blob: ebb6d88a0f773d54b35bf82585eae26650cd8aff [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <SkCanvas.h>
#include <SkPathMeasure.h>
#include <SkTypeface.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <private/hwui/DrawGlInfo.h>
#include <ui/Rect.h>
#include "OpenGLRenderer.h"
#include "DisplayListRenderer.h"
#include "Vector.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
#define RAD_TO_DEG (180.0f / 3.14159265f)
#define MIN_ANGLE 0.001f
// TODO: This should be set in properties
#define ALPHA_THRESHOLD (0x7f / PANEL_BIT_DEPTH)
#define FILTER(paint) (paint && paint->isFilterBitmap() ? GL_LINEAR : GL_NEAREST)
///////////////////////////////////////////////////////////////////////////////
// Globals
///////////////////////////////////////////////////////////////////////////////
/**
* Structure mapping Skia xfermodes to OpenGL blending factors.
*/
struct Blender {
SkXfermode::Mode mode;
GLenum src;
GLenum dst;
}; // struct Blender
// In this array, the index of each Blender equals the value of the first
// entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode]
static const Blender gBlends[] = {
{ SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kDst_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kMultiply_Mode, GL_ZERO, GL_SRC_COLOR },
{ SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR }
};
// This array contains the swapped version of each SkXfermode. For instance
// this array's SrcOver blending mode is actually DstOver. You can refer to
// createLayer() for more information on the purpose of this array.
static const Blender gBlendsSwap[] = {
{ SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kDst_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kMultiply_Mode, GL_DST_COLOR, GL_ZERO },
{ SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE }
};
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
OpenGLRenderer::OpenGLRenderer(): mCaches(Caches::getInstance()) {
mShader = NULL;
mColorFilter = NULL;
mHasShadow = false;
mHasDrawFilter = false;
memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices));
mFirstSnapshot = new Snapshot;
}
OpenGLRenderer::~OpenGLRenderer() {
// The context has already been destroyed at this point, do not call
// GL APIs. All GL state should be kept in Caches.h
}
///////////////////////////////////////////////////////////////////////////////
// Debug
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::startMark(const char* name) const {
mCaches.startMark(0, name);
}
void OpenGLRenderer::endMark() const {
mCaches.endMark();
}
///////////////////////////////////////////////////////////////////////////////
// Setup
///////////////////////////////////////////////////////////////////////////////
uint32_t OpenGLRenderer::getStencilSize() {
return STENCIL_BUFFER_SIZE;
}
void OpenGLRenderer::setViewport(int width, int height) {
mOrthoMatrix.loadOrtho(0, width, height, 0, -1, 1);
mWidth = width;
mHeight = height;
mFirstSnapshot->height = height;
mFirstSnapshot->viewport.set(0, 0, width, height);
glDisable(GL_DITHER);
glEnable(GL_SCISSOR_TEST);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnableVertexAttribArray(Program::kBindingPosition);
}
void OpenGLRenderer::prepare(bool opaque) {
prepareDirty(0.0f, 0.0f, mWidth, mHeight, opaque);
}
void OpenGLRenderer::prepareDirty(float left, float top, float right, float bottom, bool opaque) {
mCaches.clearGarbage();
mSnapshot = new Snapshot(mFirstSnapshot,
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
mSnapshot->fbo = getTargetFbo();
mSaveCount = 1;
glViewport(0, 0, mWidth, mHeight);
mCaches.setScissor(left, mSnapshot->height - bottom, right - left, bottom - top);
mSnapshot->setClip(left, top, right, bottom);
mDirtyClip = false;
if (!opaque) {
glClear(GL_COLOR_BUFFER_BIT);
}
}
void OpenGLRenderer::finish() {
#if DEBUG_OPENGL
GLenum status = GL_NO_ERROR;
while ((status = glGetError()) != GL_NO_ERROR) {
ALOGD("GL error from OpenGLRenderer: 0x%x", status);
switch (status) {
case GL_OUT_OF_MEMORY:
ALOGE(" OpenGLRenderer is out of memory!");
break;
}
}
#endif
#if DEBUG_MEMORY_USAGE
mCaches.dumpMemoryUsage();
#else
if (mCaches.getDebugLevel() & kDebugMemory) {
mCaches.dumpMemoryUsage();
}
#endif
}
void OpenGLRenderer::interrupt() {
if (mCaches.currentProgram) {
if (mCaches.currentProgram->isInUse()) {
mCaches.currentProgram->remove();
mCaches.currentProgram = NULL;
}
}
mCaches.unbindMeshBuffer();
mCaches.unbindIndicesBuffer();
mCaches.resetVertexPointers();
mCaches.disbaleTexCoordsVertexArray();
}
void OpenGLRenderer::resume() {
sp<Snapshot> snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot;
glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight());
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnable(GL_SCISSOR_TEST);
mCaches.resetScissor();
dirtyClip();
mCaches.activeTexture(0);
glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo);
mCaches.blend = true;
glEnable(GL_BLEND);
glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode);
glBlendEquation(GL_FUNC_ADD);
}
bool OpenGLRenderer::callDrawGLFunction(Functor *functor, Rect& dirty) {
interrupt();
if (mDirtyClip) {
setScissorFromClip();
}
Rect clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
#if RENDER_LAYERS_AS_REGIONS
// Since we don't know what the functor will draw, let's dirty
// tne entire clip region
if (hasLayer()) {
dirtyLayerUnchecked(clip, getRegion());
}
#endif
DrawGlInfo info;
info.clipLeft = clip.left;
info.clipTop = clip.top;
info.clipRight = clip.right;
info.clipBottom = clip.bottom;
info.isLayer = hasLayer();
getSnapshot()->transform->copyTo(&info.transform[0]);
status_t result = (*functor)(0, &info);
if (result != 0) {
Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom);
dirty.unionWith(localDirty);
}
resume();
return result != 0;
}
///////////////////////////////////////////////////////////////////////////////
// State management
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::getSaveCount() const {
return mSaveCount;
}
int OpenGLRenderer::save(int flags) {
return saveSnapshot(flags);
}
void OpenGLRenderer::restore() {
if (mSaveCount > 1) {
restoreSnapshot();
}
}
void OpenGLRenderer::restoreToCount(int saveCount) {
if (saveCount < 1) saveCount = 1;
while (mSaveCount > saveCount) {
restoreSnapshot();
}
}
int OpenGLRenderer::saveSnapshot(int flags) {
mSnapshot = new Snapshot(mSnapshot, flags);
return mSaveCount++;
}
bool OpenGLRenderer::restoreSnapshot() {
bool restoreClip = mSnapshot->flags & Snapshot::kFlagClipSet;
bool restoreLayer = mSnapshot->flags & Snapshot::kFlagIsLayer;
bool restoreOrtho = mSnapshot->flags & Snapshot::kFlagDirtyOrtho;
sp<Snapshot> current = mSnapshot;
sp<Snapshot> previous = mSnapshot->previous;
if (restoreOrtho) {
Rect& r = previous->viewport;
glViewport(r.left, r.top, r.right, r.bottom);
mOrthoMatrix.load(current->orthoMatrix);
}
mSaveCount--;
mSnapshot = previous;
if (restoreClip) {
dirtyClip();
}
if (restoreLayer) {
composeLayer(current, previous);
}
return restoreClip;
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom,
SkPaint* p, int flags) {
const GLuint previousFbo = mSnapshot->fbo;
const int count = saveSnapshot(flags);
if (!mSnapshot->isIgnored()) {
int alpha = 255;
SkXfermode::Mode mode;
if (p) {
alpha = p->getAlpha();
if (!mCaches.extensions.hasFramebufferFetch()) {
const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode);
if (!isMode) {
// Assume SRC_OVER
mode = SkXfermode::kSrcOver_Mode;
}
} else {
mode = getXfermode(p->getXfermode());
}
} else {
mode = SkXfermode::kSrcOver_Mode;
}
createLayer(mSnapshot, left, top, right, bottom, alpha, mode, flags, previousFbo);
}
return count;
}
int OpenGLRenderer::saveLayerAlpha(float left, float top, float right, float bottom,
int alpha, int flags) {
if (alpha >= 255 - ALPHA_THRESHOLD) {
return saveLayer(left, top, right, bottom, NULL, flags);
} else {
SkPaint paint;
paint.setAlpha(alpha);
return saveLayer(left, top, right, bottom, &paint, flags);
}
}
/**
* Layers are viewed by Skia are slightly different than layers in image editing
* programs (for instance.) When a layer is created, previously created layers
* and the frame buffer still receive every drawing command. For instance, if a
* layer is created and a shape intersecting the bounds of the layers and the
* framebuffer is draw, the shape will be drawn on both (unless the layer was
* created with the SkCanvas::kClipToLayer_SaveFlag flag.)
*
* A way to implement layers is to create an FBO for each layer, backed by an RGBA
* texture. Unfortunately, this is inefficient as it requires every primitive to
* be drawn n + 1 times, where n is the number of active layers. In practice this
* means, for every primitive:
* - Switch active frame buffer
* - Change viewport, clip and projection matrix
* - Issue the drawing
*
* Switching rendering target n + 1 times per drawn primitive is extremely costly.
* To avoid this, layers are implemented in a different way here, at least in the
* general case. FBOs are used, as an optimization, when the "clip to layer" flag
* is set. When this flag is set we can redirect all drawing operations into a
* single FBO.
