blob: e59064294c5ea0fed026b5e8446cea5217e56a3e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "DrawProfiler.h"
#include <cutils/compiler.h>
#include "OpenGLRenderer.h"
#include "Properties.h"
#define DEFAULT_MAX_FRAMES 128
#define RETURN_IF_PROFILING_DISABLED() if (CC_LIKELY(mType == kNone)) return
#define RETURN_IF_DISABLED() if (CC_LIKELY(mType == kNone && !mShowDirtyRegions)) return
#define NANOS_TO_MILLIS_FLOAT(nanos) ((nanos) * 0.000001f)
#define PROFILE_DRAW_WIDTH 3
#define PROFILE_DRAW_THRESHOLD_STROKE_WIDTH 2
#define PROFILE_DRAW_DP_PER_MS 7
// Number of floats we want to display from FrameTimingData
// If this is changed make sure to update the indexes below
#define NUM_ELEMENTS 4
#define RECORD_INDEX 0
#define PREPARE_INDEX 1
#define PLAYBACK_INDEX 2
#define SWAPBUFFERS_INDEX 3
// Must be NUM_ELEMENTS in size
static const SkColor ELEMENT_COLORS[] = { 0xcf3e66cc, 0xcf8f00ff, 0xcfdc3912, 0xcfe69800 };
static const SkColor CURRENT_FRAME_COLOR = 0xcf5faa4d;
static const SkColor THRESHOLD_COLOR = 0xff5faa4d;
// We could get this from TimeLord and use the actual frame interval, but
// this is good enough
#define FRAME_THRESHOLD 16
namespace android {
namespace uirenderer {
static int dpToPx(int dp, float density) {
return (int) (dp * density + 0.5f);
}
DrawProfiler::DrawProfiler()
: mType(kNone)
, mDensity(0)
, mData(NULL)
, mDataSize(0)
, mCurrentFrame(-1)
, mPreviousTime(0)
, mVerticalUnit(0)
, mHorizontalUnit(0)
, mThresholdStroke(0)
, mShowDirtyRegions(false)
, mFlashToggle(false) {
setDensity(1);
}
DrawProfiler::~DrawProfiler() {
destroyData();
}
void DrawProfiler::setDensity(float density) {
if (CC_UNLIKELY(mDensity != density)) {
mDensity = density;
mVerticalUnit = dpToPx(PROFILE_DRAW_DP_PER_MS, density);
mHorizontalUnit = dpToPx(PROFILE_DRAW_WIDTH, density);
mThresholdStroke = dpToPx(PROFILE_DRAW_THRESHOLD_STROKE_WIDTH, density);
}
}
void DrawProfiler::startFrame(nsecs_t recordDurationNanos) {
RETURN_IF_PROFILING_DISABLED();
mData[mCurrentFrame].record = NANOS_TO_MILLIS_FLOAT(recordDurationNanos);
mPreviousTime = systemTime(CLOCK_MONOTONIC);
}
void DrawProfiler::markPlaybackStart() {
RETURN_IF_PROFILING_DISABLED();
nsecs_t now = systemTime(CLOCK_MONOTONIC);
mData[mCurrentFrame].prepare = NANOS_TO_MILLIS_FLOAT(now - mPreviousTime);
mPreviousTime = now;
}
void DrawProfiler::markPlaybackEnd() {
RETURN_IF_PROFILING_DISABLED();
nsecs_t now = systemTime(CLOCK_MONOTONIC);
mData[mCurrentFrame].playback = NANOS_TO_MILLIS_FLOAT(now - mPreviousTime);
mPreviousTime = now;
}
void DrawProfiler::finishFrame() {
RETURN_IF_PROFILING_DISABLED();
nsecs_t now = systemTime(CLOCK_MONOTONIC);
mData[mCurrentFrame].swapBuffers = NANOS_TO_MILLIS_FLOAT(now - mPreviousTime);
mPreviousTime = now;
mCurrentFrame = (mCurrentFrame + 1) % mDataSize;
}
void DrawProfiler::unionDirty(SkRect* dirty) {
RETURN_IF_DISABLED();
// Not worth worrying about minimizing the dirty region for debugging, so just
// dirty the entire viewport.
