| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "VectorDrawable.h" |
| |
| #include "PathParser.h" |
| #include "SkColorFilter.h" |
| #include "SkImageInfo.h" |
| #include "SkShader.h" |
| #include <utils/Log.h> |
| #include "utils/Macros.h" |
| #include "utils/VectorDrawableUtils.h" |
| |
| #include <math.h> |
| #include <string.h> |
| |
| namespace android { |
| namespace uirenderer { |
| namespace VectorDrawable { |
| |
| const int Tree::MAX_CACHED_BITMAP_SIZE = 2048; |
| |
| void Path::draw(SkCanvas* outCanvas, const SkMatrix& groupStackedMatrix, float scaleX, float scaleY, |
| bool useStagingData) { |
| float matrixScale = getMatrixScale(groupStackedMatrix); |
| if (matrixScale == 0) { |
| // When either x or y is scaled to 0, we don't need to draw anything. |
| return; |
| } |
| |
| SkMatrix pathMatrix(groupStackedMatrix); |
| pathMatrix.postScale(scaleX, scaleY); |
| |
| //TODO: try apply the path matrix to the canvas instead of creating a new path. |
| SkPath renderPath; |
| renderPath.reset(); |
| |
| if (useStagingData) { |
| SkPath tmpPath; |
| getStagingPath(&tmpPath); |
| renderPath.addPath(tmpPath, pathMatrix); |
| } else { |
| renderPath.addPath(getUpdatedPath(), pathMatrix); |
| } |
| |
| float minScale = fmin(scaleX, scaleY); |
| float strokeScale = minScale * matrixScale; |
| drawPath(outCanvas, renderPath, strokeScale, pathMatrix, useStagingData); |
| } |
| |
| void Path::dump() { |
| ALOGD("Path: %s has %zu points", mName.c_str(), mProperties.getData().points.size()); |
| } |
| |
| float Path::getMatrixScale(const SkMatrix& groupStackedMatrix) { |
| // Given unit vectors A = (0, 1) and B = (1, 0). |
| // After matrix mapping, we got A' and B'. Let theta = the angel b/t A' and B'. |
| // Therefore, the final scale we want is min(|A'| * sin(theta), |B'| * sin(theta)), |
| // which is (|A'| * |B'| * sin(theta)) / max (|A'|, |B'|); |
| // If max (|A'|, |B'|) = 0, that means either x or y has a scale of 0. |
| // |
| // For non-skew case, which is most of the cases, matrix scale is computing exactly the |
| // scale on x and y axis, and take the minimal of these two. |
| // For skew case, an unit square will mapped to a parallelogram. And this function will |
| // return the minimal height of the 2 bases. |
| SkVector skVectors[2]; |
| skVectors[0].set(0, 1); |
| skVectors[1].set(1, 0); |
| groupStackedMatrix.mapVectors(skVectors, 2); |
| float scaleX = hypotf(skVectors[0].fX, skVectors[0].fY); |
| float scaleY = hypotf(skVectors[1].fX, skVectors[1].fY); |
| float crossProduct = skVectors[0].cross(skVectors[1]); |
| float maxScale = fmax(scaleX, scaleY); |
| |
| float matrixScale = 0; |
| if (maxScale > 0) { |
| matrixScale = fabs(crossProduct) / maxScale; |
| } |
| return matrixScale; |
| } |
| |
| // Called from UI thread during the initial setup/theme change. |
| Path::Path(const char* pathStr, size_t strLength) { |
| PathParser::ParseResult result; |
| Data data; |
| PathParser::getPathDataFromAsciiString(&data, &result, pathStr, strLength); |
| mStagingProperties.setData(data); |
| } |
| |
| Path::Path(const Path& path) : Node(path) { |
| mStagingProperties.syncProperties(path.mStagingProperties); |
| } |
| |
| const SkPath& Path::getUpdatedPath() { |
| if (mSkPathDirty) { |
| mSkPath.reset(); |
| VectorDrawableUtils::verbsToPath(&mSkPath, mProperties.getData()); |
| mSkPathDirty = false; |
| } |
| return mSkPath; |
| } |
| |
