blob: ad9559ffdf9fe724d2eb1f331dcfdbbfea4962d1 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OpReorderer.h"
#include "LayerUpdateQueue.h"
#include "RenderNode.h"
#include "renderstate/OffscreenBufferPool.h"
#include "utils/FatVector.h"
#include "utils/PaintUtils.h"
#include "utils/TraceUtils.h"
#include <SkCanvas.h>
#include <SkPathOps.h>
#include <utils/TypeHelpers.h>
namespace android {
namespace uirenderer {
class BatchBase {
public:
BatchBase(batchid_t batchId, BakedOpState* op, bool merging)
: mBatchId(batchId)
, mMerging(merging) {
mBounds = op->computedState.clippedBounds;
mOps.push_back(op);
}
bool intersects(const Rect& rect) const {
if (!rect.intersects(mBounds)) return false;
for (const BakedOpState* op : mOps) {
if (rect.intersects(op->computedState.clippedBounds)) {
return true;
}
}
return false;
}
batchid_t getBatchId() const { return mBatchId; }
bool isMerging() const { return mMerging; }
const std::vector<BakedOpState*>& getOps() const { return mOps; }
void dump() const {
ALOGD(" Batch %p, id %d, merging %d, count %d, bounds " RECT_STRING,
this, mBatchId, mMerging, mOps.size(), RECT_ARGS(mBounds));
}
protected:
batchid_t mBatchId;
Rect mBounds;
std::vector<BakedOpState*> mOps;
bool mMerging;
};
class OpBatch : public BatchBase {
public:
static void* operator new(size_t size, LinearAllocator& allocator) {
return allocator.alloc(size);
}
OpBatch(batchid_t batchId, BakedOpState* op)
: BatchBase(batchId, op, false) {
}
void batchOp(BakedOpState* op) {
mBounds.unionWith(op->computedState.clippedBounds);
mOps.push_back(op);
}
};
class MergingOpBatch : public BatchBase {
public:
static void* operator new(size_t size, LinearAllocator& allocator) {
return allocator.alloc(size);
}
MergingOpBatch(batchid_t batchId, BakedOpState* op)
: BatchBase(batchId, op, true)
, mClipSideFlags(op->computedState.clipSideFlags) {
}
/*
* Helper for determining if a new op can merge with a MergingDrawBatch based on their bounds
* and clip side flags. Positive bounds delta means new bounds fit in old.
*/
static inline bool checkSide(const int currentFlags, const int newFlags, const int side,
float boundsDelta) {
bool currentClipExists = currentFlags & side;
bool newClipExists = newFlags & side;
// if current is clipped, we must be able to fit new bounds in current
if (boundsDelta > 0 && currentClipExists) return false;
// if new is clipped, we must be able to fit current bounds in new
if (boundsDelta < 0 && newClipExists) return false;
return true;
}
static bool paintIsDefault(const SkPaint& paint) {
return paint.getAlpha() == 255
&& paint.getColorFilter() == nullptr
&& paint.getShader() == nullptr;
}
static bool paintsAreEquivalent(const SkPaint& a, const SkPaint& b) {
return a.getAlpha() == b.getAlpha()
&& a.getColorFilter() == b.getColorFilter()
&& a.getShader() == b.getShader();
}
/*
* Checks if a (mergeable) op can be merged into this batch
*
* If true, the op's multiDraw must be guaranteed to handle both ops simultaneously, so it is
* important to consider all paint attributes used in the draw calls in deciding both a) if an
* op tries to merge at all, and b) if the op can merge with another set of ops
*
* False positives can lead to information from the paints of subsequent merged operations being
* dropped, so we make simplifying qualifications on the ops that can merge, per op type.
*/
bool canMergeWith(BakedOpState* op) const {
bool isTextBatch = getBatchId() == OpBatchType::Text
|| getBatchId() == OpBatchType::ColorText;
// Overlapping other operations is only allowed for text without shadow. For other ops,
// multiDraw isn't guaranteed to overdraw correctly
if (!isTextBatch || PaintUtils::hasTextShadow(op->op->paint)) {
if (intersects(op->computedState.clippedBounds)) return false;
}
const BakedOpState* lhs = op;
const BakedOpState* rhs = mOps[0];
if (!MathUtils::areEqual(lhs->alpha, rhs->alpha)) return false;
// Identical round rect clip state means both ops will clip in the same way, or not at all.
// As the state objects are const, we can compare their pointers to determine mergeability
if (lhs->roundRectClipState != rhs->roundRectClipState) return false;
if (lhs->projectionPathMask != rhs->projectionPathMask) return false;
/* Clipping compatibility check
*
* Exploits the fact that if a op or batch is clipped on a side, its bounds will equal its
* clip for that side.