*
* This implementation relies on the frame buffer being at least RGBA 8888. When
* a layer is created, only a texture is created, not an FBO. The content of the
* frame buffer contained within the layer's bounds is copied into this texture
* using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame
* buffer and drawing continues as normal. This technique therefore treats the
* frame buffer as a scratch buffer for the layers.
*
* To compose the layers back onto the frame buffer, each layer texture
* (containing the original frame buffer data) is drawn as a simple quad over
* the frame buffer. The trick is that the quad is set as the composition
* destination in the blending equation, and the frame buffer becomes the source
* of the composition.
*
* Drawing layers with an alpha value requires an extra step before composition.
* An empty quad is drawn over the layer's region in the frame buffer. This quad
* is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the
* quad is used to multiply the colors in the frame buffer. This is achieved by
* changing the GL blend functions for the GL_FUNC_ADD blend equation to
* GL_ZERO, GL_SRC_ALPHA.
*
* Because glCopyTexImage2D() can be slow, an alternative implementation might
* be use to draw a single clipped layer. The implementation described above
* is correct in every case.
*
* (1) The frame buffer is actually not cleared right away. To allow the GPU
* to potentially optimize series of calls to glCopyTexImage2D, the frame
* buffer is left untouched until the first drawing operation. Only when
* something actually gets drawn are the layers regions cleared.
*/
bool OpenGLRenderer::createLayer(sp<Snapshot> snapshot, float left, float top,
float right, float bottom, int alpha, SkXfermode::Mode mode,
int flags, GLuint previousFbo) {
LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top);
LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize());
const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag;
// Window coordinates of the layer
Rect bounds(left, top, right, bottom);
if (!fboLayer) {
mSnapshot->transform->mapRect(bounds);
// Layers only make sense if they are in the framebuffer's bounds
if (bounds.intersect(*snapshot->clipRect)) {
// We cannot work with sub-pixels in this case
bounds.snapToPixelBoundaries();
// When the layer is not an FBO, we may use glCopyTexImage so we
// need to make sure the layer does not extend outside the bounds
// of the framebuffer
if (!bounds.intersect(snapshot->previous->viewport)) {
bounds.setEmpty();
}
} else {
bounds.setEmpty();
}
}
if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize ||
bounds.getHeight() > mCaches.maxTextureSize) {
snapshot->empty = fboLayer;
} else {
snapshot->invisible = snapshot->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer);
}
// Bail out if we won't draw in this snapshot
if (snapshot->invisible || snapshot->empty) {
return false;
}
mCaches.activeTexture(0);
Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight());
if (!layer) {
return false;
}
layer->setAlpha(alpha, mode);
layer->layer.set(bounds);
layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()),
bounds.getWidth() / float(layer->getWidth()), 0.0f);
layer->setColorFilter(mColorFilter);
// Save the layer in the snapshot
snapshot->flags |= Snapshot::kFlagIsLayer;
snapshot->layer = layer;
if (fboLayer) {
return createFboLayer(layer, bounds, snapshot, previousFbo);
} else {
// Copy the framebuffer into the layer
layer->bindTexture();
if (!bounds.isEmpty()) {
if (layer->isEmpty()) {
glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
bounds.left, snapshot->height - bounds.bottom,
layer->getWidth(), layer->getHeight(), 0);
layer->setEmpty(false);
} else {
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left,
snapshot->height - bounds.bottom, bounds.getWidth(), bounds.getHeight());
}
// Enqueue the buffer coordinates to clear the corresponding region later
mLayers.push(new Rect(bounds));
}
}
return true;
}
bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, sp<Snapshot> snapshot,
GLuint previousFbo) {
layer->setFbo(mCaches.fboCache.get());
#if RENDER_LAYERS_AS_REGIONS
snapshot->region = &snapshot->layer->region;
snapshot->flags |= Snapshot::kFlagFboTarget;
#endif
Rect clip(bounds);
snapshot->transform->mapRect(clip);
clip.intersect(*snapshot->clipRect);
clip.snapToPixelBoundaries();
clip.intersect(snapshot->previous->viewport);
mat4 inverse;
inverse.loadInverse(*mSnapshot->transform);
inverse.mapRect(clip);
clip.snapToPixelBoundaries();
clip.intersect(bounds);
clip.translate(-bounds.left, -bounds.top);
snapshot->flags |= Snapshot::kFlagIsFboLayer;
snapshot->fbo = layer->getFbo();
snapshot->resetTransform(-bounds.left, -bounds.top, 0.0f);
snapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom);
snapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight());
snapshot->height = bounds.getHeight();
snapshot->flags |= Snapshot::kFlagDirtyOrtho;
snapshot->orthoMatrix.load(mOrthoMatrix);
// Bind texture to FBO
glBindFramebuffer(GL_FRAMEBUFFER, layer->getFbo());
layer->bindTexture();
// Initialize the texture if needed
if (layer->isEmpty()) {
layer->allocateTexture(GL_RGBA, GL_UNSIGNED_BYTE);
layer->setEmpty(false);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
layer->getTexture(), 0);
#if DEBUG_LAYERS_AS_REGIONS
GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE) {
ALOGE("Framebuffer incomplete (GL error code 0x%x)", status);
glBindFramebuffer(GL_FRAMEBUFFER, previousFbo);
layer->deleteTexture();
mCaches.fboCache.put(layer->getFbo());
delete layer;
return false;
}
#endif
// Clear the FBO, expand the clear region by 1 to get nice bilinear filtering
mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f,
clip.getWidth() + 2.0f, clip.getHeight() + 2.0f);
glClear(GL_COLOR_BUFFER_BIT);
dirtyClip();
// Change the ortho projection
glViewport(0, 0, bounds.getWidth(), bounds.getHeight());
mOrthoMatrix.loadOrtho(0.0f, bounds.getWidth(), bounds.getHeight(), 0.0f, -1.0f, 1.0f);
return true;
}
/**
* Read the documentation of createLayer() before doing anything in this method.
*/
void OpenGLRenderer::composeLayer(sp<Snapshot> current, sp<Snapshot> previous) {
if (!current->layer) {
ALOGE("Attempting to compose a layer that does not exist");
return;
}
const bool fboLayer = current->flags & Snapshot::kFlagIsFboLayer;
if (fboLayer) {
// Unbind current FBO and restore previous one
glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo);
}
Layer* layer = current->layer;
const Rect& rect = layer->layer;
if (!fboLayer && layer->getAlpha() < 255) {
drawColorRect(rect.left, rect.top, rect.right, rect.bottom,
layer->getAlpha() << 24, SkXfermode::kDstIn_Mode, true);
// Required below, composeLayerRect() will divide by 255
layer->setAlpha(255);
}
mCaches.unbindMeshBuffer();
mCaches.activeTexture(0);
// When the layer is stored in an FBO, we can save a bit of fillrate by
// drawing only the dirty region
if (fboLayer) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *previous->transform);
if (layer->getColorFilter()) {
setupColorFilter(layer->getColorFilter());
}
composeLayerRegion(layer, rect);
if (layer->getColorFilter()) {
resetColorFilter();
}
} else if (!rect.isEmpty()) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom);
composeLayerRect(layer, rect, true);
}
if (fboLayer) {
// Note: No need to use glDiscardFramebufferEXT() since we never
// create/compose layers that are not on screen with this
// code path
// See LayerRenderer::destroyLayer(Layer*)
// Detach the texture from the FBO
glBindFramebuffer(GL_FRAMEBUFFER, current->fbo);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo);
// Put the FBO name back in the cache, if it doesn't fit, it will be destroyed
mCaches.fboCache.put(current->fbo);
}
dirtyClip();
// Failing to add the layer to the cache should happen only if the layer is too large
if (!mCaches.layerCache.put(layer)) {
LAYER_LOGD("Deleting layer");
layer->deleteTexture();
delete layer;
}
}
void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) {
float alpha = layer->getAlpha() / 255.0f;
mat4& transform = layer->getTransform();
if (!transform.isIdentity()) {
save(0);
mSnapshot->transform->multiply(transform);
}
setupDraw();
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawWithTexture();
} else {
setupDrawWithExternalTexture();
}
setupDrawTextureTransform();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode());
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawTexture(layer->getTexture());
} else {
setupDrawExternalTexture(layer->getTexture());
}
if (mSnapshot->transform->isPureTranslate() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight()) {
const float x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelView(x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelView(rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawTextureTransformUniforms(layer->getTexTransform());
setupDrawMesh(&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0]);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
finishDrawTexture();
if (!transform.isIdentity()) {
restore();
}
}
void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) {
if (!layer->isTextureLayer()) {
const Rect& texCoords = layer->texCoords;
resetDrawTextureTexCoords(texCoords.left, texCoords.top,
texCoords.right, texCoords.bottom);
float x = rect.left;
float y = rect.top;