| void Path::getStagingPath(SkPath* outPath) { |
| outPath->reset(); |
| VectorDrawableUtils::verbsToPath(outPath, mStagingProperties.getData()); |
| } |
| |
| void Path::syncProperties() { |
| if (mStagingPropertiesDirty) { |
| mProperties.syncProperties(mStagingProperties); |
| } else { |
| mStagingProperties.syncProperties(mProperties); |
| } |
| mStagingPropertiesDirty = false; |
| } |
| |
| FullPath::FullPath(const FullPath& path) : Path(path) { |
| mStagingProperties.syncProperties(path.mStagingProperties); |
| } |
| |
| static void applyTrim(SkPath* outPath, const SkPath& inPath, float trimPathStart, float trimPathEnd, |
| float trimPathOffset) { |
| if (trimPathStart == 0.0f && trimPathEnd == 1.0f) { |
| *outPath = inPath; |
| return; |
| } |
| outPath->reset(); |
| if (trimPathStart == trimPathEnd) { |
| // Trimmed path should be empty. |
| return; |
| } |
| SkPathMeasure measure(inPath, false); |
| float len = SkScalarToFloat(measure.getLength()); |
| float start = len * fmod((trimPathStart + trimPathOffset), 1.0f); |
| float end = len * fmod((trimPathEnd + trimPathOffset), 1.0f); |
| |
| if (start > end) { |
| measure.getSegment(start, len, outPath, true); |
| if (end > 0) { |
| measure.getSegment(0, end, outPath, true); |
| } |
| } else { |
| measure.getSegment(start, end, outPath, true); |
| } |
| } |
| |
| const SkPath& FullPath::getUpdatedPath() { |
| if (!mSkPathDirty && !mProperties.mTrimDirty) { |
| return mTrimmedSkPath; |
| } |
| Path::getUpdatedPath(); |
| if (mProperties.getTrimPathStart() != 0.0f || mProperties.getTrimPathEnd() != 1.0f) { |
| mProperties.mTrimDirty = false; |
| applyTrim(&mTrimmedSkPath, mSkPath, mProperties.getTrimPathStart(), |
| mProperties.getTrimPathEnd(), mProperties.getTrimPathOffset()); |
| return mTrimmedSkPath; |
| } else { |
| return mSkPath; |
| } |
| } |
| |
| void FullPath::getStagingPath(SkPath* outPath) { |
| Path::getStagingPath(outPath); |
| SkPath inPath = *outPath; |
| applyTrim(outPath, inPath, mStagingProperties.getTrimPathStart(), |
| mStagingProperties.getTrimPathEnd(), mStagingProperties.getTrimPathOffset()); |
| } |
| |
| void FullPath::dump() { |
| Path::dump(); |
| ALOGD("stroke width, color, alpha: %f, %d, %f, fill color, alpha: %d, %f", |
| mProperties.getStrokeWidth(), mProperties.getStrokeColor(), mProperties.getStrokeAlpha(), |
| mProperties.getFillColor(), mProperties.getFillAlpha()); |
| } |
| |
| |
| inline SkColor applyAlpha(SkColor color, float alpha) { |
| int alphaBytes = SkColorGetA(color); |
| return SkColorSetA(color, alphaBytes * alpha); |
| } |
| |
| void FullPath::drawPath(SkCanvas* outCanvas, SkPath& renderPath, float strokeScale, |
| const SkMatrix& matrix, bool useStagingData){ |
| const FullPathProperties& properties = useStagingData ? mStagingProperties : mProperties; |
| |
| // Draw path's fill, if fill color or gradient is valid |
| bool needsFill = false; |
| SkPaint paint; |
| if (properties.getFillGradient() != nullptr) { |
| paint.setColor(applyAlpha(SK_ColorBLACK, properties.getFillAlpha())); |
| SkShader* newShader = properties.getFillGradient()->newWithLocalMatrix(matrix); |
| paint.setShader(newShader); |
| needsFill = true; |
| } else if (properties.getFillColor() != SK_ColorTRANSPARENT) { |
| paint.setColor(applyAlpha(properties.getFillColor(), properties.getFillAlpha())); |
| needsFill = true; |
| } |
| |
| if (needsFill) { |
| paint.setStyle(SkPaint::Style::kFill_Style); |
| paint.setAntiAlias(true); |
