| #define LOG_TAG "FakeCamera" |
| #include <utils/Log.h> |
| |
| #include <string.h> |
| #include <stdlib.h> |
| #include "FakeCamera.h" |
| |
| namespace android { |
| |
| static int tables_initialized = 0; |
| uint8_t *gYTable, *gCbTable, *gCrTable; |
| |
| static int |
| clamp(int x) |
| { |
| if (x > 255) return 255; |
| if (x < 0) return 0; |
| return x; |
| } |
| |
| /* the equation used by the video code to translate YUV to RGB looks like this |
| * |
| * Y = (Y0 - 16)*k0 |
| * Cb = Cb0 - 128 |
| * Cr = Cr0 - 128 |
| * |
| * G = ( Y - k1*Cr - k2*Cb ) |
| * R = ( Y + k3*Cr ) |
| * B = ( Y + k4*Cb ) |
| * |
| */ |
| |
| static const double k0 = 1.164; |
| static const double k1 = 0.813; |
| static const double k2 = 0.391; |
| static const double k3 = 1.596; |
| static const double k4 = 2.018; |
| |
| /* let's try to extract the value of Y |
| * |
| * G + k1/k3*R + k2/k4*B = Y*( 1 + k1/k3 + k2/k4 ) |
| * |
| * Y = ( G + k1/k3*R + k2/k4*B ) / (1 + k1/k3 + k2/k4) |
| * Y0 = ( G0 + k1/k3*R0 + k2/k4*B0 ) / ((1 + k1/k3 + k2/k4)*k0) + 16 |
| * |
| * let define: |
| * kYr = k1/k3 |
| * kYb = k2/k4 |
| * kYy = k0 * ( 1 + kYr + kYb ) |
| * |
| * we have: |
| * Y = ( G + kYr*R + kYb*B ) |
| * Y0 = clamp[ Y/kYy + 16 ] |
| */ |
| |
| static const double kYr = k1/k3; |
| static const double kYb = k2/k4; |
| static const double kYy = k0*( 1. + kYr + kYb ); |
| |
| static void |
| initYtab( void ) |
| { |
| const int imax = (int)( (kYr + kYb)*(31 << 2) + (61 << 3) + 0.1 ); |
| int i; |
| |
| gYTable = (uint8_t *)malloc(imax); |
| |
| for(i=0; i<imax; i++) { |
| int x = (int)(i/kYy + 16.5); |
| if (x < 16) x = 16; |
| else if (x > 235) x = 235; |
| gYTable[i] = (uint8_t) x; |
| } |
| } |
| |
| /* |
| * the source is RGB565, so adjust for 8-bit range of input values: |
| * |
| * G = (pixels >> 3) & 0xFC; |
| * R = (pixels >> 8) & 0xF8; |
| * B = (pixels & 0x1f) << 3; |
| * |
| * R2 = (pixels >> 11) R = R2*8 |
| * B2 = (pixels & 0x1f) B = B2*8 |
| * |
| * kYr*R = kYr2*R2 => kYr2 = kYr*8 |
| * kYb*B = kYb2*B2 => kYb2 = kYb*8 |
| * |
| * we want to use integer multiplications: |
| * |
| * SHIFT1 = 9 |
| * |
| * (ALPHA*R2) >> SHIFT1 == R*kYr => ALPHA = kYr*8*(1 << SHIFT1) |
| * |
| * ALPHA = kYr*(1 << (SHIFT1+3)) |
| * BETA = kYb*(1 << (SHIFT1+3)) |
| */ |
| |
| static const int SHIFT1 = 9; |
| static const int ALPHA = (int)( kYr*(1 << (SHIFT1+3)) + 0.5 ); |
| static const int BETA = (int)( kYb*(1 << (SHIFT1+3)) + 0.5 ); |
| |
| /* |
| * now let's try to get the values of Cb and Cr |
| * |
| * R-B = (k3*Cr - k4*Cb) |
| * |
| * k3*Cr = k4*Cb + (R-B) |
| * k4*Cb = k3*Cr - (R-B) |
| * |
| * R-G = (k1+k3)*Cr + k2*Cb |
| * = (k1+k3)*Cr + k2/k4*(k3*Cr - (R-B)/k0) |
| * = (k1 + k3 + k2*k3/k4)*Cr - k2/k4*(R-B) |
| * |
| * kRr*Cr = (R-G) + kYb*(R-B) |
| * |
| * Cr = ((R-G) + kYb*(R-B))/kRr |
| * Cr0 = clamp(Cr + 128) |
| */ |
| |
| static const double kRr = (k1 + k3 + k2*k3/k4); |
| |
| static void |
| initCrtab( void ) |
| { |
| uint8_t *pTable; |
| int i; |
| |
| gCrTable = (uint8_t *)malloc(768*2); |
| |
| pTable = gCrTable + 384; |
| for(i=-384; i<384; i++) |
| pTable[i] = (uint8_t) clamp( i/kRr + 128.5 ); |
| } |
| |
| /* |
| * B-G = (k2 + k4)*Cb + k1*Cr |
