blob: 429913f6c82d542e76154b78c420b086a2722f91 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_HWUI_OP_REORDERER_H
#define ANDROID_HWUI_OP_REORDERER_H
#include "BakedOpState.h"
#include "CanvasState.h"
#include "DisplayList.h"
#include "RecordedOp.h"
#include <vector>
#include <unordered_map>
struct SkRect;
namespace android {
namespace uirenderer {
class BakedOpState;
class BatchBase;
class LayerUpdateQueue;
class MergingOpBatch;
class OffscreenBuffer;
class OpBatch;
class Rect;
typedef int batchid_t;
typedef const void* mergeid_t;
namespace OpBatchType {
enum {
Bitmap,
MergedPatch,
AlphaVertices,
Vertices,
AlphaMaskTexture,
Text,
ColorText,
Shadow,
TextureLayer,
Functor,
Count // must be last
};
}
class OpReorderer : public CanvasStateClient {
typedef void (*BakedOpReceiver)(void*, const BakedOpState&);
typedef void (*MergedOpReceiver)(void*, const MergedBakedOpList& opList);
/**
* Stores the deferred render operations and state used to compute ordering
* for a single FBO/layer.
*/
class LayerReorderer {
public:
// Create LayerReorderer for Fbo0
LayerReorderer(uint32_t width, uint32_t height, const Rect& repaintRect)
: LayerReorderer(width, height, repaintRect, nullptr, nullptr) {};
// Create LayerReorderer for an offscreen layer, where beginLayerOp is present for a
// saveLayer, renderNode is present for a HW layer.
LayerReorderer(uint32_t width, uint32_t height,
const Rect& repaintRect, const BeginLayerOp* beginLayerOp, RenderNode* renderNode);
// iterate back toward target to see if anything drawn since should overlap the new op
// if no target, merging ops still iterate to find similar batch to insert after
void locateInsertIndex(int batchId, const Rect& clippedBounds,
BatchBase** targetBatch, size_t* insertBatchIndex) const;
void deferUnmergeableOp(LinearAllocator& allocator, BakedOpState* op, batchid_t batchId);
// insertion point of a new batch, will hopefully be immediately after similar batch
// (generally, should be similar shader)
void deferMergeableOp(LinearAllocator& allocator,
BakedOpState* op, batchid_t batchId, mergeid_t mergeId);
void replayBakedOpsImpl(void* arg, BakedOpReceiver* receivers, MergedOpReceiver*) const;
bool empty() const {
return mBatches.empty();
}
void clear() {
mBatches.clear();
}
void dump() const;
const uint32_t width;
const uint32_t height;
const Rect repaintRect;
OffscreenBuffer* offscreenBuffer;
const BeginLayerOp* beginLayerOp;
const RenderNode* renderNode;
private:
std::vector<BatchBase*> mBatches;
/**
* Maps the mergeid_t returned by an op's getMergeId() to the most recently seen
* MergingDrawBatch of that id. These ids are unique per draw type and guaranteed to not
* collide, which avoids the need to resolve mergeid collisions.
*/
std::unordered_map<mergeid_t, MergingOpBatch*> mMergingBatchLookup[OpBatchType::Count];
// Maps batch ids to the most recent *non-merging* batch of that id
OpBatch* mBatchLookup[OpBatchType::Count] = { nullptr };
};
public:
OpReorderer(const LayerUpdateQueue& layers, const SkRect& clip,
uint32_t viewportWidth, uint32_t viewportHeight,
const std::vector< sp<RenderNode> >& nodes, const Vector3& lightCenter);
virtual ~OpReorderer() {}
/**
* replayBakedOps() is templated based on what class will receive ops being replayed.
*
* It constructs a lookup array of lambdas, which allows a recorded BakeOpState to use
* state->op->opId to lookup a receiver that will be called when the op is replayed.
*
*/
template <typename StaticDispatcher, typename Renderer>
void replayBakedOps(Renderer& renderer) {
/**
* Defines a LUT of lambdas which allow a recorded BakedOpState to use state->op->opId to
* dispatch the op via a method on a static dispatcher when the op is replayed.
*
* For example a BitmapOp would resolve, via the lambda lookup, to calling:
*
* StaticDispatcher::onBitmapOp(Renderer& renderer, const BitmapOp& op, const BakedOpState& state);
*/
#define X(Type) \
[](void* renderer, const BakedOpState& state) { \
StaticDispatcher::on##Type(*(static_cast<Renderer*>(renderer)), static_cast<const Type&>(*(state.op)), state); \
},
static BakedOpReceiver unmergedReceivers[] = BUILD_RENDERABLE_OP_LUT(X);
#undef X
/**
* Defines a LUT of lambdas which allow merged arrays of BakedOpState* to be passed to a
* static dispatcher when the group of merged ops is replayed.