*/
const int currentFlags = mClipSideFlags;
const int newFlags = op->computedState.clipSideFlags;
if (currentFlags != OpClipSideFlags::None || newFlags != OpClipSideFlags::None) {
const Rect& opBounds = op->computedState.clippedBounds;
float boundsDelta = mBounds.left - opBounds.left;
if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Left, boundsDelta)) return false;
boundsDelta = mBounds.top - opBounds.top;
if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Top, boundsDelta)) return false;
// right and bottom delta calculation reversed to account for direction
boundsDelta = opBounds.right - mBounds.right;
if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Right, boundsDelta)) return false;
boundsDelta = opBounds.bottom - mBounds.bottom;
if (!checkSide(currentFlags, newFlags, OpClipSideFlags::Bottom, boundsDelta)) return false;
}
const SkPaint* newPaint = op->op->paint;
const SkPaint* oldPaint = mOps[0]->op->paint;
if (newPaint == oldPaint) {
// if paints are equal, then modifiers + paint attribs don't need to be compared
return true;
} else if (newPaint && !oldPaint) {
return paintIsDefault(*newPaint);
} else if (!newPaint && oldPaint) {
return paintIsDefault(*oldPaint);
}
return paintsAreEquivalent(*newPaint, *oldPaint);
}
void mergeOp(BakedOpState* op) {
mBounds.unionWith(op->computedState.clippedBounds);
mOps.push_back(op);
// Because a new op must have passed canMergeWith(), we know it's passed the clipping compat
// check, and doesn't extend past a side of the clip that's in use by the merged batch.
// Therefore it's safe to simply always merge flags, and use the bounds as the clip rect.
mClipSideFlags |= op->computedState.clipSideFlags;
}
int getClipSideFlags() const { return mClipSideFlags; }
const Rect& getClipRect() const { return mBounds; }
private:
int mClipSideFlags;
};
OpReorderer::LayerReorderer::LayerReorderer(uint32_t width, uint32_t height,
const Rect& repaintRect, const BeginLayerOp* beginLayerOp, RenderNode* renderNode)
: width(width)
, height(height)
, repaintRect(repaintRect)
, offscreenBuffer(renderNode ? renderNode->getLayer() : nullptr)
, beginLayerOp(beginLayerOp)
, renderNode(renderNode) {}
// iterate back toward target to see if anything drawn since should overlap the new op
// if no target, merging ops still iterate to find similar batch to insert after
void OpReorderer::LayerReorderer::locateInsertIndex(int batchId, const Rect& clippedBounds,
BatchBase** targetBatch, size_t* insertBatchIndex) const {
for (int i = mBatches.size() - 1; i >= 0; i--) {
BatchBase* overBatch = mBatches[i];
if (overBatch == *targetBatch) break;
// TODO: also consider shader shared between batch types
if (batchId == overBatch->getBatchId()) {
*insertBatchIndex = i + 1;
if (!*targetBatch) break; // found insert position, quit
}
if (overBatch->intersects(clippedBounds)) {
// NOTE: it may be possible to optimize for special cases where two operations
// of the same batch/paint could swap order, such as with a non-mergeable
// (clipped) and a mergeable text operation
*targetBatch = nullptr;
break;
}
}
}
void OpReorderer::LayerReorderer::deferUnmergeableOp(LinearAllocator& allocator,
BakedOpState* op, batchid_t batchId) {
OpBatch* targetBatch = mBatchLookup[batchId];
size_t insertBatchIndex = mBatches.size();
if (targetBatch) {
locateInsertIndex(batchId, op->computedState.clippedBounds,
(BatchBase**)(&targetBatch), &insertBatchIndex);
}
if (targetBatch) {
targetBatch->batchOp(op);
} else {
// new non-merging batch
targetBatch = new (allocator) OpBatch(batchId, op);
mBatchLookup[batchId] = targetBatch;
mBatches.insert(mBatches.begin() + insertBatchIndex, targetBatch);
}
}
// insertion point of a new batch, will hopefully be immediately after similar batch
// (generally, should be similar shader)
void OpReorderer::LayerReorderer::deferMergeableOp(LinearAllocator& allocator,
BakedOpState* op, batchid_t batchId, mergeid_t mergeId) {
MergingOpBatch* targetBatch = nullptr;
// Try to merge with any existing batch with same mergeId
auto getResult = mMergingBatchLookup[batchId].find(mergeId);
if (getResult != mMergingBatchLookup[batchId].end()) {
targetBatch = getResult->second;
