blob: 1164ebfdf1e543dc3e6dbe1a7f030e175279497e [file] [log] [blame]
/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utils/String8.h>
#include "Caches.h"
#include "ProgramCache.h"
#include "Properties.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
#define MODULATE_OP_NO_MODULATE 0
#define MODULATE_OP_MODULATE 1
#define MODULATE_OP_MODULATE_A8 2
#define STR(x) STR1(x)
#define STR1(x) #x
///////////////////////////////////////////////////////////////////////////////
// Vertex shaders snippets
///////////////////////////////////////////////////////////////////////////////
const char* gVS_Header_Start =
"#version 100\n"
"attribute vec4 position;\n";
const char* gVS_Header_Attributes_TexCoords = "attribute vec2 texCoords;\n";
const char* gVS_Header_Attributes_Colors = "attribute vec4 colors;\n";
const char* gVS_Header_Attributes_VertexAlphaParameters = "attribute float vtxAlpha;\n";
const char* gVS_Header_Uniforms_TextureTransform = "uniform mat4 mainTextureTransform;\n";
const char* gVS_Header_Uniforms =
"uniform mat4 projection;\n"
"uniform mat4 transform;\n";
const char* gVS_Header_Uniforms_HasGradient = "uniform mat4 screenSpace;\n";
const char* gVS_Header_Uniforms_HasBitmap =
"uniform mat4 textureTransform;\n"
"uniform mediump vec2 textureDimension;\n";
const char* gVS_Header_Uniforms_HasRoundRectClip =
"uniform mat4 roundRectInvTransform;\n"
"uniform mediump vec4 roundRectInnerRectLTWH;\n"
"uniform mediump float roundRectRadius;\n";
const char* gVS_Header_Varyings_HasTexture = "varying vec2 outTexCoords;\n";
const char* gVS_Header_Varyings_HasColors = "varying vec4 outColors;\n";
const char* gVS_Header_Varyings_HasVertexAlpha = "varying float alpha;\n";
const char* gVS_Header_Varyings_HasBitmap = "varying highp vec2 outBitmapTexCoords;\n";
const char* gVS_Header_Varyings_HasGradient[6] = {
// Linear
"varying highp vec2 linear;\n", "varying float linear;\n",
// Circular
"varying highp vec2 circular;\n", "varying highp vec2 circular;\n",
// Sweep
"varying highp vec2 sweep;\n", "varying highp vec2 sweep;\n",
};
const char* gVS_Header_Varyings_HasRoundRectClip = "varying mediump vec2 roundRectPos;\n";
const char* gVS_Main = "\nvoid main(void) {\n";
const char* gVS_Main_OutTexCoords = " outTexCoords = texCoords;\n";
const char* gVS_Main_OutColors = " outColors = colors;\n";
const char* gVS_Main_OutTransformedTexCoords =
" outTexCoords = (mainTextureTransform * vec4(texCoords, 0.0, 1.0)).xy;\n";
const char* gVS_Main_OutGradient[6] = {
// Linear
" linear = vec2((screenSpace * position).x, 0.5);\n",
" linear = (screenSpace * position).x;\n",
// Circular
" circular = (screenSpace * position).xy;\n",
" circular = (screenSpace * position).xy;\n",
// Sweep
" sweep = (screenSpace * position).xy;\n", " sweep = (screenSpace * position).xy;\n"};
const char* gVS_Main_OutBitmapTexCoords =
" outBitmapTexCoords = (textureTransform * position).xy * textureDimension;\n";
const char* gVS_Main_Position =
" vec4 transformedPosition = projection * transform * position;\n"
" gl_Position = transformedPosition;\n";
const char* gVS_Main_VertexAlpha = " alpha = vtxAlpha;\n";
const char* gVS_Main_HasRoundRectClip =
" roundRectPos = ((roundRectInvTransform * transformedPosition).xy / roundRectRadius) - "
"roundRectInnerRectLTWH.xy;\n";
const char* gVS_Footer = "}\n\n";
///////////////////////////////////////////////////////////////////////////////
// Fragment shaders snippets
///////////////////////////////////////////////////////////////////////////////
