blob: de4fa55bb508339656294c8ddf337907ad965dae [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "Vertex.h"
#include <utils/Log.h>
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <ostream>
#include <SkRect.h>
namespace android {
namespace uirenderer {
#define RECT_STRING "%5.2f %5.2f %5.2f %5.2f"
#define RECT_ARGS(r) \
(r).left, (r).top, (r).right, (r).bottom
#define SK_RECT_ARGS(r) \
(r).left(), (r).top(), (r).right(), (r).bottom()
///////////////////////////////////////////////////////////////////////////////
// Structs
///////////////////////////////////////////////////////////////////////////////
class Rect {
public:
float left;
float top;
float right;
float bottom;
// Used by Region
typedef float value_type;
// we don't provide copy-ctor and operator= on purpose
// because we want the compiler generated versions
inline Rect():
left(0),
top(0),
right(0),
bottom(0) {
}
inline Rect(float left, float top, float right, float bottom):
left(left),
top(top),
right(right),
bottom(bottom) {
}
inline Rect(float width, float height):
left(0.0f),
top(0.0f),
right(width),
bottom(height) {
}
inline Rect(const SkRect& rect):
left(rect.fLeft),
top(rect.fTop),
right(rect.fRight),
bottom(rect.fBottom) {
}
friend int operator==(const Rect& a, const Rect& b) {
return !memcmp(&a, &b, sizeof(a));
}
friend int operator!=(const Rect& a, const Rect& b) {
return memcmp(&a, &b, sizeof(a));
}
inline void clear() {
left = top = right = bottom = 0.0f;
}
inline bool isEmpty() const {
// this is written in such way this it'll handle NANs to return
// true (empty)
return !((left < right) && (top < bottom));
}
inline void setEmpty() {
left = top = right = bottom = 0.0f;
}
inline void set(float left, float top, float right, float bottom) {
this->left = left;
this->right = right;
this->top = top;
this->bottom = bottom;
}
inline void set(const Rect& r) {
set(r.left, r.top, r.right, r.bottom);
}
inline void set(const SkIRect& r) {
set(r.left(), r.top(), r.right(), r.bottom());
}
inline float getWidth() const {
return right - left;
}
inline float getHeight() const {
return bottom - top;
}
bool intersects(float l, float t, float r, float b) const {
float tempLeft = std::max(left, l);
float tempTop = std::max(top, t);
float tempRight = std::min(right, r);
float tempBottom = std::min(bottom, b);
return ((tempLeft < tempRight) && (tempTop < tempBottom)); // !isEmpty
}
bool intersects(const Rect& r) const {
return intersects(r.left, r.top, r.right, r.bottom);
}
/**
* This method is named 'doIntersect' instead of 'intersect' so as not to be confused with
* SkRect::intersect / android.graphics.Rect#intersect behavior, which do not modify the object
* if the intersection of the rects would be empty.
*/
void doIntersect(float l, float t, float r, float b) {
left = std::max(left, l);
top = std::max(top, t);
right = std::min(right, r);
bottom = std::min(bottom, b);
}
void doIntersect(const Rect& r) {
doIntersect(r.left, r.top, r.right, r.bottom);
}
inline bool contains(float l, float t, float r, float b) const {
return l >= left && t >= top && r <= right && b <= bottom;
}
inline bool contains(const Rect& r) const {
return contains(r.left, r.top, r.right, r.bottom);
}
bool unionWith(const Rect& r) {
if (r.left < r.right && r.top < r.bottom) {
if (left < right && top < bottom) {
if (left > r.left) left = r.left;
if (top > r.top) top = r.top;
if (right < r.right) right = r.right;
if (bottom < r.bottom) bottom = r.bottom;
return true;
} else {
left = r.left;
top = r.top;
right = r.right;
bottom = r.bottom;
return true;
}
}
return false;
}
void translate(float dx, float dy) {
left += dx;
right += dx;
top += dy;
bottom += dy;
}
void inset(float delta) {
outset(-delta);
}
void outset(float delta) {
left -= delta;
top -= delta;
right += delta;
bottom += delta;
}
void outset(float xdelta, float ydelta) {
left -= xdelta;
top -= ydelta;
right += xdelta;
bottom += ydelta;
}
/**
* Similar to snapToPixelBoundaries, but estimates bounds conservatively to handle GL rounding
* errors.
*
* This function should be used whenever estimating the damage rect of geometry already mapped
* into layer space.
*/
void snapGeometryToPixelBoundaries(bool snapOut) {
if (snapOut) {
/* For AA geometry with a ramp perimeter, don't snap by rounding - AA geometry will have
* a 0.5 pixel perimeter not accounted for in its bounds. Instead, snap by
* conservatively rounding out the bounds with floor/ceil.
*
* In order to avoid changing integer bounds with floor/ceil due to rounding errors
* inset the bounds first by the fudge factor. Very small fraction-of-a-pixel errors
* from this inset will only incur similarly small errors in output, due to transparency
* in extreme outside of the geometry.
*/
left = floorf(left + Vertex::GeometryFudgeFactor());
top = floorf(top + Vertex::GeometryFudgeFactor());
right = ceilf(right - Vertex::GeometryFudgeFactor());
bottom = ceilf(bottom - Vertex::GeometryFudgeFactor());
} else {
/* For other geometry, we do the regular rounding in order to snap, but also outset the
* bounds by a fudge factor. This ensures that ambiguous geometry (e.g. a non-AA Rect
* with top left at (0.5, 0.5)) will err on the side of a larger damage rect.
*/
left = floorf(left + 0.5f - Vertex::GeometryFudgeFactor());
top = floorf(top + 0.5f - Vertex::GeometryFudgeFactor());
right = floorf(right + 0.5f + Vertex::GeometryFudgeFactor());
bottom = floorf(bottom + 0.5f + Vertex::GeometryFudgeFactor());
}
}
void snapToPixelBoundaries() {
left = floorf(left + 0.5f);
top = floorf(top + 0.5f);
right = floorf(right + 0.5f);
bottom = floorf(bottom + 0.5f);
}
void roundOut() {
left = floorf(left);
top = floorf(top);
right = ceilf(right);
bottom = ceilf(bottom);
}
/*
* Similar to unionWith, except this makes the assumption that both rects are non-empty
* to avoid both emptiness checks.
*/
void expandToCover(const Rect& other) {
left = std::min(left, other.left);
top = std::min(top, other.top);
right = std::max(right, other.right);
bottom = std::max(bottom, other.bottom);
}
void expandToCover(float x, float y) {
left = std::min(left, x);
top = std::min(top, y);
right = std::max(right, x);
bottom = std::max(bottom, y);
}
SkRect toSkRect() const {
return SkRect::MakeLTRB(left, top, right, bottom);
}
SkIRect toSkIRect() const {
return SkIRect::MakeLTRB(left, top, right, bottom);
}
void dump(const char* label = nullptr) const {
ALOGD("%s[l=%.2f t=%.2f r=%.2f b=%.2f]", label ? label : "Rect", left, top, right, bottom);
}
friend std::ostream& operator<<(std::ostream& os, const Rect& rect) {
if (rect.isEmpty()) {
// Print empty, but continue, since empty rects may still have useful coordinate info
os << "(empty)";
}
if (rect.left == 0 && rect.top == 0) {
return os << "[" << rect.right << " x " << rect.bottom << "]";
}
return os << "[" << rect.left
<< " " << rect.top
<< " " << rect.right
<< " " << rect.bottom << "]";
}
}; // class Rect
}; // namespace uirenderer
}; // namespace android