if (!targetBatch->canMergeWith(op)) {
targetBatch = nullptr;
}
}
size_t insertBatchIndex = mBatches.size();
locateInsertIndex(batchId, op->computedState.clippedBounds,
(BatchBase**)(&targetBatch), &insertBatchIndex);
if (targetBatch) {
targetBatch->mergeOp(op);
} else {
// new merging batch
targetBatch = new (allocator) MergingOpBatch(batchId, op);
mMergingBatchLookup[batchId].insert(std::make_pair(mergeId, targetBatch));
mBatches.insert(mBatches.begin() + insertBatchIndex, targetBatch);
}
}
void OpReorderer::LayerReorderer::replayBakedOpsImpl(void* arg,
BakedOpReceiver* unmergedReceivers, MergedOpReceiver* mergedReceivers) const {
ATRACE_NAME("flush drawing commands");
for (const BatchBase* batch : mBatches) {
size_t size = batch->getOps().size();
if (size > 1 && batch->isMerging()) {
int opId = batch->getOps()[0]->op->opId;
const MergingOpBatch* mergingBatch = static_cast<const MergingOpBatch*>(batch);
MergedBakedOpList data = {
batch->getOps().data(),
size,
mergingBatch->getClipSideFlags(),
mergingBatch->getClipRect()
};
mergedReceivers[opId](arg, data);
} else {
for (const BakedOpState* op : batch->getOps()) {
unmergedReceivers[op->op->opId](arg, *op);
}
}
}
}
void OpReorderer::LayerReorderer::dump() const {
ALOGD("LayerReorderer %p, %ux%u buffer %p, blo %p, rn %p",
this, width, height, offscreenBuffer, beginLayerOp, renderNode);
for (const BatchBase* batch : mBatches) {
batch->dump();
}
}
OpReorderer::OpReorderer(const LayerUpdateQueue& layers, const SkRect& clip,
uint32_t viewportWidth, uint32_t viewportHeight,
const std::vector< sp<RenderNode> >& nodes, const Vector3& lightCenter)
: mCanvasState(*this) {
ATRACE_NAME("prepare drawing commands");
mLayerReorderers.reserve(layers.entries().size());
mLayerStack.reserve(layers.entries().size());
// Prepare to defer Fbo0
mLayerReorderers.emplace_back(viewportWidth, viewportHeight, Rect(clip));
mLayerStack.push_back(0);
mCanvasState.initializeSaveStack(viewportWidth, viewportHeight,
clip.fLeft, clip.fTop, clip.fRight, clip.fBottom,
lightCenter);
// Render all layers to be updated, in order. Defer in reverse order, so that they'll be
// updated in the order they're passed in (mLayerReorderers are issued to Renderer in reverse)
for (int i = layers.entries().size() - 1; i >= 0; i--) {
RenderNode* layerNode = layers.entries()[i].renderNode;
const Rect& layerDamage = layers.entries()[i].damage;
layerNode->computeOrdering();
// map current light center into RenderNode's coordinate space
Vector3 lightCenter = mCanvasState.currentSnapshot()->getRelativeLightCenter();
layerNode->getLayer()->inverseTransformInWindow.mapPoint3d(lightCenter);
saveForLayer(layerNode->getWidth(), layerNode->getHeight(), 0, 0,
layerDamage, lightCenter, nullptr, layerNode);
if (layerNode->getDisplayList()) {
deferNodeOps(*layerNode);
}
restoreForLayer();
}
// Defer Fbo0
for (const sp<RenderNode>& node : nodes) {
if (node->nothingToDraw()) continue;
node->computeOrdering();
int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag);
deferNodePropsAndOps(*node);
mCanvasState.restoreToCount(count);
}
}
void OpReorderer::onViewportInitialized() {}
void OpReorderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) {}
void OpReorderer::deferNodePropsAndOps(RenderNode& node) {
const RenderProperties& properties = node.properties();
const Outline& outline = properties.getOutline();
if (properties.getAlpha() <= 0
|| (outline.getShouldClip() && outline.isEmpty())
|| properties.getScaleX() == 0
|| properties.getScaleY() == 0) {
return; // rejected
}
if (properties.getLeft() != 0 || properties.getTop() != 0) {
mCanvasState.translate(properties.getLeft(), properties.getTop());
}
if (properties.getStaticMatrix()) {
mCanvasState.concatMatrix(*properties.getStaticMatrix());
} else if (properties.getAnimationMatrix()) {
mCanvasState.concatMatrix(*properties.getAnimationMatrix());
}
if (properties.hasTransformMatrix()) {
if (properties.isTransformTranslateOnly()) {
mCanvasState.translate(properties.getTranslationX(), properties.getTranslationY());
} else {
mCanvasState.concatMatrix(*properties.getTransformMatrix());
}
}
const int width = properties.getWidth();
const int height = properties.getHeight();