bool simpleTransform = mSnapshot->transform->isPureTranslate() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight();
if (simpleTransform) {
// When we're swapping, the layer is already in screen coordinates
if (!swap) {
x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f);
}
layer->setFilter(GL_NEAREST, true);
} else {
layer->setFilter(GL_LINEAR, true);
}
drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(),
layer->getTexture(), layer->getAlpha() / 255.0f,
layer->getMode(), layer->isBlend(),
&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
} else {
resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f);
drawTextureLayer(layer, rect);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
}
}
void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) {
#if RENDER_LAYERS_AS_REGIONS
if (layer->region.isRect()) {
layer->setRegionAsRect();
composeLayerRect(layer, layer->regionRect);
layer->region.clear();
return;
}
// TODO: See LayerRenderer.cpp::generateMesh() for important
// information about this implementation
if (CC_LIKELY(!layer->region.isEmpty())) {
size_t count;
const android::Rect* rects = layer->region.getArray(&count);
const float alpha = layer->getAlpha() / 255.0f;
const float texX = 1.0f / float(layer->getWidth());
const float texY = 1.0f / float(layer->getHeight());
const float height = rect.getHeight();
TextureVertex* mesh = mCaches.getRegionMesh();
GLsizei numQuads = 0;
setupDraw();
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode(), false);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawTexture(layer->getTexture());
if (mSnapshot->transform->isPureTranslate()) {
const float x = (int) floorf(rect.left + mSnapshot->transform->getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + mSnapshot->transform->getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelViewTranslate(x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelViewTranslate(rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawMeshIndices(&mesh[0].position[0], &mesh[0].texture[0]);
for (size_t i = 0; i < count; i++) {
const android::Rect* r = &rects[i];
const float u1 = r->left * texX;
const float v1 = (height - r->top) * texY;
const float u2 = r->right * texX;
const float v2 = (height - r->bottom) * texY;
// TODO: Reject quads outside of the clip
TextureVertex::set(mesh++, r->left, r->top, u1, v1);
TextureVertex::set(mesh++, r->right, r->top, u2, v1);
TextureVertex::set(mesh++, r->left, r->bottom, u1, v2);
TextureVertex::set(mesh++, r->right, r->bottom, u2, v2);
numQuads++;
if (numQuads >= REGION_MESH_QUAD_COUNT) {
glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL);
numQuads = 0;
mesh = mCaches.getRegionMesh();
}
}
if (numQuads > 0) {
glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL);
}
finishDrawTexture();
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRects(layer->region);
#endif
layer->region.clear();
}
#else
composeLayerRect(layer, rect);
#endif
}
void OpenGLRenderer::drawRegionRects(const Region& region) {
#if DEBUG_LAYERS_AS_REGIONS
size_t count;
const android::Rect* rects = region.getArray(&count);
uint32_t colors[] = {
0x7fff0000, 0x7f00ff00,
0x7f0000ff, 0x7fff00ff,
};
int offset = 0;
int32_t top = rects[0].top;
for (size_t i = 0; i < count; i++) {
if (top != rects[i].top) {
offset ^= 0x2;
top = rects[i].top;
}
Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom);
drawColorRect(r.left, r.top, r.right, r.bottom, colors[offset + (i & 0x1)],
SkXfermode::kSrcOver_Mode);
}
#endif
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom, const mat4 transform) {
#if RENDER_LAYERS_AS_REGIONS
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
transform.mapRect(bounds);
dirtyLayerUnchecked(bounds, getRegion());
}
#endif
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom) {
#if RENDER_LAYERS_AS_REGIONS
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
dirtyLayerUnchecked(bounds, getRegion());
}
#endif
}
void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) {
#if RENDER_LAYERS_AS_REGIONS
if (bounds.intersect(*mSnapshot->clipRect)) {
bounds.snapToPixelBoundaries();
android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom);
if (!dirty.isEmpty()) {
region->orSelf(dirty);
}
}
#endif
}
void OpenGLRenderer::clearLayerRegions() {
const size_t count = mLayers.size();
if (count == 0) return;
if (!mSnapshot->isIgnored()) {
// Doing several glScissor/glClear here can negatively impact
// GPUs with a tiler architecture, instead we draw quads with
// the Clear blending mode
// The list contains bounds that have already been clipped
// against their initial clip rect, and the current clip
// is likely different so we need to disable clipping here
glDisable(GL_SCISSOR_TEST);
Vertex mesh[count * 6];
Vertex* vertex = mesh;
for (uint32_t i = 0; i < count; i++) {
Rect* bounds = mLayers.itemAt(i);
Vertex::set(vertex++, bounds->left, bounds->bottom);
Vertex::set(vertex++, bounds->left, bounds->top);
Vertex::set(vertex++, bounds->right, bounds->top);
Vertex::set(vertex++, bounds->left, bounds->bottom);
Vertex::set(vertex++, bounds->right, bounds->top);
Vertex::set(vertex++, bounds->right, bounds->bottom);
delete bounds;
}
setupDraw(false);
setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f);
setupDrawBlending(true, SkXfermode::kClear_Mode);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawModelViewTranslate(0.0f, 0.0f, 0.0f, 0.0f, true);
setupDrawVertices(&mesh[0].position[0]);
glDrawArrays(GL_TRIANGLES, 0, count * 6);
glEnable(GL_SCISSOR_TEST);
} else {
for (uint32_t i = 0; i < count; i++) {
delete mLayers.itemAt(i);
}
}
mLayers.clear();
}
///////////////////////////////////////////////////////////////////////////////
// Transforms
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::translate(float dx, float dy) {
mSnapshot->transform->translate(dx, dy, 0.0f);
}
void OpenGLRenderer::rotate(float degrees) {
mSnapshot->transform->rotate(degrees, 0.0f, 0.0f, 1.0f);
}
void OpenGLRenderer::scale(float sx, float sy) {
mSnapshot->transform->scale(sx, sy, 1.0f);
}
void OpenGLRenderer::skew(float sx, float sy) {
mSnapshot->transform->skew(sx, sy);
}
void OpenGLRenderer::setMatrix(SkMatrix* matrix) {
if (matrix) {
mSnapshot->transform->load(*matrix);
} else {
mSnapshot->transform->loadIdentity();
}
}
void OpenGLRenderer::getMatrix(SkMatrix* matrix) {
mSnapshot->transform->copyTo(*matrix);
}
void OpenGLRenderer::concatMatrix(SkMatrix* matrix) {
SkMatrix transform;
mSnapshot->transform->copyTo(transform);
transform.preConcat(*matrix);
mSnapshot->transform->load(transform);
}
///////////////////////////////////////////////////////////////////////////////
// Clipping
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setScissorFromClip() {
Rect clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
mCaches.setScissor(clip.left, mSnapshot->height - clip.bottom,
clip.getWidth(), clip.getHeight());
mDirtyClip = false;
}
const Rect& OpenGLRenderer::getClipBounds() {
return mSnapshot->getLocalClip();
}
bool OpenGLRenderer::quickReject(float left, float top, float right, float bottom) {
if (mSnapshot->isIgnored()) {
return true;
}
Rect r(left, top, right, bottom);
mSnapshot->transform->mapRect(r);
r.snapToPixelBoundaries();
Rect clipRect(*mSnapshot->clipRect);
clipRect.snapToPixelBoundaries();
return !clipRect.intersects(r);
}
bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) {
bool clipped = mSnapshot->clip(left, top, right, bottom, op);
if (clipped) {
dirtyClip();
}
return !mSnapshot->clipRect->isEmpty();
}
///////////////////////////////////////////////////////////////////////////////
// Drawing commands
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setupDraw(bool clear) {
if (clear) clearLayerRegions();
if (mDirtyClip) {
setScissorFromClip();
}
mDescription.reset();
mSetShaderColor = false;
mColorSet = false;
mColorA = mColorR = mColorG = mColorB = 0.0f;
mTextureUnit = 0;
mTrackDirtyRegions = true;
}
void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) {
mDescription.hasTexture = true;
mDescription.hasAlpha8Texture = isAlpha8;
}
void OpenGLRenderer::setupDrawWithExternalTexture() {
mDescription.hasExternalTexture = true;
}
void OpenGLRenderer::setupDrawNoTexture() {
mCaches.disbaleTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawAALine() {
mDescription.isAA = true;
}
void OpenGLRenderer::setupDrawPoint(float pointSize) {
mDescription.isPoint = true;
mDescription.pointSize = pointSize;
}
void OpenGLRenderer::setupDrawColor(int color) {
setupDrawColor(color, (color >> 24) & 0xFF);
}
void OpenGLRenderer::setupDrawColor(int color, int alpha) {
mColorA = alpha / 255.0f;
// Second divide of a by 255 is an optimization, allowing us to simply multiply
// the rgb values by a instead of also dividing by 255
const float a = mColorA / 255.0f;
mColorR = a * ((color >> 16) & 0xFF);
mColorG = a * ((color >> 8) & 0xFF);
mColorB = a * ((color ) & 0xFF);
mColorSet = true;
mSetShaderColor = mDescription.setColor(mColorR, mColorG, mColorB, mColorA);
}
void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) {
mColorA = alpha / 255.0f;
// Double-divide of a by 255 is an optimization, allowing us to simply multiply
// the rgb values by a instead of also dividing by 255
const float a = mColorA / 255.0f;
mColorR = a * ((color >> 16) & 0xFF);
mColorG = a * ((color >> 8) & 0xFF);
mColorB = a * ((color ) & 0xFF);
mColorSet = true;
