = mTouchState.windows[i]; |
| if (touchedWindow.window == fromWindow) { |
| int32_t oldTargetFlags = touchedWindow.targetFlags; |
| BitSet32 pointerIds = touchedWindow.pointerIds; |
| |
| mTouchState.windows.removeAt(i); |
| |
| int32_t newTargetFlags = oldTargetFlags |
| & (InputTarget::FLAG_FOREGROUND | InputTarget::FLAG_SPLIT); |
| mTouchState.addOrUpdateWindow(toWindow, newTargetFlags, pointerIds); |
| |
| found = true; |
| break; |
| } |
| } |
| |
| if (! found) { |
| #if DEBUG_FOCUS |
| LOGD("Focus transfer failed because from window did not have focus."); |
| #endif |
| return false; |
| } |
| |
| ssize_t fromConnectionIndex = getConnectionIndexLocked(fromChannel); |
| ssize_t toConnectionIndex = getConnectionIndexLocked(toChannel); |
| if (fromConnectionIndex >= 0 && toConnectionIndex >= 0) { |
| sp<Connection> fromConnection = mConnectionsByReceiveFd.valueAt(fromConnectionIndex); |
| sp<Connection> toConnection = mConnectionsByReceiveFd.valueAt(toConnectionIndex); |
| |
| fromConnection->inputState.copyPointerStateTo(toConnection->inputState); |
| synthesizeCancelationEventsForConnectionLocked(fromConnection, |
| InputState::CANCEL_POINTER_EVENTS, |
| "transferring touch focus from this window to another window"); |
| } |
| |
| #if DEBUG_FOCUS |
| logDispatchStateLocked(); |
| #endif |
| } // release lock |
| |
| // Wake up poll loop since it may need to make new input dispatching choices. |
| mLooper->wake(); |
| return true; |
| } |
| |
| void InputDispatcher::resetAndDropEverythingLocked(const char* reason) { |
| #if DEBUG_FOCUS |
| LOGD("Resetting and dropping all events (%s).", reason); |
| #endif |
| |
| synthesizeCancelationEventsForAllConnectionsLocked(InputState::CANCEL_ALL_EVENTS, reason); |
| |
| resetKeyRepeatLocked(); |
| releasePendingEventLocked(); |
| drainInboundQueueLocked(); |
| resetTargetsLocked(); |
| |
| mTouchState.reset(); |
| } |
| |
| void InputDispatcher::logDispatchStateLocked() { |
| String8 dump; |
| dumpDispatchStateLocked(dump); |
| |
| char* text = dump.lockBuffer(dump.size()); |
| char* start = text; |
| while (*start != '\0') { |
| char* end = strchr(start, '\n'); |
| if (*end == '\n') { |
| *(end++) = '\0'; |
| } |
| LOGD("%s", start); |
| start = end; |
| } |
| } |
| |
| void InputDispatcher::dumpDispatchStateLocked(String8& dump) { |
| dump.appendFormat(INDENT "DispatchEnabled: %d\n", mDispatchEnabled); |
| dump.appendFormat(INDENT "DispatchFrozen: %d\n", mDispatchFrozen); |
| |
| if (mFocusedApplication) { |
| dump.appendFormat(INDENT "FocusedApplication: name='%s', dispatchingTimeout=%0.3fms\n", |
| mFocusedApplication->name.string(), |
| mFocusedApplication->dispatchingTimeout / 1000000.0); |
| } else { |
| dump.append(INDENT "FocusedApplication: <null>\n"); |
| } |
| dump.appendFormat(INDENT "FocusedWindow: name='%s'\n", |
| mFocusedWindow != NULL ? mFocusedWindow->name.string() : "<null>"); |
| |
| dump.appendFormat(INDENT "TouchDown: %s\n", toString(mTouchState.down)); |
| dump.appendFormat(INDENT "TouchSplit: %s\n", toString(mTouchState.split)); |
| dump.appendFormat(INDENT "TouchDeviceId: %d\n", mTouchState.deviceId); |
| dump.appendFormat(INDENT "TouchSource: 0x%08x\n", mTouchState.source); |
| if (!mTouchState.windows.isEmpty()) { |
| dump.append(INDENT "TouchedWindows:\n"); |
| for (size_t i = 0; i < mTouchState.windows.size(); i++) { |
| const TouchedWindow& touchedWindow = mTouchState.windows[i]; |
| dump.appendFormat(INDENT2 "%d: name='%s', pointerIds=0x%0x, targetFlags=0x%x\n", |
| i, touchedWindow.window->name.string(), touchedWindow.pointerIds.value, |
| touchedWindow.targetFlags); |
| } |
| } else { |
| dump.append(INDENT "TouchedWindows: <none>\n"); |
| } |
| |
| if (!mWindows.isEmpty()) { |
| dump.append(INDENT "Windows:\n"); |
| for (size_t i = 0; i < mWindows.size(); i++) { |
| const InputWindow& window = mWindows[i]; |
| dump.appendFormat(INDENT2 "%d: name='%s', paused=%s, hasFocus=%s, hasWallpaper=%s, " |
| "visible=%s, canReceiveKeys=%s, flags=0x%08x, type=0x%08x, layer=%d, " |
| "frame=[%d,%d][%d,%d], " |