Rect saveLayerBounds; // will be set to non-empty if saveLayer needed
const bool isLayer = properties.effectiveLayerType() != LayerType::None;
int clipFlags = properties.getClippingFlags();
if (properties.getAlpha() < 1) {
if (isLayer) {
clipFlags &= ~CLIP_TO_BOUNDS; // bounds clipping done by layer
}
if (CC_LIKELY(isLayer || !properties.getHasOverlappingRendering())) {
// simply scale rendering content's alpha
mCanvasState.scaleAlpha(properties.getAlpha());
} else {
// schedule saveLayer by initializing saveLayerBounds
saveLayerBounds.set(0, 0, width, height);
if (clipFlags) {
properties.getClippingRectForFlags(clipFlags, &saveLayerBounds);
clipFlags = 0; // all clipping done by savelayer
}
}
if (CC_UNLIKELY(ATRACE_ENABLED() && properties.promotedToLayer())) {
// pretend alpha always causes savelayer to warn about
// performance problem affecting old versions
ATRACE_FORMAT("%s alpha caused saveLayer %dx%d", node.getName(), width, height);
}
}
if (clipFlags) {
Rect clipRect;
properties.getClippingRectForFlags(clipFlags, &clipRect);
mCanvasState.clipRect(clipRect.left, clipRect.top, clipRect.right, clipRect.bottom,
SkRegion::kIntersect_Op);
}
if (properties.getRevealClip().willClip()) {
Rect bounds;
properties.getRevealClip().getBounds(&bounds);
mCanvasState.setClippingRoundRect(mAllocator,
bounds, properties.getRevealClip().getRadius());
} else if (properties.getOutline().willClip()) {
mCanvasState.setClippingOutline(mAllocator, &(properties.getOutline()));
}
if (!mCanvasState.quickRejectConservative(0, 0, width, height)) {
// not rejected, so defer render as either Layer, or direct (possibly wrapped in saveLayer)
if (node.getLayer()) {
// HW layer
LayerOp* drawLayerOp = new (mAllocator) LayerOp(node);
BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp);
if (bakedOpState) {
// Node's layer already deferred, schedule it to render into parent layer
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap);
}
} else if (CC_UNLIKELY(!saveLayerBounds.isEmpty())) {
// draw DisplayList contents within temporary, since persisted layer could not be used.
// (temp layers are clipped to viewport, since they don't persist offscreen content)
SkPaint saveLayerPaint;
saveLayerPaint.setAlpha(properties.getAlpha());
deferBeginLayerOp(*new (mAllocator) BeginLayerOp(
saveLayerBounds,
Matrix4::identity(),
saveLayerBounds,
&saveLayerPaint));
deferNodeOps(node);
deferEndLayerOp(*new (mAllocator) EndLayerOp());
} else {
deferNodeOps(node);
}
}
}
typedef key_value_pair_t<float, const RenderNodeOp*> ZRenderNodeOpPair;
template <typename V>
static void buildZSortedChildList(V* zTranslatedNodes,
const DisplayList& displayList, const DisplayList::Chunk& chunk) {
if (chunk.beginChildIndex == chunk.endChildIndex) return;
for (size_t i = chunk.beginChildIndex; i < chunk.endChildIndex; i++) {
RenderNodeOp* childOp = displayList.getChildren()[i];
RenderNode* child = childOp->renderNode;
float childZ = child->properties().getZ();
if (!MathUtils::isZero(childZ) && chunk.reorderChildren) {
zTranslatedNodes->push_back(ZRenderNodeOpPair(childZ, childOp));
childOp->skipInOrderDraw = true;
} else if (!child->properties().getProjectBackwards()) {
// regular, in order drawing DisplayList
childOp->skipInOrderDraw = false;
}
}
// Z sort any 3d children (stable-ness makes z compare fall back to standard drawing order)
std::stable_sort(zTranslatedNodes->begin(), zTranslatedNodes->end());
}
template <typename V>
static size_t findNonNegativeIndex(const V& zTranslatedNodes) {
for (size_t i = 0; i < zTranslatedNodes.size(); i++) {
if (zTranslatedNodes[i].key >= 0.0f) return i;
}
return zTranslatedNodes.size();
}
template <typename V>
void OpReorderer::defer3dChildren(ChildrenSelectMode mode, const V& zTranslatedNodes) {
const int size = zTranslatedNodes.size();
if (size == 0
|| (mode == ChildrenSelectMode::Negative&& zTranslatedNodes[0].key > 0.0f)
|| (mode == ChildrenSelectMode::Positive && zTranslatedNodes[size - 1].key < 0.0f)) {
// no 3d children to draw
return;
}
/**
* Draw shadows and (potential) casters mostly in order, but allow the shadows of casters
* with very similar Z heights to draw together.