if (dirty) {
mDirtyRegion = *dirty;
dirty->setEmpty();
}
}
void DrawProfiler::draw(OpenGLRenderer* canvas) {
RETURN_IF_DISABLED();
if (mShowDirtyRegions) {
mFlashToggle = !mFlashToggle;
if (mFlashToggle) {
SkPaint paint;
paint.setColor(0x7fff0000);
canvas->drawRect(mDirtyRegion.fLeft, mDirtyRegion.fTop,
mDirtyRegion.fRight, mDirtyRegion.fBottom, &paint);
}
}
if (mType == kBars) {
prepareShapes(canvas->getViewportHeight());
drawGraph(canvas);
drawCurrentFrame(canvas);
drawThreshold(canvas);
}
}
void DrawProfiler::createData() {
if (mData) return;
mDataSize = property_get_int32(PROPERTY_PROFILE_MAXFRAMES, DEFAULT_MAX_FRAMES);
if (mDataSize <= 0) mDataSize = 1;
if (mDataSize > 4096) mDataSize = 4096; // Reasonable maximum
mData = (FrameTimingData*) calloc(mDataSize, sizeof(FrameTimingData));
mRects = new float*[NUM_ELEMENTS];
for (int i = 0; i < NUM_ELEMENTS; i++) {
// 4 floats per rect
mRects[i] = (float*) calloc(mDataSize, 4 * sizeof(float));
}
mCurrentFrame = 0;
}
void DrawProfiler::destroyData() {
delete mData;
mData = NULL;
}
void DrawProfiler::addRect(Rect& r, float data, float* shapeOutput) {
r.top = r.bottom - (data * mVerticalUnit);
shapeOutput[0] = r.left;
shapeOutput[1] = r.top;
shapeOutput[2] = r.right;
shapeOutput[3] = r.bottom;
r.bottom = r.top;
}
void DrawProfiler::prepareShapes(const int baseline) {
Rect r;
r.right = mHorizontalUnit;
for (int i = 0; i < mDataSize; i++) {
const int shapeIndex = i * 4;
r.bottom = baseline;
addRect(r, mData[i].record, mRects[RECORD_INDEX] + shapeIndex);
addRect(r, mData[i].prepare, mRects[PREPARE_INDEX] + shapeIndex);
addRect(r, mData[i].playback, mRects[PLAYBACK_INDEX] + shapeIndex);
addRect(r, mData[i].swapBuffers, mRects[SWAPBUFFERS_INDEX] + shapeIndex);
r.translate(mHorizontalUnit, 0);
}
}
void DrawProfiler::drawGraph(OpenGLRenderer* canvas) {
SkPaint paint;
for (int i = 0; i < NUM_ELEMENTS; i++) {
paint.setColor(ELEMENT_COLORS[i]);
canvas->drawRects(mRects[i], mDataSize * 4, &paint);
}
}
void DrawProfiler::drawCurrentFrame(OpenGLRenderer* canvas) {
// This draws a solid rect over the entirety of the current frame's shape
// To do so we use the bottom of mRects[0] and the top of mRects[NUM_ELEMENTS-1]
// which will therefore fully overlap the previously drawn rects
SkPaint paint;
paint.setColor(CURRENT_FRAME_COLOR);
const int i = mCurrentFrame * 4;
canvas->drawRect(mRects[0][i], mRects[NUM_ELEMENTS-1][i+1], mRects[0][i+2],
mRects[0][i+3], &paint);
}
void DrawProfiler::drawThreshold(OpenGLRenderer* canvas) {
SkPaint paint;
paint.setColor(THRESHOLD_COLOR);
paint.setStrokeWidth(mThresholdStroke);
float pts[4];
pts[0] = 0.0f;
pts[1] = pts[3] = canvas->getViewportHeight() - (FRAME_THRESHOLD * mVerticalUnit);
pts[2] = canvas->getViewportWidth();
canvas->drawLines(pts, 4, &paint);
}
DrawProfiler::ProfileType DrawProfiler::loadRequestedProfileType() {
ProfileType type = kNone;
char buf[PROPERTY_VALUE_MAX] = {'\0',};
if (property_get(PROPERTY_PROFILE, buf, "") > 0) {
if (!strcmp(buf, PROPERTY_PROFILE_VISUALIZE_BARS)) {
type = kBars;
} else if (!strcmp(buf, "true")) {
type = kConsole;
}
}
return type;
}
bool DrawProfiler::loadSystemProperties() {
bool changed = false;
ProfileType newType = loadRequestedProfileType();
if (newType != mType) {
mType = newType;
if (mType == kNone) {
destroyData();
} else {
createData();
}
changed = true;
}
bool showDirty = property_get_bool(PROPERTY_DEBUG_SHOW_DIRTY_REGIONS, false);
if (showDirty != mShowDirtyRegions) {
mShowDirtyRegions = showDirty;
changed = true;
}
return changed;
}
void DrawProfiler::dumpData(int fd) {
RETURN_IF_PROFILING_DISABLED();
// This method logs the last N frames (where N is <= mDataSize) since the
// last call to dumpData(). In other words if there's a dumpData(), draw frame,
// dumpData(), the last dumpData() should only log 1 frame.
const FrameTimingData emptyData = {0, 0, 0, 0};
FILE *file = fdopen(fd, "a");
fprintf(file, "\n\tDraw\tPrepare\tProcess\tExecute\n");
for (int frameOffset = 1; frameOffset <= mDataSize; frameOffset++) {
int i = (mCurrentFrame + frameOffset) % mDataSize;
if (!memcmp(mData + i, &emptyData, sizeof(FrameTimingData))) {
continue;
}
fprintf(file, "\t%3.2f\t%3.2f\t%3.2f\t%3.2f\n",
mData[i].record, mData[i].prepare, mData[i].playback, mData[i].swapBuffers);
}
// reset the buffer
memset(mData, 0, sizeof(FrameTimingData) * mDataSize);
mCurrentFrame = 0;
fflush(file);
}
} /* namespace uirenderer */
} /* namespace android */