| "touchableRegion=", |
| i, window.name.string(), |
| toString(window.paused), |
| toString(window.hasFocus), |
| toString(window.hasWallpaper), |
| toString(window.visible), |
| toString(window.canReceiveKeys), |
| window.layoutParamsFlags, window.layoutParamsType, |
| window.layer, |
| window.frameLeft, window.frameTop, |
| window.frameRight, window.frameBottom); |
| dumpRegion(dump, window.touchableRegion); |
| dump.appendFormat(", ownerPid=%d, ownerUid=%d, dispatchingTimeout=%0.3fms\n", |
| window.ownerPid, window.ownerUid, |
| window.dispatchingTimeout / 1000000.0); |
| } |
| } else { |
| dump.append(INDENT "Windows: <none>\n"); |
| } |
| |
| if (!mMonitoringChannels.isEmpty()) { |
| dump.append(INDENT "MonitoringChannels:\n"); |
| for (size_t i = 0; i < mMonitoringChannels.size(); i++) { |
| const sp<InputChannel>& channel = mMonitoringChannels[i]; |
| dump.appendFormat(INDENT2 "%d: '%s'\n", i, channel->getName().string()); |
| } |
| } else { |
| dump.append(INDENT "MonitoringChannels: <none>\n"); |
| } |
| |
| dump.appendFormat(INDENT "InboundQueue: length=%u\n", mInboundQueue.count()); |
| |
| if (!mActiveConnections.isEmpty()) { |
| dump.append(INDENT "ActiveConnections:\n"); |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| const Connection* connection = mActiveConnections[i]; |
| dump.appendFormat(INDENT2 "%d: '%s', status=%s, outboundQueueLength=%u, " |
| "inputState.isNeutral=%s\n", |
| i, connection->getInputChannelName(), connection->getStatusLabel(), |
| connection->outboundQueue.count(), |
| toString(connection->inputState.isNeutral())); |
| } |
| } else { |
| dump.append(INDENT "ActiveConnections: <none>\n"); |
| } |
| |
| if (isAppSwitchPendingLocked()) { |
| dump.appendFormat(INDENT "AppSwitch: pending, due in %01.1fms\n", |
| (mAppSwitchDueTime - now()) / 1000000.0); |
| } else { |
| dump.append(INDENT "AppSwitch: not pending\n"); |
| } |
| } |
| |
| status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel, |
| const sp<InputWindowHandle>& inputWindowHandle, bool monitor) { |
| #if DEBUG_REGISTRATION |
| LOGD("channel '%s' ~ registerInputChannel - monitor=%s", inputChannel->getName().string(), |
| toString(monitor)); |
| #endif |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| if (getConnectionIndexLocked(inputChannel) >= 0) { |
| LOGW("Attempted to register already registered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = new Connection(inputChannel, inputWindowHandle); |
| status_t status = connection->initialize(); |
| if (status) { |
| LOGE("Failed to initialize input publisher for input channel '%s', status=%d", |
| inputChannel->getName().string(), status); |
| return status; |
| } |
| |
| int32_t receiveFd = inputChannel->getReceivePipeFd(); |
| mConnectionsByReceiveFd.add(receiveFd, connection); |
| |
| if (monitor) { |
| mMonitoringChannels.push(inputChannel); |
| } |
| |
| mLooper->addFd(receiveFd, 0, ALOOPER_EVENT_INPUT, handleReceiveCallback, this); |
| |
| runCommandsLockedInterruptible(); |
| } // release lock |
| return OK; |
| } |
| |
| status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) { |
| #if DEBUG_REGISTRATION |
| LOGD("channel '%s' ~ unregisterInputChannel", inputChannel->getName().string()); |
| #endif |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| ssize_t connectionIndex = getConnectionIndexLocked(inputChannel); |
| if (connectionIndex < 0) { |
| LOGW("Attempted to unregister already unregistered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| mConnectionsByReceiveFd.removeItemsAt(connectionIndex); |
| |
| connection->status = Connection::STATUS_ZOMBIE; |
| |
| for (size_t i = 0; i < mMonitoringChannels.size(); i++) { |
| if (mMonitoringChannels[i] == inputChannel) { |
| mMonitoringChannels.removeAt(i); |
| break; |
| } |
| } |
| |
| mLooper->removeFd(inputChannel->getReceivePipeFd()); |
| |
| nsecs_t currentTime = now(); |
| abortBrokenDispatchCycleLocked(currentTime, connection); |
| |
| runCommandsLockedInterruptible(); |
| } // release lock |
| |
| // Wake the poll loop because removing the connection may have changed the current |