const char* gFS_Header_Start = "#version 100\n";
const char* gFS_Header_Extension_FramebufferFetch =
"#extension GL_NV_shader_framebuffer_fetch : enable\n\n";
const char* gFS_Header_Extension_ExternalTexture =
"#extension GL_OES_EGL_image_external : require\n\n";
const char* gFS_Header = "precision mediump float;\n\n";
const char* gFS_Uniforms_Color = "uniform vec4 color;\n";
const char* gFS_Uniforms_TextureSampler = "uniform sampler2D baseSampler;\n";
const char* gFS_Uniforms_ExternalTextureSampler = "uniform samplerExternalOES baseSampler;\n";
const char* gFS_Uniforms_GradientSampler[2] = {
"uniform vec2 screenSize;\n"
"uniform sampler2D gradientSampler;\n",
"uniform vec2 screenSize;\n"
"uniform vec4 startColor;\n"
"uniform vec4 endColor;\n"};
const char* gFS_Uniforms_BitmapSampler = "uniform sampler2D bitmapSampler;\n";
const char* gFS_Uniforms_BitmapExternalSampler = "uniform samplerExternalOES bitmapSampler;\n";
const char* gFS_Uniforms_ColorOp[3] = {
// None
"",
// Matrix
"uniform mat4 colorMatrix;\n"
"uniform vec4 colorMatrixVector;\n",
// PorterDuff
"uniform vec4 colorBlend;\n"};
const char* gFS_Uniforms_HasRoundRectClip =
"uniform mediump vec4 roundRectInnerRectLTWH;\n"
"uniform mediump float roundRectRadius;\n";
const char* gFS_Uniforms_ColorSpaceConversion =
// TODO: Should we use a 3D LUT to combine the matrix and transfer functions?
// 32x32x32 fp16 LUTs (for scRGB output) are large and heavy to generate...
"uniform mat3 colorSpaceMatrix;\n";
const char* gFS_Uniforms_TransferFunction[4] = {
// In this order: g, a, b, c, d, e, f
// See ColorSpace::TransferParameters
// We'll use hardware sRGB conversion as much as possible
"", "uniform float transferFunction[7];\n", "uniform float transferFunction[5];\n",
"uniform float transferFunctionGamma;\n"};
const char* gFS_OETF[2] = {
R"__SHADER__(
vec4 OETF(const vec4 linear) {
return linear;
}
)__SHADER__",
// We expect linear data to be scRGB so we mirror the gamma function
R"__SHADER__(
vec4 OETF(const vec4 linear) {
return vec4(sign(linear.rgb) * OETF_sRGB(abs(linear.rgb)), linear.a);
}
)__SHADER__"};
const char* gFS_ColorConvert[3] = {
// Just OETF
R"__SHADER__(
vec4 colorConvert(const vec4 color) {
return OETF(color);
}
)__SHADER__",
// Full color conversion for opaque bitmaps
R"__SHADER__(
vec4 colorConvert(const vec4 color) {
return OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
}
)__SHADER__",
// Full color conversion for translucent bitmaps
// Note: 0.5/256=0.0019
R"__SHADER__(
vec4 colorConvert(in vec4 color) {
color.rgb /= color.a + 0.0019;
color = OETF(vec4(colorSpaceMatrix * EOTF_Parametric(color.rgb), color.a));
color.rgb *= color.a + 0.0019;
return color;
}
)__SHADER__",
};
const char* gFS_sRGB_TransferFunctions = R"__SHADER__(
float OETF_sRGB(const float linear) {
// IEC 61966-2-1:1999
return linear <= 0.0031308 ? linear * 12.92 : (pow(linear, 1.0 / 2.4) * 1.055) - 0.055;
}
vec3 OETF_sRGB(const vec3 linear) {
return vec3(OETF_sRGB(linear.r), OETF_sRGB(linear.g), OETF_sRGB(linear.b));
}
float EOTF_sRGB(float srgb) {
// IEC 61966-2-1:1999
return srgb <= 0.04045 ? srgb / 12.92 : pow((srgb + 0.055) / 1.055, 2.4);
}
)__SHADER__";
const char* gFS_TransferFunction[4] = {
// Conversion done by the texture unit (sRGB)
R"__SHADER__(
vec3 EOTF_Parametric(const vec3 x) {
return x;
}
)__SHADER__",
// Full transfer function
// TODO: We should probably use a 1D LUT (256x1 with texelFetch() since input is 8 bit)
// TODO: That would cause 3 dependent texture fetches. Is it worth it?