*
* This way, if Views A & B have the same Z height and are both casting shadows, the shadows are
* underneath both, and neither's shadow is drawn on top of the other.
*/
const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes);
size_t drawIndex, shadowIndex, endIndex;
if (mode == ChildrenSelectMode::Negative) {
drawIndex = 0;
endIndex = nonNegativeIndex;
shadowIndex = endIndex; // draw no shadows
} else {
drawIndex = nonNegativeIndex;
endIndex = size;
shadowIndex = drawIndex; // potentially draw shadow for each pos Z child
}
float lastCasterZ = 0.0f;
while (shadowIndex < endIndex || drawIndex < endIndex) {
if (shadowIndex < endIndex) {
const RenderNodeOp* casterNodeOp = zTranslatedNodes[shadowIndex].value;
const float casterZ = zTranslatedNodes[shadowIndex].key;
// attempt to render the shadow if the caster about to be drawn is its caster,
// OR if its caster's Z value is similar to the previous potential caster
if (shadowIndex == drawIndex || casterZ - lastCasterZ < 0.1f) {
deferShadow(*casterNodeOp);
lastCasterZ = casterZ; // must do this even if current caster not casting a shadow
shadowIndex++;
continue;
}
}
const RenderNodeOp* childOp = zTranslatedNodes[drawIndex].value;
deferRenderNodeOpImpl(*childOp);
drawIndex++;
}
}
void OpReorderer::deferShadow(const RenderNodeOp& casterNodeOp) {
auto& node = *casterNodeOp.renderNode;
auto& properties = node.properties();
if (properties.getAlpha() <= 0.0f
|| properties.getOutline().getAlpha() <= 0.0f
|| !properties.getOutline().getPath()
|| properties.getScaleX() == 0
|| properties.getScaleY() == 0) {
// no shadow to draw
return;
}
const SkPath* casterOutlinePath = properties.getOutline().getPath();
const SkPath* revealClipPath = properties.getRevealClip().getPath();
if (revealClipPath && revealClipPath->isEmpty()) return;
float casterAlpha = properties.getAlpha() * properties.getOutline().getAlpha();
// holds temporary SkPath to store the result of intersections
SkPath* frameAllocatedPath = nullptr;
const SkPath* casterPath = casterOutlinePath;
// intersect the shadow-casting path with the reveal, if present
if (revealClipPath) {
frameAllocatedPath = createFrameAllocatedPath();
Op(*casterPath, *revealClipPath, kIntersect_SkPathOp, frameAllocatedPath);
casterPath = frameAllocatedPath;
}
// intersect the shadow-casting path with the clipBounds, if present
if (properties.getClippingFlags() & CLIP_TO_CLIP_BOUNDS) {
if (!frameAllocatedPath) {
frameAllocatedPath = createFrameAllocatedPath();
}
Rect clipBounds;
properties.getClippingRectForFlags(CLIP_TO_CLIP_BOUNDS, &clipBounds);
SkPath clipBoundsPath;
clipBoundsPath.addRect(clipBounds.left, clipBounds.top,
clipBounds.right, clipBounds.bottom);
Op(*casterPath, clipBoundsPath, kIntersect_SkPathOp, frameAllocatedPath);
casterPath = frameAllocatedPath;
}
ShadowOp* shadowOp = new (mAllocator) ShadowOp(casterNodeOp, casterAlpha, casterPath,
mCanvasState.getLocalClipBounds(),
mCanvasState.currentSnapshot()->getRelativeLightCenter());
BakedOpState* bakedOpState = BakedOpState::tryShadowOpConstruct(
mAllocator, *mCanvasState.currentSnapshot(), shadowOp);
if (CC_LIKELY(bakedOpState)) {
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Shadow);
}
}
void OpReorderer::deferProjectedChildren(const RenderNode& renderNode) {
const SkPath* projectionReceiverOutline = renderNode.properties().getOutline().getPath();
int count = mCanvasState.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
// can't be null, since DL=null node rejection happens before deferNodePropsAndOps
const DisplayList& displayList = *(renderNode.getDisplayList());
const RecordedOp* op = (displayList.getOps()[displayList.projectionReceiveIndex]);
const RenderNodeOp* backgroundOp = static_cast<const RenderNodeOp*>(op);
const RenderProperties& backgroundProps = backgroundOp->renderNode->properties();
// Transform renderer to match background we're projecting onto
// (by offsetting canvas by translationX/Y of background rendernode, since only those are set)
mCanvasState.translate(backgroundProps.getTranslationX(), backgroundProps.getTranslationY());
// If the projection receiver has an outline, we mask projected content to it
// (which we know, apriori, are all tessellated paths)
mCanvasState.setProjectionPathMask(mAllocator, projectionReceiverOutline);
// draw projected nodes
for (size_t i = 0; i < renderNode.mProjectedNodes.size(); i++) {
RenderNodeOp* childOp = renderNode.mProjectedNodes[i];
int restoreTo = mCanvasState.save(SkCanvas::kMatrix_SaveFlag);
mCanvasState.concatMatrix(childOp->transformFromCompositingAncestor);
deferRenderNodeOpImpl(*childOp);
mCanvasState.restoreToCount(restoreTo);
}
mCanvasState.restoreToCount(count);
}
/**
* Used to define a list of lambdas referencing private OpReorderer::onXX::defer() methods.