mSetShaderColor = mDescription.setAlpha8Color(mColorR, mColorG, mColorB, mColorA);
}
void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) {
mColorA = a;
mColorR = r;
mColorG = g;
mColorB = b;
mColorSet = true;
mSetShaderColor = mDescription.setColor(r, g, b, a);
}
void OpenGLRenderer::setupDrawAlpha8Color(float r, float g, float b, float a) {
mColorA = a;
mColorR = r;
mColorG = g;
mColorB = b;
mColorSet = true;
mSetShaderColor = mDescription.setAlpha8Color(r, g, b, a);
}
void OpenGLRenderer::setupDrawShader() {
if (mShader) {
mShader->describe(mDescription, mCaches.extensions);
}
}
void OpenGLRenderer::setupDrawColorFilter() {
if (mColorFilter) {
mColorFilter->describe(mDescription, mCaches.extensions);
}
}
void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) {
if (mColorSet && mode == SkXfermode::kClear_Mode) {
mColorA = 1.0f;
mColorR = mColorG = mColorB = 0.0f;
mSetShaderColor = mDescription.modulate = true;
}
}
void OpenGLRenderer::setupDrawBlending(SkXfermode::Mode mode, bool swapSrcDst) {
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
chooseBlending((mColorSet && mColorA < 1.0f) || (mShader && mShader->blend()), mode,
mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawBlending(bool blend, SkXfermode::Mode mode, bool swapSrcDst) {
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
chooseBlending(blend || (mColorSet && mColorA < 1.0f) || (mShader && mShader->blend()), mode,
mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawProgram() {
useProgram(mCaches.programCache.get(mDescription));
}
void OpenGLRenderer::setupDrawDirtyRegionsDisabled() {
mTrackDirtyRegions = false;
}
void OpenGLRenderer::setupDrawModelViewTranslate(float left, float top, float right, float bottom,
bool ignoreTransform) {
mModelView.loadTranslate(left, top, 0.0f);
if (!ignoreTransform) {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform);
if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom, *mSnapshot->transform);
} else {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, mIdentity);
if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom);
}
}
void OpenGLRenderer::setupDrawModelViewIdentity(bool offset) {
mCaches.currentProgram->set(mOrthoMatrix, mIdentity, *mSnapshot->transform, offset);
}
void OpenGLRenderer::setupDrawModelView(float left, float top, float right, float bottom,
bool ignoreTransform, bool ignoreModelView) {
if (!ignoreModelView) {
mModelView.loadTranslate(left, top, 0.0f);
mModelView.scale(right - left, bottom - top, 1.0f);
} else {
mModelView.loadIdentity();
}
bool dirty = right - left > 0.0f && bottom - top > 0.0f;
if (!ignoreTransform) {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform);
if (mTrackDirtyRegions && dirty) {
dirtyLayer(left, top, right, bottom, *mSnapshot->transform);
}
} else {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, mIdentity);
if (mTrackDirtyRegions && dirty) dirtyLayer(left, top, right, bottom);
}
}
void OpenGLRenderer::setupDrawPointUniforms() {
int slot = mCaches.currentProgram->getUniform("pointSize");
glUniform1f(slot, mDescription.pointSize);
}
void OpenGLRenderer::setupDrawColorUniforms() {
if (mColorSet || (mShader && mSetShaderColor)) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawPureColorUniforms() {
if (mSetShaderColor) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawShaderUniforms(bool ignoreTransform) {
if (mShader) {
if (ignoreTransform) {
mModelView.loadInverse(*mSnapshot->transform);
}
mShader->setupProgram(mCaches.currentProgram, mModelView, *mSnapshot, &mTextureUnit);
}
}
void OpenGLRenderer::setupDrawShaderIdentityUniforms() {
if (mShader) {
mShader->setupProgram(mCaches.currentProgram, mIdentity, *mSnapshot, &mTextureUnit);
}
}
void OpenGLRenderer::setupDrawColorFilterUniforms() {
if (mColorFilter) {
mColorFilter->setupProgram(mCaches.currentProgram);
}
}
void OpenGLRenderer::setupDrawSimpleMesh() {
bool force = mCaches.bindMeshBuffer();
mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, 0);
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawTexture(GLuint texture) {
bindTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) {
bindExternalTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawTextureTransform() {
mDescription.hasTextureTransform = true;
}
void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) {
glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1,
GL_FALSE, &transform.data[0]);
}
void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLuint vbo) {
bool force = false;
if (!vertices) {
force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo);
} else {
force = mCaches.unbindMeshBuffer();
}
mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, mCaches.currentProgram->texCoords, texCoords);
}
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawMeshIndices(GLvoid* vertices, GLvoid* texCoords) {
bool force = mCaches.unbindMeshBuffer();
mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, mCaches.currentProgram->texCoords, texCoords);
}
}
void OpenGLRenderer::setupDrawVertices(GLvoid* vertices) {
bool force = mCaches.unbindMeshBuffer();
mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position,
vertices, gVertexStride);
mCaches.unbindIndicesBuffer();
}
/**
* Sets up the shader to draw an AA line. We draw AA lines with quads, where there is an
* outer boundary that fades out to 0. The variables set in the shader define the proportion of
* the width and length of the primitive occupied by the AA region. The vtxWidth and vtxLength
* attributes (one per vertex) are values from zero to one that tells the fragment
* shader where the fragment is in relation to the line width/length overall; these values are
* then used to compute the proper color, based on whether the fragment lies in the fading AA
* region of the line.
* Note that we only pass down the width values in this setup function. The length coordinates
* are set up for each individual segment.
*/
void OpenGLRenderer::setupDrawAALine(GLvoid* vertices, GLvoid* widthCoords,
GLvoid* lengthCoords, float boundaryWidthProportion) {
bool force = mCaches.unbindMeshBuffer();
mCaches.bindPositionVertexPointer(force, mCaches.currentProgram->position,
vertices, gAAVertexStride);
mCaches.resetTexCoordsVertexPointer();
mCaches.unbindIndicesBuffer();
int widthSlot = mCaches.currentProgram->getAttrib("vtxWidth");
glEnableVertexAttribArray(widthSlot);
glVertexAttribPointer(widthSlot, 1, GL_FLOAT, GL_FALSE, gAAVertexStride, widthCoords);
int lengthSlot = mCaches.currentProgram->getAttrib("vtxLength");
glEnableVertexAttribArray(lengthSlot);
glVertexAttribPointer(lengthSlot, 1, GL_FLOAT, GL_FALSE, gAAVertexStride, lengthCoords);
int boundaryWidthSlot = mCaches.currentProgram->getUniform("boundaryWidth");
glUniform1f(boundaryWidthSlot, boundaryWidthProportion);
// Setting the inverse value saves computations per-fragment in the shader
int inverseBoundaryWidthSlot = mCaches.currentProgram->getUniform("inverseBoundaryWidth");
glUniform1f(inverseBoundaryWidthSlot, (1 / boundaryWidthProportion));
}
void OpenGLRenderer::finishDrawTexture() {
}
///////////////////////////////////////////////////////////////////////////////
// Drawing
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::drawDisplayList(DisplayList* displayList, uint32_t width, uint32_t height,
Rect& dirty, int32_t flags, uint32_t level) {
if (quickReject(0.0f, 0.0f, width, height)) {
return false;
}
// All the usual checks and setup operations (quickReject, setupDraw, etc.)
// will be performed by the display list itself
if (displayList && displayList->isRenderable()) {
return displayList->replay(*this, dirty, flags, level);
}
return false;
}
void OpenGLRenderer::outputDisplayList(DisplayList* displayList, uint32_t level) {
if (displayList) {
displayList->output(*this, level);
}
}
void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, SkPaint* paint) {
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
float x = left;
float y = top;
GLenum filter = GL_LINEAR;
bool ignoreTransform = false;
if (mSnapshot->transform->isPureTranslate()) {
x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f);
ignoreTransform = true;
filter = GL_NEAREST;
} else {
filter = FILTER(paint);
}
setupDraw();
setupDrawWithTexture(true);
if (paint) {
setupDrawAlpha8Color(paint->getColor(), alpha);
}
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x + texture->width, y + texture->height, ignoreTransform);
setupDrawTexture(texture->id);
texture->setWrap(GL_CLAMP_TO_EDGE);
texture->setFilter(filter);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
finishDrawTexture();
}
void OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) {
const float right = left + bitmap->width();
const float bottom = top + bitmap->height();
if (quickReject(left, top, right, bottom)) {
return;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
drawAlphaBitmap(texture, left, top, paint);
} else {
drawTextureRect(left, top, right, bottom, texture, paint);
}
}
void OpenGLRenderer::drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) {
Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height());
const mat4 transform(*matrix);
transform.mapRect(r);
if (quickReject(r.left, r.top, r.right, r.bottom)) {
return;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
// This could be done in a cheaper way, all we need is pass the matrix
// to the vertex shader. The save/restore is a bit overkill.