| SkPath::FillType ft = static_cast<SkPath::FillType>(properties.getFillType()); |
| renderPath.setFillType(ft); |
| outCanvas->drawPath(renderPath, paint); |
| } |
| |
| // Draw path's stroke, if stroke color or Gradient is valid |
| bool needsStroke = false; |
| if (properties.getStrokeGradient() != nullptr) { |
| paint.setColor(applyAlpha(SK_ColorBLACK, properties.getStrokeAlpha())); |
| SkShader* newShader = properties.getStrokeGradient()->newWithLocalMatrix(matrix); |
| paint.setShader(newShader); |
| needsStroke = true; |
| } else if (properties.getStrokeColor() != SK_ColorTRANSPARENT) { |
| paint.setColor(applyAlpha(properties.getStrokeColor(), properties.getStrokeAlpha())); |
| needsStroke = true; |
| } |
| if (needsStroke) { |
| paint.setStyle(SkPaint::Style::kStroke_Style); |
| paint.setAntiAlias(true); |
| paint.setStrokeJoin(SkPaint::Join(properties.getStrokeLineJoin())); |
| paint.setStrokeCap(SkPaint::Cap(properties.getStrokeLineCap())); |
| paint.setStrokeMiter(properties.getStrokeMiterLimit()); |
| paint.setStrokeWidth(properties.getStrokeWidth() * strokeScale); |
| outCanvas->drawPath(renderPath, paint); |
| } |
| } |
| |
| void FullPath::syncProperties() { |
| Path::syncProperties(); |
| |
| if (mStagingPropertiesDirty) { |
| mProperties.syncProperties(mStagingProperties); |
| } else { |
| // Update staging property with property values from animation. |
| mStagingProperties.syncProperties(mProperties); |
| } |
| mStagingPropertiesDirty = false; |
| } |
| |
| REQUIRE_COMPATIBLE_LAYOUT(FullPath::FullPathProperties::PrimitiveFields); |
| |
| static_assert(sizeof(float) == sizeof(int32_t), "float is not the same size as int32_t"); |
| static_assert(sizeof(SkColor) == sizeof(int32_t), "SkColor is not the same size as int32_t"); |
| |
| bool FullPath::FullPathProperties::copyProperties(int8_t* outProperties, int length) const { |
| int propertyDataSize = sizeof(FullPathProperties::PrimitiveFields); |
| if (length != propertyDataSize) { |
| LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", |
| propertyDataSize, length); |
| return false; |
| } |
| |
| PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); |
| *out = mPrimitiveFields; |
| return true; |
| } |
| |
| void FullPath::FullPathProperties::setColorPropertyValue(int propertyId, int32_t value) { |
| Property currentProperty = static_cast<Property>(propertyId); |
| if (currentProperty == Property::strokeColor) { |
| setStrokeColor(value); |
| } else if (currentProperty == Property::fillColor) { |
| setFillColor(value); |
| } else { |
| LOG_ALWAYS_FATAL("Error setting color property on FullPath: No valid property" |
| " with id: %d", propertyId); |
| } |
| } |
| |
| void FullPath::FullPathProperties::setPropertyValue(int propertyId, float value) { |
| Property property = static_cast<Property>(propertyId); |
| switch (property) { |
| case Property::strokeWidth: |
| setStrokeWidth(value); |
| break; |
| case Property::strokeAlpha: |
| setStrokeAlpha(value); |
| break; |
| case Property::fillAlpha: |
| setFillAlpha(value); |
| break; |
| case Property::trimPathStart: |
| setTrimPathStart(value); |
| break; |
| case Property::trimPathEnd: |
| setTrimPathEnd(value); |
| break; |
| case Property::trimPathOffset: |
| setTrimPathOffset(value); |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Invalid property id: %d for animation", propertyId); |
| break; |
| } |
| } |
| |