| * = (k2 + k4)*Cb + k1/k3*(k4*Cb + (R-B)) |
| * = (k2 + k4 + k1*k4/k3)*Cb + k1/k3*(R-B) |
| * |
| * kBb*Cb = (B-G) - kYr*(R-B) |
| * |
| * Cb = ((B-G) - kYr*(R-B))/kBb |
| * Cb0 = clamp(Cb + 128) |
| * |
| */ |
| |
| static const double kBb = (k2 + k4 + k1*k4/k3); |
| |
| static void |
| initCbtab( void ) |
| { |
| uint8_t *pTable; |
| int i; |
| |
| gCbTable = (uint8_t *)malloc(768*2); |
| |
| pTable = gCbTable + 384; |
| for(i=-384; i<384; i++) |
| pTable[i] = (uint8_t) clamp( i/kBb + 128.5 ); |
| } |
| |
| /* |
| * SHIFT2 = 16 |
| * |
| * DELTA = kYb*(1 << SHIFT2) |
| * GAMMA = kYr*(1 << SHIFT2) |
| */ |
| |
| static const int SHIFT2 = 16; |
| static const int DELTA = kYb*(1 << SHIFT2); |
| static const int GAMMA = kYr*(1 << SHIFT2); |
| |
| int32_t ccrgb16toyuv_wo_colorkey(uint8_t *rgb16,uint8_t *yuv422,uint32_t *param,uint8_t *table[]) |
| { |
| uint16_t *inputRGB = (uint16_t*)rgb16; |
| uint8_t *outYUV = yuv422; |
| int32_t width_dst = param[0]; |
| int32_t height_dst = param[1]; |
| int32_t pitch_dst = param[2]; |
| int32_t mheight_dst = param[3]; |
| int32_t pitch_src = param[4]; |
| uint8_t *y_tab = table[0]; |
| uint8_t *cb_tab = table[1]; |
| uint8_t *cr_tab = table[2]; |
| |
| int32_t size16 = pitch_dst*mheight_dst; |
| int32_t i,j,count; |
| int32_t ilimit,jlimit; |
| uint8_t *tempY,*tempU,*tempV; |
| uint16_t pixels; |
| int tmp; |
| uint32_t temp; |
| |
| tempY = outYUV; |
| tempU = outYUV + (height_dst * pitch_dst); |
| tempV = tempU + 1; |
| |
| jlimit = height_dst; |
| ilimit = width_dst; |
| |
| for(j=0; j<jlimit; j+=1) |
| { |
| for (i=0; i<ilimit; i+=2) |
| { |
| int32_t G_ds = 0, B_ds = 0, R_ds = 0; |
| uint8_t y0, y1, u, v; |
| |
| pixels = inputRGB[i]; |
| temp = (ALPHA*(pixels & 0x001F) + BETA*(pixels>>11) ); |
| y0 = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)]; |
| |
| G_ds += (pixels>>1) & 0x03E0; |
| B_ds += (pixels<<5) & 0x03E0; |
| R_ds += (pixels>>6) & 0x03E0; |
| |
| pixels = inputRGB[i+1]; |
| temp = (ALPHA*(pixels & 0x001F) + BETA*(pixels>>11) ); |
| y1 = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)]; |
| |
| G_ds += (pixels>>1) & 0x03E0; |
| B_ds += (pixels<<5) & 0x03E0; |
| R_ds += (pixels>>6) & 0x03E0; |
| |
| R_ds >>= 1; |
| B_ds >>= 1; |
| G_ds >>= 1; |
| |
| tmp = R_ds - B_ds; |
| |
| u = cb_tab[(((R_ds-G_ds)<<SHIFT2) + DELTA*tmp)>>(SHIFT2+2)]; |
| v = cr_tab[(((B_ds-G_ds)<<SHIFT2) - GAMMA*tmp)>>(SHIFT2+2)]; |
| |
| tempY[0] = y0; |
| tempY[1] = y1; |
| tempU[0] = u; |
| tempV[0] = v; |
| |
| tempY += 2; |
| tempU += 2; |
| tempV += 2; |
| } |
| |
| inputRGB += pitch_src; |
| } |
| |
| return 1; |
| } |
| |
| #define min(a,b) ((a)<(b)?(a):(b)) |
| #define max(a,b) ((a)>(b)?(a):(b)) |
| |
| static void convert_rgb16_to_yuv422(uint8_t *rgb, uint8_t *yuv, int width, int height) |
| { |
| if (!tables_initialized) { |
| initYtab(); |
| initCrtab(); |
| initCbtab(); |
| tables_initialized = 1; |
| } |
| |
| uint32_t param[6]; |
| param[0] = (uint32_t) width; |
| param[1] = (uint32_t) height; |
| param[2] = (uint32_t) width; |
| param[3] = (uint32_t) height; |
| param[4] = (uint32_t) width; |
| param[5] = (uint32_t) 0; |
| |
| uint8_t *table[3]; |
| table[0] = gYTable; |
| table[1] = gCbTable + 384; |
| table[2] = gCrTable + 384; |