R"__SHADER__(
float EOTF_Parametric(float x) {
return x <= transferFunction[4]
? transferFunction[3] * x + transferFunction[6]
: pow(transferFunction[1] * x + transferFunction[2], transferFunction[0])
+ transferFunction[5];
}
vec3 EOTF_Parametric(const vec3 x) {
return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
}
)__SHADER__",
// Limited transfer function, e = f = 0.0
R"__SHADER__(
float EOTF_Parametric(float x) {
return x <= transferFunction[4]
? transferFunction[3] * x
: pow(transferFunction[1] * x + transferFunction[2], transferFunction[0]);
}
vec3 EOTF_Parametric(const vec3 x) {
return vec3(EOTF_Parametric(x.r), EOTF_Parametric(x.g), EOTF_Parametric(x.b));
}
)__SHADER__",
// Gamma transfer function, e = f = 0.0
R"__SHADER__(
vec3 EOTF_Parametric(const vec3 x) {
return vec3(pow(x.r, transferFunctionGamma),
pow(x.g, transferFunctionGamma),
pow(x.b, transferFunctionGamma));
}
)__SHADER__"};
// Dithering must be done in the quantization space
// When we are writing to an sRGB framebuffer, we must do the following:
// EOTF(OETF(color) + dither)
// The dithering pattern is generated with a triangle noise generator in the range [-1.0,1.0]
// TODO: Handle linear fp16 render targets
const char* gFS_GradientFunctions = R"__SHADER__(
float triangleNoise(const highp vec2 n) {
highp vec2 p = fract(n * vec2(5.3987, 5.4421));
p += dot(p.yx, p.xy + vec2(21.5351, 14.3137));
highp float xy = p.x * p.y;
return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0;
}
)__SHADER__";
const char* gFS_GradientPreamble[2] = {
// Linear framebuffer
R"__SHADER__(
vec4 dither(const vec4 color) {
return color + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
}
)__SHADER__",
// sRGB framebuffer
R"__SHADER__(
vec4 dither(const vec4 color) {
vec3 dithered = sqrt(color.rgb) + (triangleNoise(gl_FragCoord.xy * screenSize.xy) / 255.0);
return vec4(dithered * dithered, color.a);
}
)__SHADER__",
};
// Uses luminance coefficients from Rec.709 to choose the appropriate gamma
// The gamma() function assumes that bright text will be displayed on a dark
// background and that dark text will be displayed on bright background
// The gamma coefficient is chosen to thicken or thin the text accordingly
// The dot product used to compute the luminance could be approximated with
// a simple max(color.r, color.g, color.b)
const char* gFS_Gamma_Preamble = R"__SHADER__(
#define GAMMA (%.2f)
#define GAMMA_INV (%.2f)
float gamma(float a, const vec3 color) {
float luminance = dot(color, vec3(0.2126, 0.7152, 0.0722));
return pow(a, luminance < 0.5 ? GAMMA_INV : GAMMA);
}
)__SHADER__";
const char* gFS_Main =
"\nvoid main(void) {\n"
" vec4 fragColor;\n";
const char* gFS_Main_AddDither = " fragColor = dither(fragColor);\n";
// General case
const char* gFS_Main_FetchColor = " fragColor = color;\n";
const char* gFS_Main_ModulateColor = " fragColor *= color.a;\n";
const char* gFS_Main_ApplyVertexAlphaLinearInterp = " fragColor *= alpha;\n";
const char* gFS_Main_ApplyVertexAlphaShadowInterp =
// map alpha through shadow alpha sampler
" fragColor *= texture2D(baseSampler, vec2(alpha, 0.5)).a;\n";
const char* gFS_Main_FetchTexture[2] = {
// Don't modulate
" fragColor = colorConvert(texture2D(baseSampler, outTexCoords));\n",
// Modulate
" fragColor = color * colorConvert(texture2D(baseSampler, outTexCoords));\n"};
const char* gFS_Main_FetchA8Texture[4] = {
// Don't modulate
" fragColor = texture2D(baseSampler, outTexCoords);\n",
" fragColor = texture2D(baseSampler, outTexCoords);\n",
// Modulate
" fragColor = color * texture2D(baseSampler, outTexCoords).a;\n",