| void ClipPath::drawPath(SkCanvas* outCanvas, SkPath& renderPath, |
| float strokeScale, const SkMatrix& matrix, bool useStagingData){ |
| outCanvas->clipPath(renderPath, SkRegion::kIntersect_Op); |
| } |
| |
| Group::Group(const Group& group) : Node(group) { |
| mStagingProperties.syncProperties(group.mStagingProperties); |
| } |
| |
| void Group::draw(SkCanvas* outCanvas, const SkMatrix& currentMatrix, float scaleX, |
| float scaleY, bool useStagingData) { |
| // TODO: Try apply the matrix to the canvas instead of passing it down the tree |
| |
| // Calculate current group's matrix by preConcat the parent's and |
| // and the current one on the top of the stack. |
| // Basically the Mfinal = Mviewport * M0 * M1 * M2; |
| // Mi the local matrix at level i of the group tree. |
| SkMatrix stackedMatrix; |
| const GroupProperties& prop = useStagingData ? mStagingProperties : mProperties; |
| getLocalMatrix(&stackedMatrix, prop); |
| stackedMatrix.postConcat(currentMatrix); |
| |
| // Save the current clip information, which is local to this group. |
| outCanvas->save(); |
| // Draw the group tree in the same order as the XML file. |
| for (auto& child : mChildren) { |
| child->draw(outCanvas, stackedMatrix, scaleX, scaleY, useStagingData); |
| } |
| // Restore the previous clip information. |
| outCanvas->restore(); |
| } |
| |
| void Group::dump() { |
| ALOGD("Group %s has %zu children: ", mName.c_str(), mChildren.size()); |
| ALOGD("Group translateX, Y : %f, %f, scaleX, Y: %f, %f", mProperties.getTranslateX(), |
| mProperties.getTranslateY(), mProperties.getScaleX(), mProperties.getScaleY()); |
| for (size_t i = 0; i < mChildren.size(); i++) { |
| mChildren[i]->dump(); |
| } |
| } |
| |
| void Group::syncProperties() { |
| // Copy over the dirty staging properties |
| if (mStagingPropertiesDirty) { |
| mProperties.syncProperties(mStagingProperties); |
| } else { |
| mStagingProperties.syncProperties(mProperties); |
| } |
| mStagingPropertiesDirty = false; |
| for (auto& child : mChildren) { |
| child->syncProperties(); |
| } |
| } |
| |
| void Group::getLocalMatrix(SkMatrix* outMatrix, const GroupProperties& properties) { |
| outMatrix->reset(); |
| // TODO: use rotate(mRotate, mPivotX, mPivotY) and scale with pivot point, instead of |
| // translating to pivot for rotating and scaling, then translating back. |
| outMatrix->postTranslate(-properties.getPivotX(), -properties.getPivotY()); |
| outMatrix->postScale(properties.getScaleX(), properties.getScaleY()); |
| outMatrix->postRotate(properties.getRotation(), 0, 0); |
| outMatrix->postTranslate(properties.getTranslateX() + properties.getPivotX(), |
| properties.getTranslateY() + properties.getPivotY()); |
| } |
| |
| void Group::addChild(Node* child) { |
| mChildren.emplace_back(child); |
| if (mPropertyChangedListener != nullptr) { |
| child->setPropertyChangedListener(mPropertyChangedListener); |
| } |
| } |
| |
| bool Group::GroupProperties::copyProperties(float* outProperties, int length) const { |
| int propertyCount = static_cast<int>(Property::count); |
| if (length != propertyCount) { |
| LOG_ALWAYS_FATAL("Properties needs exactly %d bytes, a byte array of size %d is provided", |
| propertyCount, length); |
| return false; |
| } |
| |
| PrimitiveFields* out = reinterpret_cast<PrimitiveFields*>(outProperties); |
| *out = mPrimitiveFields; |
| return true; |
| } |
| |
| // TODO: Consider animating the properties as float pointers |