save(SkCanvas::kMatrix_SaveFlag);
concatMatrix(matrix);
drawTextureRect(0.0f, 0.0f, bitmap->width(), bitmap->height(), texture, paint);
restore();
}
void OpenGLRenderer::drawBitmapMesh(SkBitmap* bitmap, int meshWidth, int meshHeight,
float* vertices, int* colors, SkPaint* paint) {
// TODO: Do a quickReject
if (!vertices || mSnapshot->isIgnored()) {
return;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(FILTER(paint), true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
const uint32_t count = meshWidth * meshHeight * 6;
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
#if RENDER_LAYERS_AS_REGIONS
const bool hasActiveLayer = hasLayer();
#else
const bool hasActiveLayer = false;
#endif
// TODO: Support the colors array
TextureVertex mesh[count];
TextureVertex* vertex = mesh;
for (int32_t y = 0; y < meshHeight; y++) {
for (int32_t x = 0; x < meshWidth; x++) {
uint32_t i = (y * (meshWidth + 1) + x) * 2;
float u1 = float(x) / meshWidth;
float u2 = float(x + 1) / meshWidth;
float v1 = float(y) / meshHeight;
float v2 = float(y + 1) / meshHeight;
int ax = i + (meshWidth + 1) * 2;
int ay = ax + 1;
int bx = i;
int by = bx + 1;
int cx = i + 2;
int cy = cx + 1;
int dx = i + (meshWidth + 1) * 2 + 2;
int dy = dx + 1;
TextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2);
TextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1);
TextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1);
TextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2);
TextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1);
TextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2);
#if RENDER_LAYERS_AS_REGIONS
if (hasActiveLayer) {
// TODO: This could be optimized to avoid unnecessary ops
left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx])));
top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy])));
right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx])));
bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy])));
}
#endif
}
}
#if RENDER_LAYERS_AS_REGIONS
if (hasActiveLayer) {
dirtyLayer(left, top, right, bottom, *mSnapshot->transform);
}
#endif
drawTextureMesh(0.0f, 0.0f, 1.0f, 1.0f, texture->id, alpha / 255.0f,
mode, texture->blend, &mesh[0].position[0], &mesh[0].texture[0],
GL_TRIANGLES, count, false, false, 0, false, false);
}
void OpenGLRenderer::drawBitmap(SkBitmap* bitmap,
float srcLeft, float srcTop, float srcRight, float srcBottom,
float dstLeft, float dstTop, float dstRight, float dstBottom,
SkPaint* paint) {
if (quickReject(dstLeft, dstTop, dstRight, dstBottom)) {
return;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float width = texture->width;
const float height = texture->height;
const float u1 = fmax(0.0f, srcLeft / width);
const float v1 = fmax(0.0f, srcTop / height);
const float u2 = fmin(1.0f, srcRight / width);
const float v2 = fmin(1.0f, srcBottom / height);
mCaches.unbindMeshBuffer();
resetDrawTextureTexCoords(u1, v1, u2, v2);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) {
const float x = (int) floorf(dstLeft + mSnapshot->transform->getTranslateX() + 0.5f);
const float y = (int) floorf(dstTop + mSnapshot->transform->getTranslateY() + 0.5f);
GLenum filter = GL_NEAREST;
// Enable linear filtering if the source rectangle is scaled
if (srcRight - srcLeft != dstRight - dstLeft || srcBottom - srcTop != dstBottom - dstTop) {
filter = FILTER(paint);
}
texture->setFilter(filter, true);
drawTextureMesh(x, y, x + (dstRight - dstLeft), y + (dstBottom - dstTop),
texture->id, alpha / 255.0f, mode, texture->blend,
&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount, false, true);
} else {
texture->setFilter(FILTER(paint), true);
drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, alpha / 255.0f,
mode, texture->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount);
}
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
}
void OpenGLRenderer::drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs,
const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors,
float left, float top, float right, float bottom, SkPaint* paint) {
if (quickReject(left, top, right, bottom)) {
return;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.get(bitmap);
if (!texture) return;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(GL_LINEAR, true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
const Patch* mesh = mCaches.patchCache.get(bitmap->width(), bitmap->height(),
right - left, bottom - top, xDivs, yDivs, colors, width, height, numColors);
if (CC_LIKELY(mesh && mesh->verticesCount > 0)) {
const bool pureTranslate = mSnapshot->transform->isPureTranslate();
#if RENDER_LAYERS_AS_REGIONS
// Mark the current layer dirty where we are going to draw the patch
if (hasLayer() && mesh->hasEmptyQuads) {
const float offsetX = left + mSnapshot->transform->getTranslateX();
const float offsetY = top + mSnapshot->transform->getTranslateY();
const size_t count = mesh->quads.size();
for (size_t i = 0; i < count; i++) {
const Rect& bounds = mesh->quads.itemAt(i);
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(bounds.left + offsetX + 0.5f);
const float y = (int) floorf(bounds.top + offsetY + 0.5f);
dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight());
} else {
dirtyLayer(left + bounds.left, top + bounds.top,
left + bounds.right, top + bounds.bottom, *mSnapshot->transform);
}
}
}
#endif
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f);
const float y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f);
drawTextureMesh(x, y, x + right - left, y + bottom - top, texture->id, alpha / 255.0f,
mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset,
GL_TRIANGLES, mesh->verticesCount, false, true, mesh->meshBuffer,
true, !mesh->hasEmptyQuads);
} else {
drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f,
mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset,
GL_TRIANGLES, mesh->verticesCount, false, false, mesh->meshBuffer,
true, !mesh->hasEmptyQuads);
}
}
}
/**
* This function uses a similar approach to that of AA lines in the drawLines() function.
* We expand the rectangle by a half pixel in screen space on all sides, and use a fragment
* shader to compute the translucency of the color, determined by whether a given pixel is
* within that boundary region and how far into the region it is.
*/
void OpenGLRenderer::drawAARect(float left, float top, float right, float bottom,
int color, SkXfermode::Mode mode) {
float inverseScaleX = 1.0f;
float inverseScaleY = 1.0f;
// The quad that we use needs to account for scaling.
if (CC_UNLIKELY(!mSnapshot->transform->isPureTranslate())) {
Matrix4 *mat = mSnapshot->transform;
float m00 = mat->data[Matrix4::kScaleX];
float m01 = mat->data[Matrix4::kSkewY];
float m02 = mat->data[2];
float m10 = mat->data[Matrix4::kSkewX];
float m11 = mat->data[Matrix4::kScaleX];
float m12 = mat->data[6];
float scaleX = sqrt(m00 * m00 + m01 * m01);
float scaleY = sqrt(m10 * m10 + m11 * m11);
inverseScaleX = (scaleX != 0) ? (inverseScaleX / scaleX) : 0;
inverseScaleY = (scaleY != 0) ? (inverseScaleY / scaleY) : 0;
}
setupDraw();
setupDrawNoTexture();
setupDrawAALine();
setupDrawColor(color);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelViewIdentity(true);
setupDrawColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderIdentityUniforms();
AAVertex rects[4];
AAVertex* aaVertices = &rects[0];
void* widthCoords = ((GLbyte*) aaVertices) + gVertexAAWidthOffset;
void* lengthCoords = ((GLbyte*) aaVertices) + gVertexAALengthOffset;
float boundarySizeX = .5 * inverseScaleX;
float boundarySizeY = .5 * inverseScaleY;
// Adjust the rect by the AA boundary padding
left -= boundarySizeX;
right += boundarySizeX;
top -= boundarySizeY;
bottom += boundarySizeY;
float width = right - left;
float height = bottom - top;
float boundaryWidthProportion = (width != 0) ? (2 * boundarySizeX) / width : 0;
float boundaryHeightProportion = (height != 0) ? (2 * boundarySizeY) / height : 0;
setupDrawAALine((void*) aaVertices, widthCoords, lengthCoords, boundaryWidthProportion);
int boundaryLengthSlot = mCaches.currentProgram->getUniform("boundaryLength");
int inverseBoundaryLengthSlot = mCaches.currentProgram->getUniform("inverseBoundaryLength");
glUniform1f(boundaryLengthSlot, boundaryHeightProportion);
glUniform1f(inverseBoundaryLengthSlot, (1 / boundaryHeightProportion));
if (!quickReject(left, top, right, bottom)) {
AAVertex::set(aaVertices++, left, bottom, 1, 1);
AAVertex::set(aaVertices++, left, top, 1, 0);
AAVertex::set(aaVertices++, right, bottom, 0, 1);
AAVertex::set(aaVertices++, right, top, 0, 0);
dirtyLayer(left, top, right, bottom, *mSnapshot->transform);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
}
}
/**
* We draw lines as quads (tristrips). Using GL_LINES can be difficult because the rasterization
* rules for those lines produces some unexpected results, and may vary between hardware devices.
* The basics of lines-as-quads is easy; we simply find the normal to the line and position the
* corners of the quads on either side of each line endpoint, separated by the strokeWidth
* of the line. Hairlines are more involved because we need to account for transform scaling
* to end up with a one-pixel-wide line in screen space..
* Anti-aliased lines add another factor to the approach. We use a specialized fragment shader
* in combination with values that we calculate and pass down in this method. The basic approach
* is that the quad we create contains both the core line area plus a bounding area in which
* the translucent/AA pixels are drawn. The values we calculate tell the shader what
* proportion of the width and the length of a given segment is represented by the boundary
* region. The quad ends up being exactly .5 pixel larger in all directions than the non-AA quad.
* The bounding region is actually 1 pixel wide on all sides (half pixel on the outside, half pixel
* on the inside). This ends up giving the result we want, with pixels that are completely
* 'inside' the line area being filled opaquely and the other pixels being filled according to
* how far into the boundary region they are, which is determined by shader interpolation.