| // synchronization state. |
| mLooper->wake(); |
| return OK; |
| } |
| |
| ssize_t InputDispatcher::getConnectionIndexLocked(const sp<InputChannel>& inputChannel) { |
| ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(inputChannel->getReceivePipeFd()); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (connection->inputChannel.get() == inputChannel.get()) { |
| return connectionIndex; |
| } |
| } |
| |
| return -1; |
| } |
| |
| void InputDispatcher::activateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| return; |
| } |
| } |
| mActiveConnections.add(connection); |
| } |
| |
| void InputDispatcher::deactivateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| mActiveConnections.removeAt(i); |
| return; |
| } |
| } |
| } |
| |
| void InputDispatcher::onDispatchCycleStartedLocked( |
| nsecs_t currentTime, const sp<Connection>& connection) { |
| } |
| |
| void InputDispatcher::onDispatchCycleFinishedLocked( |
| nsecs_t currentTime, const sp<Connection>& connection, bool handled) { |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doDispatchCycleFinishedLockedInterruptible); |
| commandEntry->connection = connection; |
| commandEntry->handled = handled; |
| } |
| |
| void InputDispatcher::onDispatchCycleBrokenLocked( |
| nsecs_t currentTime, const sp<Connection>& connection) { |
| LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", |
| connection->getInputChannelName()); |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible); |
| commandEntry->connection = connection; |
| } |
| |
| void InputDispatcher::onANRLocked( |
| nsecs_t currentTime, const InputApplication* application, const InputWindow* window, |
| nsecs_t eventTime, nsecs_t waitStartTime) { |
| LOGI("Application is not responding: %s. " |
| "%01.1fms since event, %01.1fms since wait started", |
| getApplicationWindowLabelLocked(application, window).string(), |
| (currentTime - eventTime) / 1000000.0, |
| (currentTime - waitStartTime) / 1000000.0); |
| |
| CommandEntry* commandEntry = postCommandLocked( |
| & InputDispatcher::doNotifyANRLockedInterruptible); |
| if (application) { |
| commandEntry->inputApplicationHandle = application->inputApplicationHandle; |
| } |
| if (window) { |
| commandEntry->inputWindowHandle = window->inputWindowHandle; |
| commandEntry->inputChannel = window->inputChannel; |
| } |
| } |
| |
| void InputDispatcher::doNotifyConfigurationChangedInterruptible( |
| CommandEntry* commandEntry) { |
| mLock.unlock(); |
| |
| mPolicy->notifyConfigurationChanged(commandEntry->eventTime); |
| |
| mLock.lock(); |
| } |
| |
| void InputDispatcher::doNotifyInputChannelBrokenLockedInterruptible( |
| CommandEntry* commandEntry) { |
| sp<Connection> connection = commandEntry->connection; |
| |
| if (connection->status != Connection::STATUS_ZOMBIE) { |
| mLock.unlock(); |
| |
| mPolicy->notifyInputChannelBroken(connection->inputWindowHandle); |
| |
| mLock.lock(); |
| } |
| } |
| |
| void InputDispatcher::doNotifyANRLockedInterruptible( |
| CommandEntry* commandEntry) { |
| mLock.unlock(); |
| |
| nsecs_t newTimeout = mPolicy->notifyANR( |
| commandEntry->inputApplicationHandle, commandEntry->inputWindowHandle); |
| |
| mLock.lock(); |
| |
| resumeAfterTargetsNotReadyTimeoutLocked(newTimeout, commandEntry->inputChannel); |
| } |
| |
| void InputDispatcher::doInterceptKeyBeforeDispatchingLockedInterruptible( |
| CommandEntry* commandEntry) { |
| KeyEntry* entry = commandEntry->keyEntry; |
| |
| KeyEvent event; |
| initializeKeyEvent(&event, entry); |
| |
| mLock.unlock(); |
| |
| bool consumed = mPolicy->interceptKeyBeforeDispatching(commandEntry->inputWindowHandle, |
| &event, entry->policyFlags); |
| |
| mLock.lock(); |
| |
| entry->interceptKeyResult = consumed |
| ? KeyEntry::INTERCEPT_KEY_RESULT_SKIP |
| : KeyEntry::INTERCEPT_KEY_RESULT_CONTINUE; |
| mAllocator.releaseKeyEntry(entry); |
| } |
| |
| void InputDispatcher::doDispatchCycleFinishedLockedInterruptible( |
| CommandEntry* commandEntry) { |
| sp<Connection> connection = commandEntry->connection; |