*
* This allows opIds embedded in the RecordedOps to be used for dispatching to these lambdas.
* E.g. a BitmapOp op then would be dispatched to OpReorderer::onBitmapOp(const BitmapOp&)
*/
#define OP_RECEIVER(Type) \
[](OpReorderer& reorderer, const RecordedOp& op) { reorderer.defer##Type(static_cast<const Type&>(op)); },
void OpReorderer::deferNodeOps(const RenderNode& renderNode) {
typedef void (*OpDispatcher) (OpReorderer& reorderer, const RecordedOp& op);
static OpDispatcher receivers[] = {
MAP_OPS(OP_RECEIVER)
};
// can't be null, since DL=null node rejection happens before deferNodePropsAndOps
const DisplayList& displayList = *(renderNode.getDisplayList());
for (const DisplayList::Chunk& chunk : displayList.getChunks()) {
FatVector<ZRenderNodeOpPair, 16> zTranslatedNodes;
buildZSortedChildList(&zTranslatedNodes, displayList, chunk);
defer3dChildren(ChildrenSelectMode::Negative, zTranslatedNodes);
for (size_t opIndex = chunk.beginOpIndex; opIndex < chunk.endOpIndex; opIndex++) {
const RecordedOp* op = displayList.getOps()[opIndex];
receivers[op->opId](*this, *op);
if (CC_UNLIKELY(!renderNode.mProjectedNodes.empty()
&& displayList.projectionReceiveIndex >= 0
&& static_cast<int>(opIndex) == displayList.projectionReceiveIndex)) {
deferProjectedChildren(renderNode);
}
}
defer3dChildren(ChildrenSelectMode::Positive, zTranslatedNodes);
}
}
void OpReorderer::deferRenderNodeOpImpl(const RenderNodeOp& op) {
if (op.renderNode->nothingToDraw()) return;
int count = mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag);
// apply state from RecordedOp
mCanvasState.concatMatrix(op.localMatrix);
mCanvasState.clipRect(op.localClipRect.left, op.localClipRect.top,
op.localClipRect.right, op.localClipRect.bottom, SkRegion::kIntersect_Op);
// then apply state from node properties, and defer ops
deferNodePropsAndOps(*op.renderNode);
mCanvasState.restoreToCount(count);
}
void OpReorderer::deferRenderNodeOp(const RenderNodeOp& op) {
if (!op.skipInOrderDraw) {
deferRenderNodeOpImpl(op);
}
}
/**
* Defers an unmergeable, strokeable op, accounting correctly
* for paint's style on the bounds being computed.
*/
void OpReorderer::deferStrokeableOp(const RecordedOp& op, batchid_t batchId,
BakedOpState::StrokeBehavior strokeBehavior) {
// Note: here we account for stroke when baking the op
BakedOpState* bakedState = BakedOpState::tryStrokeableOpConstruct(
mAllocator, *mCanvasState.currentSnapshot(), op, strokeBehavior);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId);
}
/**
* Returns batch id for tessellatable shapes, based on paint. Checks to see if path effect/AA will
* be used, since they trigger significantly different rendering paths.
*
* Note: not used for lines/points, since they don't currently support path effects.