| |
| ccrgb16toyuv_wo_colorkey(rgb, yuv, param, table); |
| } |
| |
| const int FakeCamera::kRed; |
| const int FakeCamera::kGreen; |
| const int FakeCamera::kBlue; |
| |
| FakeCamera::FakeCamera(int width, int height) |
| : mTmpRgb16Buffer(0) |
| { |
| setSize(width, height); |
| } |
| |
| FakeCamera::~FakeCamera() |
| { |
| delete[] mTmpRgb16Buffer; |
| } |
| |
| void FakeCamera::setSize(int width, int height) |
| { |
| mWidth = width; |
| mHeight = height; |
| mCounter = 0; |
| mCheckX = 0; |
| mCheckY = 0; |
| |
| // This will cause it to be reallocated on the next call |
| // to getNextFrameAsYuv422(). |
| delete[] mTmpRgb16Buffer; |
| mTmpRgb16Buffer = 0; |
| } |
| |
| void FakeCamera::getNextFrameAsRgb565(uint16_t *buffer) |
| { |
| int size = mWidth / 10; |
| |
| drawCheckerboard(buffer, size); |
| |
| int x = ((mCounter*3)&255); |
| if(x>128) x = 255 - x; |
| int y = ((mCounter*5)&255); |
| if(y>128) y = 255 - y; |
| |
| drawSquare(buffer, x*size/32, y*size/32, (size*5)>>1, (mCounter&0x100)?kRed:kGreen, kBlue); |
| |
| mCounter++; |
| } |
| |
| void FakeCamera::getNextFrameAsYuv422(uint8_t *buffer) |
| { |
| if (mTmpRgb16Buffer == 0) |
| mTmpRgb16Buffer = new uint16_t[mWidth * mHeight]; |
| |
| getNextFrameAsRgb565(mTmpRgb16Buffer); |
| convert_rgb16_to_yuv422((uint8_t*)mTmpRgb16Buffer, buffer, mWidth, mHeight); |
| } |
| |
| void FakeCamera::drawSquare(uint16_t *dst, int x, int y, int size, int color, int shadow) |
| { |
| int square_xstop, square_ystop, shadow_xstop, shadow_ystop; |
| |
| square_xstop = min(mWidth, x+size); |
| square_ystop = min(mHeight, y+size); |
| shadow_xstop = min(mWidth, x+size+(size/4)); |
| shadow_ystop = min(mHeight, y+size+(size/4)); |
| |
| // Do the shadow. |
| uint16_t *sh = &dst[(y+(size/4))*mWidth]; |
| for (int j = y + (size/4); j < shadow_ystop; j++) { |
| for (int i = x + (size/4); i < shadow_xstop; i++) { |
| sh[i] &= shadow; |
| } |
| sh += mWidth; |
| } |
| |
| // Draw the square. |
| uint16_t *sq = &dst[y*mWidth]; |
| for (int j = y; j < square_ystop; j++) { |
| for (int i = x; i < square_xstop; i++) { |
| sq[i] = color; |
| } |
| sq += mWidth; |
| } |
| } |
| |
| void FakeCamera::drawCheckerboard(uint16_t *dst, int size) |
| { |
| bool black = true; |
| |
| if((mCheckX/size)&1) |
| black = false; |
| if((mCheckY/size)&1) |
| black = !black; |
| |
| int county = mCheckY%size; |
| int checkxremainder = mCheckX%size; |
| |
| for(int y=0;y<mHeight;y++) { |
| int countx = checkxremainder; |
| bool current = black; |
| for(int x=0;x<mWidth;x++) { |
| dst[y*mWidth+x] = current?0:0xffff; |
| if(countx++ >= size) { |
| countx=0; |
| current = !current; |
| } |
| } |
| if(county++ >= size) { |
| county=0; |
| black = !black; |
| } |
| } |
| mCheckX += 3; |
| mCheckY++; |
| } |
| |
| |
| status_t FakeCamera::dump(int fd, const Vector<String16>& args) |
| { |
| const size_t SIZE = 256; |
| char buffer[SIZE]; |
| String8 result; |
| snprintf(buffer, 255, " width x height (%d x %d), counter (%d), check x-y coordinate(%d, %d)\n", mWidth, mHeight, mCounter, mCheckX, mCheckY); |
| result.append(buffer); |
| ::write(fd, result.string(), result.size()); |
| return NO_ERROR; |
| } |
| |
| |
| }; // namespace android |