| bool handled = commandEntry->handled; |
| |
| if (!connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.headSentinel.next; |
| if (dispatchEntry->inProgress |
| && dispatchEntry->hasForegroundTarget() |
| && dispatchEntry->eventEntry->type == EventEntry::TYPE_KEY) { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry); |
| if (!(keyEntry->flags & AKEY_EVENT_FLAG_FALLBACK)) { |
| if (handled) { |
| // If the application handled a non-fallback key, then immediately |
| // cancel all fallback keys previously dispatched to the application. |
| // This behavior will prevent chording with fallback keys (so they cannot |
| // be used as modifiers) but it will ensure that fallback keys do not |
| // get stuck. This takes care of the case where the application does not handle |
| // the original DOWN so we generate a fallback DOWN but it does handle |
| // the original UP in which case we would not generate the fallback UP. |
| synthesizeCancelationEventsForConnectionLocked(connection, |
| InputState::CANCEL_FALLBACK_EVENTS, |
| "application handled a non-fallback event, canceling all fallback events"); |
| } else { |
| // If the application did not handle a non-fallback key, then ask |
| // the policy what to do with it. We might generate a fallback key |
| // event here. |
| KeyEvent event; |
| initializeKeyEvent(&event, keyEntry); |
| |
| mLock.unlock(); |
| |
| bool fallback = mPolicy->dispatchUnhandledKey(connection->inputWindowHandle, |
| &event, keyEntry->policyFlags, &event); |
| |
| mLock.lock(); |
| |
| if (connection->status != Connection::STATUS_NORMAL) { |
| return; |
| } |
| |
| assert(connection->outboundQueue.headSentinel.next == dispatchEntry); |
| |
| if (fallback) { |
| // Restart the dispatch cycle using the fallback key. |
| keyEntry->eventTime = event.getEventTime(); |
| keyEntry->deviceId = event.getDeviceId(); |
| keyEntry->source = event.getSource(); |
| keyEntry->flags = event.getFlags() | AKEY_EVENT_FLAG_FALLBACK; |
| keyEntry->keyCode = event.getKeyCode(); |
| keyEntry->scanCode = event.getScanCode(); |
| keyEntry->metaState = event.getMetaState(); |
| keyEntry->repeatCount = event.getRepeatCount(); |
| keyEntry->downTime = event.getDownTime(); |
| keyEntry->syntheticRepeat = false; |
| |
| dispatchEntry->inProgress = false; |
| startDispatchCycleLocked(now(), connection); |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| startNextDispatchCycleLocked(now(), connection); |
| } |
| |
| void InputDispatcher::doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry) { |
| mLock.unlock(); |
| |
| mPolicy->pokeUserActivity(commandEntry->eventTime, commandEntry->userActivityEventType); |
| |
| mLock.lock(); |
| } |
| |
| void InputDispatcher::initializeKeyEvent(KeyEvent* event, const KeyEntry* entry) { |
| event->initialize(entry->deviceId, entry->source, entry->action, entry->flags, |
| entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, |
| entry->downTime, entry->eventTime); |
| } |
| |
| void InputDispatcher::updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry, |
| int32_t injectionResult, nsecs_t timeSpentWaitingForApplication) { |
| // TODO Write some statistics about how long we spend waiting. |
| } |
| |
| void InputDispatcher::dump(String8& dump) { |
| dump.append("Input Dispatcher State:\n"); |
| dumpDispatchStateLocked(dump); |
| } |
| |
| |
| // --- InputDispatcher::Queue --- |
| |
| template <typename T> |
| uint32_t InputDispatcher::Queue<T>::count() const { |
| uint32_t result = 0; |
| for (const T* entry = headSentinel.next; entry != & tailSentinel; entry = entry->next) { |
| result += 1; |
| } |
| return result; |
| } |
| |
| |
| // --- InputDispatcher::Allocator --- |
| |
| InputDispatcher::Allocator::Allocator() { |
| } |
| |
| InputDispatcher::InjectionState* |
| InputDispatcher::Allocator::obtainInjectionState(int32_t injectorPid, int32_t injectorUid) { |
| InjectionState* injectionState = mInjectionStatePool.alloc(); |
| injectionState->refCount = 1; |
| injectionState->injectorPid = injectorPid; |
| injectionState->injectorUid = injectorUid; |