*/
void OpenGLRenderer::drawLines(float* points, int count, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
const bool isAA = paint->isAntiAlias();
// We use half the stroke width here because we're going to position the quad
// corner vertices half of the width away from the line endpoints
float halfStrokeWidth = paint->getStrokeWidth() * 0.5f;
// A stroke width of 0 has a special meaning in Skia:
// it draws a line 1 px wide regardless of current transform
bool isHairLine = paint->getStrokeWidth() == 0.0f;
float inverseScaleX = 1.0f;
float inverseScaleY = 1.0f;
bool scaled = false;
int alpha;
SkXfermode::Mode mode;
int generatedVerticesCount = 0;
int verticesCount = count;
if (count > 4) {
// Polyline: account for extra vertices needed for continuous tri-strip
verticesCount += (count - 4);
}
if (isHairLine || isAA) {
// The quad that we use for AA and hairlines needs to account for scaling. For hairlines
// the line on the screen should always be one pixel wide regardless of scale. For
// AA lines, we only want one pixel of translucent boundary around the quad.
if (CC_UNLIKELY(!mSnapshot->transform->isPureTranslate())) {
Matrix4 *mat = mSnapshot->transform;
float m00 = mat->data[Matrix4::kScaleX];
float m01 = mat->data[Matrix4::kSkewY];
float m02 = mat->data[2];
float m10 = mat->data[Matrix4::kSkewX];
float m11 = mat->data[Matrix4::kScaleX];
float m12 = mat->data[6];
float scaleX = sqrtf(m00 * m00 + m01 * m01);
float scaleY = sqrtf(m10 * m10 + m11 * m11);
inverseScaleX = (scaleX != 0) ? (inverseScaleX / scaleX) : 0;
inverseScaleY = (scaleY != 0) ? (inverseScaleY / scaleY) : 0;
if (inverseScaleX != 1.0f || inverseScaleY != 1.0f) {
scaled = true;
}
}
}
getAlphaAndMode(paint, &alpha, &mode);
setupDraw();
setupDrawNoTexture();
if (isAA) {
setupDrawAALine();
}
setupDrawColor(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(isAA, mode);
setupDrawProgram();
setupDrawModelViewIdentity(true);
setupDrawColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderIdentityUniforms();
if (isHairLine) {
// Set a real stroke width to be used in quad construction
halfStrokeWidth = isAA? 1 : .5;
} else if (isAA && !scaled) {
// Expand boundary to enable AA calculations on the quad border
halfStrokeWidth += .5f;
}
Vertex lines[verticesCount];
Vertex* vertices = &lines[0];
AAVertex wLines[verticesCount];
AAVertex* aaVertices = &wLines[0];
if (CC_UNLIKELY(!isAA)) {
setupDrawVertices(vertices);
} else {
void* widthCoords = ((GLbyte*) aaVertices) + gVertexAAWidthOffset;
void* lengthCoords = ((GLbyte*) aaVertices) + gVertexAALengthOffset;
// innerProportion is the ratio of the inner (non-AA) part of the line to the total
// AA stroke width (the base stroke width expanded by a half pixel on either side).
// This value is used in the fragment shader to determine how to fill fragments.
// We will need to calculate the actual width proportion on each segment for
// scaled non-hairlines, since the boundary proportion may differ per-axis when scaled.
float boundaryWidthProportion = 1 / (2 * halfStrokeWidth);
setupDrawAALine((void*) aaVertices, widthCoords, lengthCoords, boundaryWidthProportion);
}
AAVertex* prevAAVertex = NULL;
Vertex* prevVertex = NULL;
int boundaryLengthSlot = -1;
int inverseBoundaryLengthSlot = -1;
int boundaryWidthSlot = -1;
int inverseBoundaryWidthSlot = -1;
for (int i = 0; i < count; i += 4) {
// a = start point, b = end point
vec2 a(points[i], points[i + 1]);
vec2 b(points[i + 2], points[i + 3]);
float length = 0;
float boundaryLengthProportion = 0;
float boundaryWidthProportion = 0;
// Find the normal to the line
vec2 n = (b - a).copyNormalized() * halfStrokeWidth;
if (isHairLine) {
if (isAA) {
float wideningFactor;
if (fabs(n.x) >= fabs(n.y)) {
wideningFactor = fabs(1.0f / n.x);
} else {
wideningFactor = fabs(1.0f / n.y);
}
n *= wideningFactor;
}
if (scaled) {
n.x *= inverseScaleX;
n.y *= inverseScaleY;
}
} else if (scaled) {
// Extend n by .5 pixel on each side, post-transform
vec2 extendedN = n.copyNormalized();
extendedN /= 2;
extendedN.x *= inverseScaleX;
extendedN.y *= inverseScaleY;
float extendedNLength = extendedN.length();
// We need to set this value on the shader prior to drawing
boundaryWidthProportion = extendedNLength / (halfStrokeWidth + extendedNLength);
n += extendedN;
}
float x = n.x;
n.x = -n.y;
n.y = x;
// aa lines expand the endpoint vertices to encompass the AA boundary
if (isAA) {
vec2 abVector = (b - a);
length = abVector.length();
abVector.normalize();
if (scaled) {
abVector.x *= inverseScaleX;
abVector.y *= inverseScaleY;
float abLength = abVector.length();
boundaryLengthProportion = abLength / (length + abLength);
} else {
boundaryLengthProportion = .5 / (length + 1);
}
abVector /= 2;
a -= abVector;
b += abVector;
}
// Four corners of the rectangle defining a thick line
vec2 p1 = a - n;
vec2 p2 = a + n;
vec2 p3 = b + n;
vec2 p4 = b - n;
const float left = fmin(p1.x, fmin(p2.x, fmin(p3.x, p4.x)));
const float right = fmax(p1.x, fmax(p2.x, fmax(p3.x, p4.x)));
const float top = fmin(p1.y, fmin(p2.y, fmin(p3.y, p4.y)));
const float bottom = fmax(p1.y, fmax(p2.y, fmax(p3.y, p4.y)));
if (!quickReject(left, top, right, bottom)) {
if (!isAA) {
if (prevVertex != NULL) {
// Issue two repeat vertices to create degenerate triangles to bridge
// between the previous line and the new one. This is necessary because
// we are creating a single triangle_strip which will contain
// potentially discontinuous line segments.
Vertex::set(vertices++, prevVertex->position[0], prevVertex->position[1]);
Vertex::set(vertices++, p1.x, p1.y);
generatedVerticesCount += 2;
}
Vertex::set(vertices++, p1.x, p1.y);
Vertex::set(vertices++, p2.x, p2.y);
Vertex::set(vertices++, p4.x, p4.y);
Vertex::set(vertices++, p3.x, p3.y);
prevVertex = vertices - 1;
generatedVerticesCount += 4;
} else {
if (!isHairLine && scaled) {
// Must set width proportions per-segment for scaled non-hairlines to use the
// correct AA boundary dimensions
if (boundaryWidthSlot < 0) {
boundaryWidthSlot =
mCaches.currentProgram->getUniform("boundaryWidth");
inverseBoundaryWidthSlot =
mCaches.currentProgram->getUniform("inverseBoundaryWidth");
}
glUniform1f(boundaryWidthSlot, boundaryWidthProportion);
glUniform1f(inverseBoundaryWidthSlot, (1 / boundaryWidthProportion));
}
if (boundaryLengthSlot < 0) {
boundaryLengthSlot = mCaches.currentProgram->getUniform("boundaryLength");
inverseBoundaryLengthSlot =
mCaches.currentProgram->getUniform("inverseBoundaryLength");
}
glUniform1f(boundaryLengthSlot, boundaryLengthProportion);
glUniform1f(inverseBoundaryLengthSlot, (1 / boundaryLengthProportion));
if (prevAAVertex != NULL) {
// Issue two repeat vertices to create degenerate triangles to bridge
// between the previous line and the new one. This is necessary because
// we are creating a single triangle_strip which will contain
// potentially discontinuous line segments.