*/
static batchid_t tessBatchId(const RecordedOp& op) {
const SkPaint& paint = *(op.paint);
return paint.getPathEffect()
? OpBatchType::AlphaMaskTexture
: (paint.isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices);
}
void OpReorderer::deferArcOp(const ArcOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void OpReorderer::deferBitmapOp(const BitmapOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
// Don't merge non-simply transformed or neg scale ops, SET_TEXTURE doesn't handle rotation
// Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in
// MergingDrawBatch::canMergeWith()
if (bakedState->computedState.transform.isSimple()
&& bakedState->computedState.transform.positiveScale()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode
&& op.bitmap->colorType() != kAlpha_8_SkColorType) {
mergeid_t mergeId = (mergeid_t) op.bitmap->getGenerationID();
// TODO: AssetAtlas in mergeId
currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::Bitmap, mergeId);
} else {
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
}
void OpReorderer::deferBitmapMeshOp(const BitmapMeshOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
void OpReorderer::deferBitmapRectOp(const BitmapRectOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
void OpReorderer::deferCirclePropsOp(const CirclePropsOp& op) {
// allocate a temporary oval op (with mAllocator, so it persists until render), so the
// renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple.
float x = *(op.x);
float y = *(op.y);
float radius = *(op.radius);
Rect unmappedBounds(x - radius, y - radius, x + radius, y + radius);
const OvalOp* resolvedOp = new (mAllocator) OvalOp(
unmappedBounds,
op.localMatrix,
op.localClipRect,
op.paint);
deferOvalOp(*resolvedOp);
}
void OpReorderer::deferFunctorOp(const FunctorOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Functor);
}
void OpReorderer::deferLinesOp(const LinesOp& op) {
batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices;
deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced);
}
void OpReorderer::deferOvalOp(const OvalOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void OpReorderer::deferPatchOp(const PatchOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
if (bakedState->computedState.transform.isPureTranslate()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode) {
mergeid_t mergeId = (mergeid_t) op.bitmap->getGenerationID();
// TODO: AssetAtlas in mergeId
// Only use the MergedPatch batchId when merged, so Bitmap+Patch don't try to merge together
currentLayer().deferMergeableOp(mAllocator, bakedState, OpBatchType::MergedPatch, mergeId);
} else {
// Use Bitmap batchId since Bitmap+Patch use same shader
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Bitmap);
}
}
void OpReorderer::deferPathOp(const PathOp& op) {
deferStrokeableOp(op, OpBatchType::Bitmap);
}
void OpReorderer::deferPointsOp(const PointsOp& op) {
batchid_t batch = op.paint->isAntiAlias() ? OpBatchType::AlphaVertices : OpBatchType::Vertices;
deferStrokeableOp(op, batch, BakedOpState::StrokeBehavior::Forced);
}
void OpReorderer::deferRectOp(const RectOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void OpReorderer::deferRoundRectOp(const RoundRectOp& op) {
deferStrokeableOp(op, tessBatchId(op));
}
void OpReorderer::deferRoundRectPropsOp(const RoundRectPropsOp& op) {
// allocate a temporary round rect op (with mAllocator, so it persists until render), so the
// renderer doesn't have to handle the RoundRectPropsOp type, and so state baking is simple.
const RoundRectOp* resolvedOp = new (mAllocator) RoundRectOp(
Rect(*(op.left), *(op.top), *(op.right), *(op.bottom)),
op.localMatrix,
op.localClipRect,
op.paint, *op.rx, *op.ry);
deferRoundRectOp(*resolvedOp);
}
void OpReorderer::deferSimpleRectsOp(const SimpleRectsOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::Vertices);
}
static batchid_t textBatchId(const SkPaint& paint) {
// TODO: better handling of shader (since we won't care about color then)
return paint.getColor() == SK_ColorBLACK ? OpBatchType::Text : OpBatchType::ColorText;
}
void OpReorderer::deferTextOp(const TextOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
batchid_t batchId = textBatchId(*(op.paint));
if (bakedState->computedState.transform.isPureTranslate()
&& PaintUtils::getXfermodeDirect(op.paint) == SkXfermode::kSrcOver_Mode) {
mergeid_t mergeId = reinterpret_cast<mergeid_t>(op.paint->getColor());
currentLayer().deferMergeableOp(mAllocator, bakedState, batchId, mergeId);
} else {
currentLayer().deferUnmergeableOp(mAllocator, bakedState, batchId);