| injectionState->injectionIsAsync = false; |
| injectionState->injectionResult = INPUT_EVENT_INJECTION_PENDING; |
| injectionState->pendingForegroundDispatches = 0; |
| return injectionState; |
| } |
| |
| void InputDispatcher::Allocator::initializeEventEntry(EventEntry* entry, int32_t type, |
| nsecs_t eventTime, uint32_t policyFlags) { |
| entry->type = type; |
| entry->refCount = 1; |
| entry->dispatchInProgress = false; |
| entry->eventTime = eventTime; |
| entry->policyFlags = policyFlags; |
| entry->injectionState = NULL; |
| } |
| |
| void InputDispatcher::Allocator::releaseEventEntryInjectionState(EventEntry* entry) { |
| if (entry->injectionState) { |
| releaseInjectionState(entry->injectionState); |
| entry->injectionState = NULL; |
| } |
| } |
| |
| InputDispatcher::ConfigurationChangedEntry* |
| InputDispatcher::Allocator::obtainConfigurationChangedEntry(nsecs_t eventTime) { |
| ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_CONFIGURATION_CHANGED, eventTime, 0); |
| return entry; |
| } |
| |
| InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry(nsecs_t eventTime, |
| int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, |
| int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, |
| int32_t repeatCount, nsecs_t downTime) { |
| KeyEntry* entry = mKeyEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_KEY, eventTime, policyFlags); |
| |
| entry->deviceId = deviceId; |
| entry->source = source; |
| entry->action = action; |
| entry->flags = flags; |
| entry->keyCode = keyCode; |
| entry->scanCode = scanCode; |
| entry->metaState = metaState; |
| entry->repeatCount = repeatCount; |
| entry->downTime = downTime; |
| entry->syntheticRepeat = false; |
| entry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; |
| return entry; |
| } |
| |
| InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry(nsecs_t eventTime, |
| int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, |
| int32_t metaState, int32_t edgeFlags, float xPrecision, float yPrecision, |
| nsecs_t downTime, uint32_t pointerCount, |
| const int32_t* pointerIds, const PointerCoords* pointerCoords) { |
| MotionEntry* entry = mMotionEntryPool.alloc(); |
| initializeEventEntry(entry, EventEntry::TYPE_MOTION, eventTime, policyFlags); |
| |
| entry->eventTime = eventTime; |
| entry->deviceId = deviceId; |
| entry->source = source; |
| entry->action = action; |
| entry->flags = flags; |
| entry->metaState = metaState; |
| entry->edgeFlags = edgeFlags; |
| entry->xPrecision = xPrecision; |
| entry->yPrecision = yPrecision; |
| entry->downTime = downTime; |
| entry->pointerCount = pointerCount; |
| entry->firstSample.eventTime = eventTime; |
| entry->firstSample.next = NULL; |
| entry->lastSample = & entry->firstSample; |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| entry->pointerIds[i] = pointerIds[i]; |
| entry->firstSample.pointerCoords[i] = pointerCoords[i]; |
| } |
| return entry; |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( |
| EventEntry* eventEntry, |
| int32_t targetFlags, float xOffset, float yOffset) { |
| DispatchEntry* entry = mDispatchEntryPool.alloc(); |
| entry->eventEntry = eventEntry; |
| eventEntry->refCount += 1; |
| entry->targetFlags = targetFlags; |
| entry->xOffset = xOffset; |
| entry->yOffset = yOffset; |
| entry->inProgress = false; |
| entry->headMotionSample = NULL; |
| entry->tailMotionSample = NULL; |
| return entry; |
| } |
| |
| InputDispatcher::CommandEntry* InputDispatcher::Allocator::obtainCommandEntry(Command command) { |
| CommandEntry* entry = mCommandEntryPool.alloc(); |
| entry->command = command; |
| return entry; |
| } |
| |
| void InputDispatcher::Allocator::releaseInjectionState(InjectionState* injectionState) { |
| injectionState->refCount -= 1; |
| if (injectionState->refCount == 0) { |
| mInjectionStatePool.free(injectionState); |
| } else { |
| assert(injectionState->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { |
| switch (entry->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: |
| releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_KEY: |
| releaseKeyEntry(static_cast<KeyEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_MOTION: |
| releaseMotionEntry(static_cast<MotionEntry*>(entry)); |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseConfigurationChangedEntry( |
| ConfigurationChangedEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| releaseEventEntryInjectionState(entry); |
| mConfigurationChangeEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| releaseEventEntryInjectionState(entry); |
| mKeyEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| releaseEventEntryInjectionState(entry); |
| for (MotionSample* sample = entry->firstSample.next; sample != NULL; ) { |
| MotionSample* next = sample->next; |
| mMotionSamplePool.free(sample); |
| sample = next; |
| } |
| mMotionEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { |
| releaseEventEntry(entry->eventEntry); |
| mDispatchEntryPool.free(entry); |
| } |
| |
| void InputDispatcher::Allocator::releaseCommandEntry(CommandEntry* entry) { |
| mCommandEntryPool.free(entry); |
| } |
| |
| void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, |
| nsecs_t eventTime, const PointerCoords* pointerCoords) { |
| MotionSample* sample = mMotionSamplePool.alloc(); |
| sample->eventTime = eventTime; |
| uint32_t pointerCount = motionEntry->pointerCount; |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| sample->pointerCoords[i] = pointerCoords[i]; |
| } |
| |
| sample->next = NULL; |
| motionEntry->lastSample->next = sample; |
| motionEntry->lastSample = sample; |
| } |
| |
| void InputDispatcher::Allocator::recycleKeyEntry(KeyEntry* keyEntry) { |
| releaseEventEntryInjectionState(keyEntry); |
| |
| keyEntry->dispatchInProgress = false; |
| keyEntry->syntheticRepeat = false; |
| keyEntry->interceptKeyResult = KeyEntry::INTERCEPT_KEY_RESULT_UNKNOWN; |
| } |
| |
| |
| // --- InputDispatcher::MotionEntry --- |
| |
| uint32_t InputDispatcher::MotionEntry::countSamples() const { |
| uint32_t count = 1; |
| for (MotionSample* sample = firstSample.next; sample != NULL; sample = sample->next) { |
| count += 1; |
| } |
| return count; |
| } |
| |
| |
| // --- InputDispatcher::InputState --- |
| |
| InputDispatcher::InputState::InputState() { |
| } |
| |
| InputDispatcher::InputState::~InputState() { |
| } |
| |
| bool InputDispatcher::InputState::isNeutral() const { |
| return mKeyMementos.isEmpty() && mMotionMementos.isEmpty(); |
| } |
| |
| InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackEvent( |
| const EventEntry* entry) { |
| switch (entry->type) { |
| case EventEntry::TYPE_KEY: |
| return trackKey(static_cast<const KeyEntry*>(entry)); |
| |
| case EventEntry::TYPE_MOTION: |
| return trackMotion(static_cast<const MotionEntry*>(entry)); |
| |
| default: |
| return CONSISTENT; |
| } |
| } |
| |
| InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackKey( |
| const KeyEntry* entry) { |
| int32_t action = entry->action; |
| for (size_t i = 0; i < mKeyMementos.size(); i++) { |
| KeyMemento& memento = mKeyMementos.editItemAt(i); |
| if (memento.deviceId == entry->deviceId |
| && memento.source == entry->source |
| && memento.keyCode == entry->keyCode |
| && memento.scanCode == entry->scanCode) { |
| switch (action) { |
| case AKEY_EVENT_ACTION_UP: |
| mKeyMementos.removeAt(i); |
| return CONSISTENT; |
| |
| case AKEY_EVENT_ACTION_DOWN: |
| return TOLERABLE; |
| |
| default: |
| return BROKEN; |
| } |
| } |
| } |
| |
| switch (action) { |
| case AKEY_EVENT_ACTION_DOWN: { |
| mKeyMementos.push(); |
| KeyMemento& memento = mKeyMementos.editTop(); |
| memento.deviceId = entry->deviceId; |
| memento.source = entry->source; |
| memento.keyCode = entry->keyCode; |
| memento.scanCode = entry->scanCode; |
| memento.flags = entry->flags; |
| memento.downTime = entry->downTime; |
| return CONSISTENT; |
| } |
| |
| default: |
| return BROKEN; |
| } |
| } |
| |
| InputDispatcher::InputState::Consistency InputDispatcher::InputState::trackMotion( |
| const MotionEntry* entry) { |
| int32_t action = entry->action & AMOTION_EVENT_ACTION_MASK; |