AAVertex::set(aaVertices++,prevAAVertex->position[0],
prevAAVertex->position[1], prevAAVertex->width, prevAAVertex->length);
AAVertex::set(aaVertices++, p4.x, p4.y, 1, 1);
generatedVerticesCount += 2;
}
AAVertex::set(aaVertices++, p4.x, p4.y, 1, 1);
AAVertex::set(aaVertices++, p1.x, p1.y, 1, 0);
AAVertex::set(aaVertices++, p3.x, p3.y, 0, 1);
AAVertex::set(aaVertices++, p2.x, p2.y, 0, 0);
prevAAVertex = aaVertices - 1;
generatedVerticesCount += 4;
}
dirtyLayer(a.x == b.x ? left - 1 : left, a.y == b.y ? top - 1 : top,
a.x == b.x ? right: right, a.y == b.y ? bottom: bottom,
*mSnapshot->transform);
}
}
if (generatedVerticesCount > 0) {
glDrawArrays(GL_TRIANGLE_STRIP, 0, generatedVerticesCount);
}
}
void OpenGLRenderer::drawPoints(float* points, int count, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
// TODO: The paint's cap style defines whether the points are square or circular
// TODO: Handle AA for round points
// A stroke width of 0 has a special meaning in Skia:
// it draws an unscaled 1px point
float strokeWidth = paint->getStrokeWidth();
const bool isHairLine = paint->getStrokeWidth() == 0.0f;
if (isHairLine) {
// Now that we know it's hairline, we can set the effective width, to be used later
strokeWidth = 1.0f;
}
const float halfWidth = strokeWidth / 2;
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
int verticesCount = count >> 1;
int generatedVerticesCount = 0;
TextureVertex pointsData[verticesCount];
TextureVertex* vertex = &pointsData[0];
setupDraw();
setupDrawNoTexture();
setupDrawPoint(strokeWidth);
setupDrawColor(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(mode);
setupDrawProgram();
setupDrawModelViewIdentity(true);
setupDrawColorUniforms();
setupDrawColorFilterUniforms();
setupDrawPointUniforms();
setupDrawShaderIdentityUniforms();
setupDrawMesh(vertex);
for (int i = 0; i < count; i += 2) {
TextureVertex::set(vertex++, points[i], points[i + 1], 0.0f, 0.0f);
generatedVerticesCount++;
float left = points[i] - halfWidth;
float right = points[i] + halfWidth;
float top = points[i + 1] - halfWidth;
float bottom = points [i + 1] + halfWidth;
dirtyLayer(left, top, right, bottom, *mSnapshot->transform);
}
glDrawArrays(GL_POINTS, 0, generatedVerticesCount);
}
void OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) {
// No need to check against the clip, we fill the clip region
if (mSnapshot->isIgnored()) return;
Rect& clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
drawColorRect(clip.left, clip.top, clip.right, clip.bottom, color, mode, true);
}
void OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture, SkPaint* paint) {
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float x = left + texture->left - texture->offset;
const float y = top + texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
}
void OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom,
float rx, float ry, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.roundRectShapeCache.getRoundRect(
right - left, bottom - top, rx, ry, paint);
drawShape(left, top, texture, paint);
}
void OpenGLRenderer::drawCircle(float x, float y, float radius, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.circleShapeCache.getCircle(radius, paint);
drawShape(x - radius, y - radius, texture, paint);
}
void OpenGLRenderer::drawOval(float left, float top, float right, float bottom, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.ovalShapeCache.getOval(right - left, bottom - top, paint);
drawShape(left, top, texture, paint);
}
void OpenGLRenderer::drawArc(float left, float top, float right, float bottom,
float startAngle, float sweepAngle, bool useCenter, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
if (fabs(sweepAngle) >= 360.0f) {
drawOval(left, top, right, bottom, paint);
return;
}
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.arcShapeCache.getArc(right - left, bottom - top,
startAngle, sweepAngle, useCenter, paint);
drawShape(left, top, texture, paint);
}
void OpenGLRenderer::drawRectAsShape(float left, float top, float right, float bottom,
SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.rectShapeCache.getRect(right - left, bottom - top, paint);
drawShape(left, top, texture, paint);
}
void OpenGLRenderer::drawRect(float left, float top, float right, float bottom, SkPaint* p) {
if (p->getStyle() != SkPaint::kFill_Style) {
drawRectAsShape(left, top, right, bottom, p);
return;
}
if (quickReject(left, top, right, bottom)) {
return;
}
SkXfermode::Mode mode;
if (!mCaches.extensions.hasFramebufferFetch()) {
const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode);
if (!isMode) {
// Assume SRC_OVER
mode = SkXfermode::kSrcOver_Mode;
}
} else {
mode = getXfermode(p->getXfermode());
}
int color = p->getColor();
if (p->isAntiAlias() && !mSnapshot->transform->isSimple()) {
drawAARect(left, top, right, bottom, color, mode);
} else {
drawColorRect(left, top, right, bottom, color, mode);
}
}
void OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count,
const float* positions, SkPaint* paint) {
if (text == NULL || count == 0 || mSnapshot->isIgnored() ||
(paint->getAlpha() == 0 && paint->getXfermode() == NULL)) {
return;
}
// NOTE: Skia does not support perspective transform on drawPosText yet
if (!mSnapshot->transform->isSimple()) {
return;
}
float x = 0.0f;
float y = 0.0f;
const bool pureTranslate = mSnapshot->transform->isPureTranslate();
if (pureTranslate) {
x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f);
}
FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint);
fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()),
paint->getTextSize());
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
// Pick the appropriate texture filtering
bool linearFilter = mSnapshot->transform->changesBounds();
if (pureTranslate && !linearFilter) {
linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f;
}
mCaches.activeTexture(0);
setupDraw();
setupDrawDirtyRegionsDisabled();
setupDrawWithTexture(true);
setupDrawAlpha8Color(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x, y, pureTranslate, true);
setupDrawTexture(fontRenderer.getTexture(linearFilter));
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms(pureTranslate);
const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip();
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
#if RENDER_LAYERS_AS_REGIONS
const bool hasActiveLayer = hasLayer();
#else
const bool hasActiveLayer = false;
#endif
if (fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &bounds : NULL)) {
#if RENDER_LAYERS_AS_REGIONS
if (hasActiveLayer) {
if (!pureTranslate) {
mSnapshot->transform->mapRect(bounds);
}
dirtyLayerUnchecked(bounds, getRegion());
}
#endif
}
}
void OpenGLRenderer::drawText(const char* text, int bytesCount, int count,
float x, float y, SkPaint* paint, float length) {
if (text == NULL || count == 0 || mSnapshot->isIgnored() ||
(paint->getAlpha() == 0 && paint->getXfermode() == NULL)) {
return;
}
switch (paint->getTextAlign()) {
case SkPaint::kCenter_Align:
if (length < 0.0f) length = paint->measureText(text, bytesCount);
x -= length / 2.0f;
break;
case SkPaint::kRight_Align:
if (length < 0.0f) length = paint->measureText(text, bytesCount);
x -= length;
break;
default:
break;
}
SkPaint::FontMetrics metrics;
paint->getFontMetrics(&metrics, 0.0f);
// If no length was specified, just perform the hit test on the Y axis
if (quickReject(x, y + metrics.fTop, x + length, y + metrics.fBottom)) {
return;
}
const float oldX = x;
const float oldY = y;
const bool pureTranslate = mSnapshot->transform->isPureTranslate();
if (CC_LIKELY(pureTranslate)) {
x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f);
}
#if DEBUG_GLYPHS
ALOGD("OpenGLRenderer drawText() with FontID=%d", SkTypeface::UniqueID(paint->getTypeface()));
#endif
FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint);
fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()),
paint->getTextSize());
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
if (CC_UNLIKELY(mHasShadow)) {
mCaches.activeTexture(0);
mCaches.dropShadowCache.setFontRenderer(fontRenderer);
const ShadowTexture* shadow = mCaches.dropShadowCache.get(
paint, text, bytesCount, count, mShadowRadius);
const AutoTexture autoCleanup(shadow);
const float sx = oldX - shadow->left + mShadowDx;
const float sy = oldY - shadow->top + mShadowDy;
const int shadowAlpha = ((mShadowColor >> 24) & 0xFF);
int shadowColor = mShadowColor;
if (mShader) {
shadowColor = 0xffffffff;
}
setupDraw();
setupDrawWithTexture(true);
setupDrawAlpha8Color(shadowColor, shadowAlpha < 255 ? shadowAlpha : alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(sx, sy, sx + shadow->width, sy + shadow->height);
setupDrawTexture(shadow->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
// Pick the appropriate texture filtering
bool linearFilter = mSnapshot->transform->changesBounds();
if (pureTranslate && !linearFilter) {
linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f;
}
mCaches.activeTexture(0);
setupDraw();
setupDrawDirtyRegionsDisabled();
setupDrawWithTexture(true);
setupDrawAlpha8Color(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x, y, pureTranslate, true);
setupDrawTexture(fontRenderer.getTexture(linearFilter));
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms(pureTranslate);
const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip();
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
#if RENDER_LAYERS_AS_REGIONS
const bool hasActiveLayer = hasLayer();
#else
const bool hasActiveLayer = false;
#endif
if (fontRenderer.renderText(paint, clip, text, 0, bytesCount, count, x, y,
hasActiveLayer ? &bounds : NULL)) {
#if RENDER_LAYERS_AS_REGIONS
if (hasActiveLayer) {
if (!pureTranslate) {
mSnapshot->transform->mapRect(bounds);
}
dirtyLayerUnchecked(bounds, getRegion());
}
#endif
}
drawTextDecorations(text, bytesCount, length, oldX, oldY, paint);
}
void OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count, SkPath* path,
float hOffset, float vOffset, SkPaint* paint) {
if (text == NULL || count == 0 || mSnapshot->isIgnored() ||
(paint->getAlpha() == 0 && paint->getXfermode() == NULL)) {
return;
}
float x = 0.0f;
float y = 0.0f;
const bool pureTranslate = mSnapshot->transform->isPureTranslate();
if (CC_LIKELY(pureTranslate)) {
x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f);
}
FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint);
fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()),
paint->getTextSize());
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
mCaches.activeTexture(0);
setupDraw();
setupDrawDirtyRegionsDisabled();
setupDrawWithTexture(true);
setupDrawAlpha8Color(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x, y, pureTranslate, true);
setupDrawTexture(fontRenderer.getTexture(true));
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms(pureTranslate);
// mat4 pathTransform;
// pathTransform.loadTranslate(hOffset, vOffset, 0.0f);
//
// float offset = 0.0f;
// SkPathMeasure pathMeasure(*path, false);
//
// if (paint->getTextAlign() != SkPaint::kLeft_Align) {
// SkScalar pathLength = pathMeasure.getLength();