*/
#define X(Type) \
[](void* renderer, const MergedBakedOpList& opList) { \
StaticDispatcher::onMerged##Type##s(*(static_cast<Renderer*>(renderer)), opList); \
},
static MergedOpReceiver mergedReceivers[] = BUILD_MERGEABLE_OP_LUT(X);
#undef X
// Relay through layers in reverse order, since layers
// later in the list will be drawn by earlier ones
for (int i = mLayerReorderers.size() - 1; i >= 1; i--) {
LayerReorderer& layer = mLayerReorderers[i];
if (layer.renderNode) {
// cached HW layer - can't skip layer if empty
renderer.startRepaintLayer(layer.offscreenBuffer, layer.repaintRect);
layer.replayBakedOpsImpl((void*)&renderer, unmergedReceivers, mergedReceivers);
renderer.endLayer();
} else if (!layer.empty()) { // save layer - skip entire layer if empty
layer.offscreenBuffer = renderer.startTemporaryLayer(layer.width, layer.height);
layer.replayBakedOpsImpl((void*)&renderer, unmergedReceivers, mergedReceivers);
renderer.endLayer();
}
}
const LayerReorderer& fbo0 = mLayerReorderers[0];
renderer.startFrame(fbo0.width, fbo0.height, fbo0.repaintRect);
fbo0.replayBakedOpsImpl((void*)&renderer, unmergedReceivers, mergedReceivers);
renderer.endFrame(fbo0.repaintRect);
}
void dump() const {
for (auto&& layer : mLayerReorderers) {
layer.dump();
}
}
///////////////////////////////////////////////////////////////////
/// CanvasStateClient interface
///////////////////////////////////////////////////////////////////
virtual void onViewportInitialized() override;
virtual void onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) override;
virtual GLuint getTargetFbo() const override { return 0; }
private:
enum class ChildrenSelectMode {
Negative,
Positive
};
void saveForLayer(uint32_t layerWidth, uint32_t layerHeight,
float contentTranslateX, float contentTranslateY,
const Rect& repaintRect,
const Vector3& lightCenter,
const BeginLayerOp* beginLayerOp, RenderNode* renderNode);
void restoreForLayer();
LayerReorderer& currentLayer() { return mLayerReorderers[mLayerStack.back()]; }
BakedOpState* tryBakeOpState(const RecordedOp& recordedOp) {
return BakedOpState::tryConstruct(mAllocator, *mCanvasState.writableSnapshot(), recordedOp);
}
// should always be surrounded by a save/restore pair, and not called if DisplayList is null
void deferNodePropsAndOps(RenderNode& node);
template <typename V>
void defer3dChildren(ChildrenSelectMode mode, const V& zTranslatedNodes);
void deferShadow(const RenderNodeOp& casterOp);
void deferProjectedChildren(const RenderNode& renderNode);
void deferNodeOps(const RenderNode& renderNode);
void deferRenderNodeOpImpl(const RenderNodeOp& op);
void replayBakedOpsImpl(void* arg, BakedOpReceiver* receivers);
SkPath* createFrameAllocatedPath() {
mFrameAllocatedPaths.emplace_back(new SkPath);
return mFrameAllocatedPaths.back().get();
}
void deferStrokeableOp(const RecordedOp& op, batchid_t batchId,
BakedOpState::StrokeBehavior strokeBehavior = BakedOpState::StrokeBehavior::StyleDefined);
/**
* Declares all OpReorderer::deferXXXXOp() methods for every RecordedOp type.
*
* These private methods are called from within deferImpl to defer each individual op
* type differently.
*/
#define X(Type) void defer##Type(const Type& op);
MAP_DEFERRABLE_OPS(X)
#undef X
std::vector<std::unique_ptr<SkPath> > mFrameAllocatedPaths;
// List of every deferred layer's render state. Replayed in reverse order to render a frame.
std::vector<LayerReorderer> mLayerReorderers;
/*
* Stack of indices within mLayerReorderers representing currently active layers. If drawing
* layerA within a layerB, will contain, in order:
* - 0 (representing FBO 0, always present)
* - layerB's index
* - layerA's index
*
* Note that this doesn't vector doesn't always map onto all values of mLayerReorderers. When a
* layer is finished deferring, it will still be represented in mLayerReorderers, but it's index
* won't be in mLayerStack. This is because it can be replayed, but can't have any more drawing
* ops added to it.
*/
std::vector<size_t> mLayerStack;
CanvasState mCanvasState;
// contains ResolvedOps and Batches
LinearAllocator mAllocator;
};
}; // namespace uirenderer
}; // namespace android
#endif // ANDROID_HWUI_OP_REORDERER_H