| for (size_t i = 0; i < mMotionMementos.size(); i++) { |
| MotionMemento& memento = mMotionMementos.editItemAt(i); |
| if (memento.deviceId == entry->deviceId |
| && memento.source == entry->source) { |
| switch (action) { |
| case AMOTION_EVENT_ACTION_UP: |
| case AMOTION_EVENT_ACTION_CANCEL: |
| mMotionMementos.removeAt(i); |
| return CONSISTENT; |
| |
| case AMOTION_EVENT_ACTION_DOWN: |
| return TOLERABLE; |
| |
| case AMOTION_EVENT_ACTION_POINTER_DOWN: |
| if (entry->pointerCount == memento.pointerCount + 1) { |
| memento.setPointers(entry); |
| return CONSISTENT; |
| } |
| return BROKEN; |
| |
| case AMOTION_EVENT_ACTION_POINTER_UP: |
| if (entry->pointerCount == memento.pointerCount - 1) { |
| memento.setPointers(entry); |
| return CONSISTENT; |
| } |
| return BROKEN; |
| |
| case AMOTION_EVENT_ACTION_MOVE: |
| if (entry->pointerCount == memento.pointerCount) { |
| return CONSISTENT; |
| } |
| return BROKEN; |
| |
| default: |
| return BROKEN; |
| } |
| } |
| } |
| |
| switch (action) { |
| case AMOTION_EVENT_ACTION_DOWN: { |
| mMotionMementos.push(); |
| MotionMemento& memento = mMotionMementos.editTop(); |
| memento.deviceId = entry->deviceId; |
| memento.source = entry->source; |
| memento.xPrecision = entry->xPrecision; |
| memento.yPrecision = entry->yPrecision; |
| memento.downTime = entry->downTime; |
| memento.setPointers(entry); |
| return CONSISTENT; |
| } |
| |
| default: |
| return BROKEN; |
| } |
| } |
| |
| void InputDispatcher::InputState::MotionMemento::setPointers(const MotionEntry* entry) { |
| pointerCount = entry->pointerCount; |
| for (uint32_t i = 0; i < entry->pointerCount; i++) { |
| pointerIds[i] = entry->pointerIds[i]; |
| pointerCoords[i] = entry->lastSample->pointerCoords[i]; |
| } |
| } |
| |
| void InputDispatcher::InputState::synthesizeCancelationEvents(nsecs_t currentTime, |
| Allocator* allocator, Vector<EventEntry*>& outEvents, |
| CancelationOptions options) { |
| for (size_t i = 0; i < mKeyMementos.size(); ) { |
| const KeyMemento& memento = mKeyMementos.itemAt(i); |
| if (shouldCancelKey(memento, options)) { |
| outEvents.push(allocator->obtainKeyEntry(currentTime, |
| memento.deviceId, memento.source, 0, |
| AKEY_EVENT_ACTION_UP, memento.flags | AKEY_EVENT_FLAG_CANCELED, |
| memento.keyCode, memento.scanCode, 0, 0, memento.downTime)); |
| mKeyMementos.removeAt(i); |
| } else { |
| i += 1; |
| } |
| } |
| |
| for (size_t i = 0; i < mMotionMementos.size(); ) { |
| const MotionMemento& memento = mMotionMementos.itemAt(i); |
| if (shouldCancelMotion(memento, options)) { |
| outEvents.push(allocator->obtainMotionEntry(currentTime, |
| memento.deviceId, memento.source, 0, |
| AMOTION_EVENT_ACTION_CANCEL, 0, 0, 0, |
| memento.xPrecision, memento.yPrecision, memento.downTime, |
| memento.pointerCount, memento.pointerIds, memento.pointerCoords)); |
| mMotionMementos.removeAt(i); |
| } else { |
| i += 1; |
| } |
| } |
| } |
| |
| void InputDispatcher::InputState::clear() { |
| mKeyMementos.clear(); |
| mMotionMementos.clear(); |
| } |
| |
| void InputDispatcher::InputState::copyPointerStateTo(InputState& other) const { |
| for (size_t i = 0; i < mMotionMementos.size(); i++) { |
| const MotionMemento& memento = mMotionMementos.itemAt(i); |
| if (memento.source & AINPUT_SOURCE_CLASS_POINTER) { |
| for (size_t j = 0; j < other.mMotionMementos.size(); ) { |
| const MotionMemento& otherMemento = other.mMotionMementos.itemAt(j); |
| if (memento.deviceId == otherMemento.deviceId |
| && memento.source == otherMemento.source) { |
| other.mMotionMementos.removeAt(j); |
| } else { |
| j += 1; |
| } |
| } |
| other.mMotionMementos.push(memento); |
| } |
| } |
| } |
| |
| bool InputDispatcher::InputState::shouldCancelKey(const KeyMemento& memento, |
| CancelationOptions options) { |
| switch (options) { |
| case CANCEL_ALL_EVENTS: |
| case CANCEL_NON_POINTER_EVENTS: |
| return true; |
| case CANCEL_FALLBACK_EVENTS: |
| return memento.flags & AKEY_EVENT_FLAG_FALLBACK; |
| default: |
| return false; |
| } |
| } |
| |