}
}
void OpReorderer::deferTextOnPathOp(const TextOnPathOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, textBatchId(*(op.paint)));
}
void OpReorderer::deferTextureLayerOp(const TextureLayerOp& op) {
BakedOpState* bakedState = tryBakeOpState(op);
if (!bakedState) return; // quick rejected
currentLayer().deferUnmergeableOp(mAllocator, bakedState, OpBatchType::TextureLayer);
}
void OpReorderer::saveForLayer(uint32_t layerWidth, uint32_t layerHeight,
float contentTranslateX, float contentTranslateY,
const Rect& repaintRect,
const Vector3& lightCenter,
const BeginLayerOp* beginLayerOp, RenderNode* renderNode) {
mCanvasState.save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag);
mCanvasState.writableSnapshot()->initializeViewport(layerWidth, layerHeight);
mCanvasState.writableSnapshot()->roundRectClipState = nullptr;
mCanvasState.writableSnapshot()->setRelativeLightCenter(lightCenter);
mCanvasState.writableSnapshot()->transform->loadTranslate(
contentTranslateX, contentTranslateY, 0);
mCanvasState.writableSnapshot()->setClip(
repaintRect.left, repaintRect.top, repaintRect.right, repaintRect.bottom);
// create a new layer repaint, and push its index on the stack
mLayerStack.push_back(mLayerReorderers.size());
mLayerReorderers.emplace_back(layerWidth, layerHeight, repaintRect, beginLayerOp, renderNode);
}
void OpReorderer::restoreForLayer() {
// restore canvas, and pop finished layer off of the stack
mCanvasState.restore();
mLayerStack.pop_back();
}
// TODO: test rejection at defer time, where the bounds become empty
void OpReorderer::deferBeginLayerOp(const BeginLayerOp& op) {
uint32_t layerWidth = (uint32_t) op.unmappedBounds.getWidth();
uint32_t layerHeight = (uint32_t) op.unmappedBounds.getHeight();
auto previous = mCanvasState.currentSnapshot();
Vector3 lightCenter = previous->getRelativeLightCenter();
// Combine all transforms used to present saveLayer content:
// parent content transform * canvas transform * bounds offset
Matrix4 contentTransform(*previous->transform);
contentTransform.multiply(op.localMatrix);
contentTransform.translate(op.unmappedBounds.left, op.unmappedBounds.top);
Matrix4 inverseContentTransform;
inverseContentTransform.loadInverse(contentTransform);
// map the light center into layer-relative space
inverseContentTransform.mapPoint3d(lightCenter);
// Clip bounds of temporary layer to parent's clip rect, so:
Rect saveLayerBounds(layerWidth, layerHeight);
// 1) transform Rect(width, height) into parent's space
// note: left/top offsets put in contentTransform above
contentTransform.mapRect(saveLayerBounds);
// 2) intersect with parent's clip
saveLayerBounds.doIntersect(previous->getRenderTargetClip());
// 3) and transform back
inverseContentTransform.mapRect(saveLayerBounds);
saveLayerBounds.doIntersect(Rect(layerWidth, layerHeight));
saveLayerBounds.roundOut();
// if bounds are reduced, will clip the layer's area by reducing required bounds...
layerWidth = saveLayerBounds.getWidth();
layerHeight = saveLayerBounds.getHeight();
// ...and shifting drawing content to account for left/top side clipping
float contentTranslateX = -saveLayerBounds.left;
float contentTranslateY = -saveLayerBounds.top;
saveForLayer(layerWidth, layerHeight,
contentTranslateX, contentTranslateY,
Rect(layerWidth, layerHeight),
lightCenter,
&op, nullptr);
}
void OpReorderer::deferEndLayerOp(const EndLayerOp& /* ignored */) {
const BeginLayerOp& beginLayerOp = *currentLayer().beginLayerOp;
int finishedLayerIndex = mLayerStack.back();
restoreForLayer();
// record the draw operation into the previous layer's list of draw commands
// uses state from the associated beginLayerOp, since it has all the state needed for drawing
LayerOp* drawLayerOp = new (mAllocator) LayerOp(
beginLayerOp.unmappedBounds,
beginLayerOp.localMatrix,
beginLayerOp.localClipRect,
beginLayerOp.paint,
&mLayerReorderers[finishedLayerIndex].offscreenBuffer);
BakedOpState* bakedOpState = tryBakeOpState(*drawLayerOp);
if (bakedOpState) {
// Layer will be drawn into parent layer (which is now current, since we popped mLayerStack)
currentLayer().deferUnmergeableOp(mAllocator, bakedOpState, OpBatchType::Bitmap);
} else {
// Layer won't be drawn - delete its drawing batches to prevent it from doing any work
mLayerReorderers[finishedLayerIndex].clear();
return;
}
}
void OpReorderer::deferLayerOp(const LayerOp& op) {
LOG_ALWAYS_FATAL("unsupported");
}
void OpReorderer::deferShadowOp(const ShadowOp& op) {
LOG_ALWAYS_FATAL("unsupported");
}
} // namespace uirenderer
} // namespace android