" fragColor = color * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
};
const char* gFS_Main_FetchGradient[6] = {
// Linear
" vec4 gradientColor = texture2D(gradientSampler, linear);\n",
" vec4 gradientColor = mix(startColor, endColor, clamp(linear, 0.0, 1.0));\n",
// Circular
" vec4 gradientColor = texture2D(gradientSampler, vec2(length(circular), 0.5));\n",
" vec4 gradientColor = mix(startColor, endColor, clamp(length(circular), 0.0, 1.0));\n",
// Sweep
" highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
" vec4 gradientColor = texture2D(gradientSampler, vec2(index - floor(index), 0.5));\n",
" highp float index = atan(sweep.y, sweep.x) * 0.15915494309; // inv(2 * PI)\n"
" vec4 gradientColor = mix(startColor, endColor, clamp(index - floor(index), 0.0, "
"1.0));\n"};
const char* gFS_Main_FetchBitmap =
" vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, outBitmapTexCoords));\n";
const char* gFS_Main_FetchBitmapNpot =
" vec4 bitmapColor = colorConvert(texture2D(bitmapSampler, "
"wrap(outBitmapTexCoords)));\n";
const char* gFS_Main_BlendShadersBG = " fragColor = blendShaders(gradientColor, bitmapColor)";
const char* gFS_Main_BlendShadersGB = " fragColor = blendShaders(bitmapColor, gradientColor)";
const char* gFS_Main_BlendShaders_Modulate[6] = {
// Don't modulate
";\n", ";\n",
// Modulate
" * color.a;\n", " * color.a;\n",
// Modulate with alpha 8 texture
" * texture2D(baseSampler, outTexCoords).a;\n",
" * gamma(texture2D(baseSampler, outTexCoords).a, color.rgb);\n",
};
const char* gFS_Main_GradientShader_Modulate[6] = {
// Don't modulate
" fragColor = gradientColor;\n", " fragColor = gradientColor;\n",
// Modulate
" fragColor = gradientColor * color.a;\n", " fragColor = gradientColor * color.a;\n",
// Modulate with alpha 8 texture
" fragColor = gradientColor * texture2D(baseSampler, outTexCoords).a;\n",
" fragColor = gradientColor * gamma(texture2D(baseSampler, outTexCoords).a, "
"gradientColor.rgb);\n",
};
const char* gFS_Main_BitmapShader_Modulate[6] = {
// Don't modulate
" fragColor = bitmapColor;\n", " fragColor = bitmapColor;\n",
// Modulate
" fragColor = bitmapColor * color.a;\n", " fragColor = bitmapColor * color.a;\n",
// Modulate with alpha 8 texture
" fragColor = bitmapColor * texture2D(baseSampler, outTexCoords).a;\n",
" fragColor = bitmapColor * gamma(texture2D(baseSampler, outTexCoords).a, "
"bitmapColor.rgb);\n",
};
const char* gFS_Main_FragColor = " gl_FragColor = fragColor;\n";
const char* gFS_Main_FragColor_HasColors = " gl_FragColor *= outColors;\n";
const char* gFS_Main_FragColor_Blend =
" gl_FragColor = blendFramebuffer(fragColor, gl_LastFragColor);\n";
const char* gFS_Main_FragColor_Blend_Swap =
" gl_FragColor = blendFramebuffer(gl_LastFragColor, fragColor);\n";
const char* gFS_Main_ApplyColorOp[3] = {
// None
"",
// Matrix
" fragColor.rgb /= (fragColor.a + 0.0019);\n" // un-premultiply
" fragColor *= colorMatrix;\n"
" fragColor += colorMatrixVector;\n"
" fragColor.rgb *= (fragColor.a + 0.0019);\n", // re-premultiply
// PorterDuff
" fragColor = blendColors(colorBlend, fragColor);\n"};
// Note: LTWH (left top width height) -> xyzw
// roundRectPos is now divided by roundRectRadius in vertex shader
// after we also subtract roundRectInnerRectLTWH.xy from roundRectPos
const char* gFS_Main_FragColor_HasRoundRectClip =
" mediump vec2 fragToLT = -roundRectPos;\n"
" mediump vec2 fragFromRB = roundRectPos - roundRectInnerRectLTWH.zw;\n"
// since distance is divided by radius, it's in [0;1] so precision is not an issue
// this also lets us clamp(0.0, 1.0) instead of max() which is cheaper on GPUs