| bool InputDispatcher::InputState::shouldCancelMotion(const MotionMemento& memento, |
| CancelationOptions options) { |
| switch (options) { |
| case CANCEL_ALL_EVENTS: |
| return true; |
| case CANCEL_POINTER_EVENTS: |
| return memento.source & AINPUT_SOURCE_CLASS_POINTER; |
| case CANCEL_NON_POINTER_EVENTS: |
| return !(memento.source & AINPUT_SOURCE_CLASS_POINTER); |
| default: |
| return false; |
| } |
| } |
| |
| |
| // --- InputDispatcher::Connection --- |
| |
| InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel, |
| const sp<InputWindowHandle>& inputWindowHandle) : |
| status(STATUS_NORMAL), inputChannel(inputChannel), inputWindowHandle(inputWindowHandle), |
| inputPublisher(inputChannel), |
| lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX) { |
| } |
| |
| InputDispatcher::Connection::~Connection() { |
| } |
| |
| status_t InputDispatcher::Connection::initialize() { |
| return inputPublisher.initialize(); |
| } |
| |
| const char* InputDispatcher::Connection::getStatusLabel() const { |
| switch (status) { |
| case STATUS_NORMAL: |
| return "NORMAL"; |
| |
| case STATUS_BROKEN: |
| return "BROKEN"; |
| |
| case STATUS_ZOMBIE: |
| return "ZOMBIE"; |
| |
| default: |
| return "UNKNOWN"; |
| } |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( |
| const EventEntry* eventEntry) const { |
| for (DispatchEntry* dispatchEntry = outboundQueue.tailSentinel.prev; |
| dispatchEntry != & outboundQueue.headSentinel; dispatchEntry = dispatchEntry->prev) { |
| if (dispatchEntry->eventEntry == eventEntry) { |
| return dispatchEntry; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| // --- InputDispatcher::CommandEntry --- |
| |
| InputDispatcher::CommandEntry::CommandEntry() : |
| keyEntry(NULL) { |
| } |
| |
| InputDispatcher::CommandEntry::~CommandEntry() { |
| } |
| |
| |
| // --- InputDispatcher::TouchState --- |
| |
| InputDispatcher::TouchState::TouchState() : |
| down(false), split(false), deviceId(-1), source(0) { |
| } |
| |
| InputDispatcher::TouchState::~TouchState() { |
| } |
| |
| void InputDispatcher::TouchState::reset() { |
| down = false; |
| split = false; |
| deviceId = -1; |
| source = 0; |
| windows.clear(); |
| } |
| |
| void InputDispatcher::TouchState::copyFrom(const TouchState& other) { |
| down = other.down; |
| split = other.split; |
| deviceId = other.deviceId; |
| source = other.source; |
| windows.clear(); |
| windows.appendVector(other.windows); |
| } |
| |
| void InputDispatcher::TouchState::addOrUpdateWindow(const InputWindow* window, |
| int32_t targetFlags, BitSet32 pointerIds) { |
| if (targetFlags & InputTarget::FLAG_SPLIT) { |
| split = true; |
| } |
| |
| for (size_t i = 0; i < windows.size(); i++) { |
| TouchedWindow& touchedWindow = windows.editItemAt(i); |
| if (touchedWindow.window == window) { |
| touchedWindow.targetFlags |= targetFlags; |
| touchedWindow.pointerIds.value |= pointerIds.value; |
| return; |
| } |
| } |
| |
| windows.push(); |
| |
| TouchedWindow& touchedWindow = windows.editTop(); |
| touchedWindow.window = window; |
| touchedWindow.targetFlags = targetFlags; |
| touchedWindow.pointerIds = pointerIds; |
| touchedWindow.channel = window->inputChannel; |
| } |
| |
| void InputDispatcher::TouchState::removeOutsideTouchWindows() { |
| for (size_t i = 0 ; i < windows.size(); ) { |
| if (windows[i].targetFlags & InputTarget::FLAG_OUTSIDE) { |
| windows.removeAt(i); |
| } else { |
| i += 1; |
| } |
| } |
| } |
| |
| const InputWindow* InputDispatcher::TouchState::getFirstForegroundWindow() { |
| for (size_t i = 0; i < windows.size(); i++) { |
| if (windows[i].targetFlags & InputTarget::FLAG_FOREGROUND) { |
| return windows[i].window; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| // --- InputDispatcherThread --- |
| |
| InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) : |
| Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { |
| } |
| |
| InputDispatcherThread::~InputDispatcherThread() { |
| } |
| |
| bool InputDispatcherThread::threadLoop() { |
| mDispatcher->dispatchOnce(); |
| return true; |
| } |
| |
| } // namespace android |