| // Called on render thread |
| float Group::GroupProperties::getPropertyValue(int propertyId) const { |
| Property currentProperty = static_cast<Property>(propertyId); |
| switch (currentProperty) { |
| case Property::rotate: |
| return getRotation(); |
| case Property::pivotX: |
| return getPivotX(); |
| case Property::pivotY: |
| return getPivotY(); |
| case Property::scaleX: |
| return getScaleX(); |
| case Property::scaleY: |
| return getScaleY(); |
| case Property::translateX: |
| return getTranslateX(); |
| case Property::translateY: |
| return getTranslateY(); |
| default: |
| LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); |
| return 0; |
| } |
| } |
| |
| // Called on render thread |
| void Group::GroupProperties::setPropertyValue(int propertyId, float value) { |
| Property currentProperty = static_cast<Property>(propertyId); |
| switch (currentProperty) { |
| case Property::rotate: |
| setRotation(value); |
| break; |
| case Property::pivotX: |
| setPivotX(value); |
| break; |
| case Property::pivotY: |
| setPivotY(value); |
| break; |
| case Property::scaleX: |
| setScaleX(value); |
| break; |
| case Property::scaleY: |
| setScaleY(value); |
| break; |
| case Property::translateX: |
| setTranslateX(value); |
| break; |
| case Property::translateY: |
| setTranslateY(value); |
| break; |
| default: |
| LOG_ALWAYS_FATAL("Invalid property index: %d", propertyId); |
| } |
| } |
| |
| bool Group::isValidProperty(int propertyId) { |
| return GroupProperties::isValidProperty(propertyId); |
| } |
| |
| bool Group::GroupProperties::isValidProperty(int propertyId) { |
| return propertyId >= 0 && propertyId < static_cast<int>(Property::count); |
| } |
| |
| int Tree::draw(Canvas* outCanvas, SkColorFilter* colorFilter, |
| const SkRect& bounds, bool needsMirroring, bool canReuseCache) { |
| // The imageView can scale the canvas in different ways, in order to |
| // avoid blurry scaling, we have to draw into a bitmap with exact pixel |
| // size first. This bitmap size is determined by the bounds and the |
| // canvas scale. |
| SkMatrix canvasMatrix; |
| outCanvas->getMatrix(&canvasMatrix); |
| float canvasScaleX = 1.0f; |
| float canvasScaleY = 1.0f; |
| if (canvasMatrix.getSkewX() == 0 && canvasMatrix.getSkewY() == 0) { |
| // Only use the scale value when there's no skew or rotation in the canvas matrix. |
| // TODO: Add a cts test for drawing VD on a canvas with negative scaling factors. |
| canvasScaleX = fabs(canvasMatrix.getScaleX()); |
| canvasScaleY = fabs(canvasMatrix.getScaleY()); |
| } |
| int scaledWidth = (int) (bounds.width() * canvasScaleX); |
| int scaledHeight = (int) (bounds.height() * canvasScaleY); |
| scaledWidth = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledWidth); |
| scaledHeight = std::min(Tree::MAX_CACHED_BITMAP_SIZE, scaledHeight); |
| |
| if (scaledWidth <= 0 || scaledHeight <= 0) { |
| return 0; |
| } |
| |
| mStagingProperties.setScaledSize(scaledWidth, scaledHeight); |
| int saveCount = outCanvas->save(SaveFlags::MatrixClip); |
| outCanvas->translate(bounds.fLeft, bounds.fTop); |
| |
| // Handle RTL mirroring. |
| if (needsMirroring) { |
| outCanvas->translate(bounds.width(), 0); |
| outCanvas->scale(-1.0f, 1.0f); |
| } |
| mStagingProperties.setColorFilter(colorFilter); |
| |
| // At this point, canvas has been translated to the right position. |
| // And we use this bound for the destination rect for the drawBitmap, so |