// if (paint->getTextAlign() == SkPaint::kCenter_Align) {
// pathLength = SkScalarHalf(pathLength);
// }
// offset += SkScalarToFloat(pathLength);
// }
// SkScalar x;
// SkPath tmp;
// SkMatrix m(scaledMatrix);
//
// m.postTranslate(xpos + hOffset, 0);
// if (matrix) {
// m.postConcat(*matrix);
// }
// morphpath(&tmp, *iterPath, meas, m);
// if (fDevice) {
// fDevice->drawPath(*this, tmp, iter.getPaint(), NULL, true);
// } else {
// this->drawPath(tmp, iter.getPaint(), NULL, true);
// }
// }
}
void OpenGLRenderer::drawPath(SkPath* path, SkPaint* paint) {
if (mSnapshot->isIgnored()) return;
mCaches.activeTexture(0);
// TODO: Perform early clip test before we rasterize the path
const PathTexture* texture = mCaches.pathCache.get(path, paint);
if (!texture) return;
const AutoTexture autoCleanup(texture);
const float x = texture->left - texture->offset;
const float y = texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
}
void OpenGLRenderer::drawLayer(Layer* layer, float x, float y, SkPaint* paint) {
if (!layer || quickReject(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight())) {
return;
}
mCaches.activeTexture(0);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
layer->setAlpha(alpha, mode);
#if RENDER_LAYERS_AS_REGIONS
if (CC_LIKELY(!layer->region.isEmpty())) {
if (layer->region.isRect()) {
composeLayerRect(layer, layer->regionRect);
} else if (layer->mesh) {
const float a = alpha / 255.0f;
const Rect& rect = layer->layer;
setupDraw();
setupDrawWithTexture();
setupDrawColor(a, a, a, a);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || a < 1.0f, layer->getMode(), false);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawTexture(layer->getTexture());
if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) {
x = (int) floorf(x + mSnapshot->transform->getTranslateX() + 0.5f);
y = (int) floorf(y + mSnapshot->transform->getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelViewTranslate(x, y,
x + layer->layer.getWidth(), y + layer->layer.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelViewTranslate(x, y,
x + layer->layer.getWidth(), y + layer->layer.getHeight());
}
setupDrawMesh(&layer->mesh[0].position[0], &layer->mesh[0].texture[0]);
glDrawElements(GL_TRIANGLES, layer->meshElementCount,
GL_UNSIGNED_SHORT, layer->meshIndices);
finishDrawTexture();
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRects(layer->region);
#endif
}
}
#else
const Rect r(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight());
composeLayerRect(layer, r);
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Shaders
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetShader() {
mShader = NULL;
}
void OpenGLRenderer::setupShader(SkiaShader* shader) {
mShader = shader;
if (mShader) {
mShader->set(&mCaches.textureCache, &mCaches.gradientCache);
}
}
///////////////////////////////////////////////////////////////////////////////
// Color filters
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetColorFilter() {
mColorFilter = NULL;
}
void OpenGLRenderer::setupColorFilter(SkiaColorFilter* filter) {
mColorFilter = filter;
}
///////////////////////////////////////////////////////////////////////////////
// Drop shadow
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetShadow() {
mHasShadow = false;
}
void OpenGLRenderer::setupShadow(float radius, float dx, float dy, int color) {
mHasShadow = true;
mShadowRadius = radius;
mShadowDx = dx;
mShadowDy = dy;
mShadowColor = color;
}
///////////////////////////////////////////////////////////////////////////////
// Draw filters
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetPaintFilter() {
mHasDrawFilter = false;
}
void OpenGLRenderer::setupPaintFilter(int clearBits, int setBits) {
mHasDrawFilter = true;
mPaintFilterClearBits = clearBits & SkPaint::kAllFlags;
mPaintFilterSetBits = setBits & SkPaint::kAllFlags;
}
SkPaint* OpenGLRenderer::filterPaint(SkPaint* paint) {
if (!mHasDrawFilter || !paint) return paint;
uint32_t flags = paint->getFlags();
mFilteredPaint = *paint;
mFilteredPaint.setFlags((flags & ~mPaintFilterClearBits) | mPaintFilterSetBits);
return &mFilteredPaint;
}
///////////////////////////////////////////////////////////////////////////////
// Drawing implementation
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::drawPathTexture(const PathTexture* texture,
float x, float y, SkPaint* paint) {
if (quickReject(x, y, x + texture->width, y + texture->height)) {
return;
}
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
setupDraw();
setupDrawWithTexture(true);
setupDrawAlpha8Color(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x + texture->width, y + texture->height);
setupDrawTexture(texture->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
finishDrawTexture();
}
// Same values used by Skia
#define kStdStrikeThru_Offset (-6.0f / 21.0f)
#define kStdUnderline_Offset (1.0f / 9.0f)
#define kStdUnderline_Thickness (1.0f / 18.0f)
void OpenGLRenderer::drawTextDecorations(const char* text, int bytesCount, float length,
float x, float y, SkPaint* paint) {
// Handle underline and strike-through
uint32_t flags = paint->getFlags();
if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) {
SkPaint paintCopy(*paint);
float underlineWidth = length;
// If length is > 0.0f, we already measured the text for the text alignment
if (length <= 0.0f) {
underlineWidth = paintCopy.measureText(text, bytesCount);
}
float offsetX = 0;
switch (paintCopy.getTextAlign()) {
case SkPaint::kCenter_Align:
offsetX = underlineWidth * 0.5f;
break;
case SkPaint::kRight_Align:
offsetX = underlineWidth;
break;
default:
break;
}
if (CC_LIKELY(underlineWidth > 0.0f)) {
const float textSize = paintCopy.getTextSize();
const float strokeWidth = fmax(textSize * kStdUnderline_Thickness, 1.0f);
const float left = x - offsetX;
float top = 0.0f;
int linesCount = 0;
if (flags & SkPaint::kUnderlineText_Flag) linesCount++;
if (flags & SkPaint::kStrikeThruText_Flag) linesCount++;
const int pointsCount = 4 * linesCount;
float points[pointsCount];
int currentPoint = 0;
if (flags & SkPaint::kUnderlineText_Flag) {
top = y + textSize * kStdUnderline_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
if (flags & SkPaint::kStrikeThruText_Flag) {
top = y + textSize * kStdStrikeThru_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
paintCopy.setStrokeWidth(strokeWidth);
drawLines(&points[0], pointsCount, &paintCopy);
}
}
}
void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom,
int color, SkXfermode::Mode mode, bool ignoreTransform) {
// If a shader is set, preserve only the alpha
if (mShader) {
color |= 0x00ffffff;
}
setupDraw();
setupDrawNoTexture();
setupDrawColor(color);
setupDrawShader();
setupDrawColorFilter();
setupDrawBlending(mode);
setupDrawProgram();
setupDrawModelView(left, top, right, bottom, ignoreTransform);
setupDrawColorUniforms();
setupDrawShaderUniforms(ignoreTransform);
setupDrawColorFilterUniforms();
setupDrawSimpleMesh();
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom,
Texture* texture, SkPaint* paint) {
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
if (CC_LIKELY(mSnapshot->transform->isPureTranslate())) {
const float x = (int) floorf(left + mSnapshot->transform->getTranslateX() + 0.5f);
const float y = (int) floorf(top + mSnapshot->transform->getTranslateY() + 0.5f);
texture->setFilter(GL_NEAREST, true);
drawTextureMesh(x, y, x + texture->width, y + texture->height, texture->id,
alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL,
(GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount, false, true);
} else {
texture->setFilter(FILTER(paint), true);
drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode,
texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset,
GL_TRIANGLE_STRIP, gMeshCount);
}
}
void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom,
GLuint texture, float alpha, SkXfermode::Mode mode, bool blend) {
drawTextureMesh(left, top, right, bottom, texture, alpha, mode, blend,
(GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount);
}
void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom,
GLuint texture, float alpha, SkXfermode::Mode mode, bool blend,
GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount,
bool swapSrcDst, bool ignoreTransform, GLuint vbo, bool ignoreScale, bool dirty) {
setupDraw();
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(blend, mode, swapSrcDst);
setupDrawProgram();
if (!dirty) {
setupDrawDirtyRegionsDisabled();
}
if (!ignoreScale) {
setupDrawModelView(left, top, right, bottom, ignoreTransform);
} else {
setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform);
}
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawTexture(texture);
setupDrawMesh(vertices, texCoords, vbo);
glDrawArrays(drawMode, 0, elementsCount);
finishDrawTexture();
}
void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode,
ProgramDescription& description, bool swapSrcDst) {
blend = blend || mode != SkXfermode::kSrcOver_Mode;
if (blend) {
// These blend modes are not supported by OpenGL directly and have
// to be implemented using shaders. Since the shader will perform
// the blending, turn blending off here
// If the blend mode cannot be implemented using shaders, fall
// back to the default SrcOver blend mode instead
if CC_UNLIKELY((mode > SkXfermode::kScreen_Mode)) {
if (CC_UNLIKELY(mCaches.extensions.hasFramebufferFetch())) {
description.framebufferMode = mode;
description.swapSrcDst = swapSrcDst;
if (mCaches.blend) {
glDisable(GL_BLEND);
mCaches.blend = false;
}
return;
} else {
mode = SkXfermode::kSrcOver_Mode;
}
}
if (!mCaches.blend) {
glEnable(GL_BLEND);
}
GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src;
GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst;
if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) {
glBlendFunc(sourceMode, destMode);
mCaches.lastSrcMode = sourceMode;
mCaches.lastDstMode = destMode;
}
} else if (mCaches.blend) {
glDisable(GL_BLEND);
}
mCaches.blend = blend;
}
bool OpenGLRenderer::useProgram(Program* program) {
if (!program->isInUse()) {
if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove();
program->use();
mCaches.currentProgram = program;
return false;
}
return true;
}
void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) {
TextureVertex* v = &mMeshVertices[0];
TextureVertex::setUV(v++, u1, v1);
TextureVertex::setUV(v++, u2, v1);
TextureVertex::setUV(v++, u1, v2);
TextureVertex::setUV(v++, u2, v2);
}
void OpenGLRenderer::getAlphaAndMode(SkPaint* paint, int* alpha, SkXfermode::Mode* mode) {
if (paint) {
*mode = getXfermode(paint->getXfermode());
// Skia draws using the color's alpha channel if < 255
// Otherwise, it uses the paint's alpha
int color = paint->getColor();
*alpha = (color >> 24) & 0xFF;
if (*alpha == 255) {
*alpha = paint->getAlpha();
}
} else {
*mode = SkXfermode::kSrcOver_Mode;
*alpha = 255;
}
}
SkXfermode::Mode OpenGLRenderer::getXfermode(SkXfermode* mode) {
SkXfermode::Mode resultMode;
if (!SkXfermode::AsMode(mode, &resultMode)) {
resultMode = SkXfermode::kSrcOver_Mode;
}
return resultMode;
}
}; // namespace uirenderer
}; // namespace android