| // we offset to (0, 0); |
| SkRect tmpBounds = bounds; |
| tmpBounds.offsetTo(0, 0); |
| mStagingProperties.setBounds(tmpBounds); |
| outCanvas->drawVectorDrawable(this); |
| outCanvas->restoreToCount(saveCount); |
| return scaledWidth * scaledHeight; |
| } |
| |
| void Tree::drawStaging(Canvas* outCanvas) { |
| bool redrawNeeded = allocateBitmapIfNeeded(&mStagingCache.bitmap, |
| mStagingProperties.getScaledWidth(), mStagingProperties.getScaledHeight()); |
| // draw bitmap cache |
| if (redrawNeeded || mStagingCache.dirty) { |
| updateBitmapCache(&mStagingCache.bitmap, true); |
| mStagingCache.dirty = false; |
| } |
| |
| SkPaint tmpPaint; |
| SkPaint* paint = updatePaint(&tmpPaint, &mStagingProperties); |
| outCanvas->drawBitmap(mStagingCache.bitmap, 0, 0, |
| mStagingCache.bitmap.width(), mStagingCache.bitmap.height(), |
| mStagingProperties.getBounds().left(), mStagingProperties.getBounds().top(), |
| mStagingProperties.getBounds().right(), mStagingProperties.getBounds().bottom(), paint); |
| } |
| |
| SkPaint* Tree::getPaint() { |
| return updatePaint(&mPaint, &mProperties); |
| } |
| |
| // Update the given paint with alpha and color filter. Return nullptr if no color filter is |
| // specified and root alpha is 1. Otherwise, return updated paint. |
| SkPaint* Tree::updatePaint(SkPaint* outPaint, TreeProperties* prop) { |
| if (prop->getRootAlpha() == 1.0f && prop->getColorFilter() == nullptr) { |
| return nullptr; |
| } else { |
| outPaint->setColorFilter(prop->getColorFilter()); |
| outPaint->setFilterQuality(kLow_SkFilterQuality); |
| outPaint->setAlpha(prop->getRootAlpha() * 255); |
| return outPaint; |
| } |
| } |
| |
| const SkBitmap& Tree::getBitmapUpdateIfDirty() { |
| bool redrawNeeded = allocateBitmapIfNeeded(&mCache.bitmap, mProperties.getScaledWidth(), |
| mProperties.getScaledHeight()); |
| if (redrawNeeded || mCache.dirty) { |
| updateBitmapCache(&mCache.bitmap, false); |
| mCache.dirty = false; |
| } |
| return mCache.bitmap; |
| } |
| |
| void Tree::updateBitmapCache(SkBitmap* outCache, bool useStagingData) { |
| outCache->eraseColor(SK_ColorTRANSPARENT); |
| SkCanvas outCanvas(*outCache); |
| float viewportWidth = useStagingData ? |
| mStagingProperties.getViewportWidth() : mProperties.getViewportWidth(); |
| float viewportHeight = useStagingData ? |
| mStagingProperties.getViewportHeight() : mProperties.getViewportHeight(); |
| float scaleX = outCache->width() / viewportWidth; |
| float scaleY = outCache->height() / viewportHeight; |
| mRootNode->draw(&outCanvas, SkMatrix::I(), scaleX, scaleY, useStagingData); |
| } |
| |
| bool Tree::allocateBitmapIfNeeded(SkBitmap* outCache, int width, int height) { |
| if (!canReuseBitmap(*outCache, width, height)) { |
| SkImageInfo info = SkImageInfo::Make(width, height, |
| kN32_SkColorType, kPremul_SkAlphaType); |
| outCache->setInfo(info); |
| // TODO: Count the bitmap cache against app's java heap |
| outCache->allocPixels(info); |
| return true; |
| } |
| return false; |
| } |
| |
| bool Tree::canReuseBitmap(const SkBitmap& bitmap, int width, int height) { |
| return width == bitmap.width() && height == bitmap.height(); |
| } |
| |
| void Tree::onPropertyChanged(TreeProperties* prop) { |
| if (prop == &mStagingProperties) { |
| mStagingCache.dirty = true; |
| } else { |
| mCache.dirty = true; |
| } |
| } |
| |
| }; // namespace VectorDrawable |
| |
| }; // namespace uirenderer |
| }; // namespace android |