" mediump vec2 dist = clamp(max(fragToLT, fragFromRB), 0.0, 1.0);\n"
" mediump float linearDist = clamp(roundRectRadius - (length(dist) * roundRectRadius), "
"0.0, 1.0);\n"
" gl_FragColor *= linearDist;\n";
const char* gFS_Main_DebugHighlight = " gl_FragColor.rgb = vec3(0.0, gl_FragColor.a, 0.0);\n";
const char* gFS_Footer = "}\n\n";
///////////////////////////////////////////////////////////////////////////////
// PorterDuff snippets
///////////////////////////////////////////////////////////////////////////////
const char* gBlendOps[18] = {
// Clear
"return vec4(0.0, 0.0, 0.0, 0.0);\n",
// Src
"return src;\n",
// Dst
"return dst;\n",
// SrcOver
"return src + dst * (1.0 - src.a);\n",
// DstOver
"return dst + src * (1.0 - dst.a);\n",
// SrcIn
"return src * dst.a;\n",
// DstIn
"return dst * src.a;\n",
// SrcOut
"return src * (1.0 - dst.a);\n",
// DstOut
"return dst * (1.0 - src.a);\n",
// SrcAtop
"return vec4(src.rgb * dst.a + (1.0 - src.a) * dst.rgb, dst.a);\n",
// DstAtop
"return vec4(dst.rgb * src.a + (1.0 - dst.a) * src.rgb, src.a);\n",
// Xor
"return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb, "
"src.a + dst.a - 2.0 * src.a * dst.a);\n",
// Plus
"return min(src + dst, 1.0);\n",
// Modulate
"return src * dst;\n",
// Screen
"return src + dst - src * dst;\n",
// Overlay
"return clamp(vec4(mix("
"2.0 * src.rgb * dst.rgb + src.rgb * (1.0 - dst.a) + dst.rgb * (1.0 - src.a), "
"src.a * dst.a - 2.0 * (dst.a - dst.rgb) * (src.a - src.rgb) + src.rgb * (1.0 - dst.a) + "
"dst.rgb * (1.0 - src.a), "
"step(dst.a, 2.0 * dst.rgb)), "
"src.a + dst.a - src.a * dst.a), 0.0, 1.0);\n",
// Darken
"return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
"min(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
// Lighten
"return vec4(src.rgb * (1.0 - dst.a) + (1.0 - src.a) * dst.rgb + "
"max(src.rgb * dst.a, dst.rgb * src.a), src.a + dst.a - src.a * dst.a);\n",
};
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructors
///////////////////////////////////////////////////////////////////////////////
ProgramCache::ProgramCache(const Extensions& extensions)
: mHasES3(extensions.getMajorGlVersion() >= 3)
, mHasLinearBlending(extensions.hasLinearBlending()) {}
ProgramCache::~ProgramCache() {
clear();
}
///////////////////////////////////////////////////////////////////////////////
// Cache management
///////////////////////////////////////////////////////////////////////////////
void ProgramCache::clear() {
PROGRAM_LOGD("Clearing program cache");
mCache.clear();
}
Program* ProgramCache::get(const ProgramDescription& description) {
programid key = description.key();
if (key == (PROGRAM_KEY_TEXTURE | PROGRAM_KEY_A8_TEXTURE)) {
// program for A8, unmodulated, texture w/o shader (black text/path textures) is equivalent
// to standard texture program (bitmaps, patches). Consider them equivalent.
key = PROGRAM_KEY_TEXTURE;
}
auto iter = mCache.find(key);
Program* program = nullptr;
if (iter == mCache.end()) {
description.log("Could not find program");
program = generateProgram(description, key);
mCache[key] = std::unique_ptr<Program>(program);
} else {
program = iter->second.get();
}
return program;
}
///////////////////////////////////////////////////////////////////////////////
// Program generation
///////////////////////////////////////////////////////////////////////////////
Program* ProgramCache::generateProgram(const ProgramDescription& description, programid key) {
String8 vertexShader = generateVertexShader(description);
String8 fragmentShader = generateFragmentShader(description);
return new Program(description, vertexShader.string(), fragmentShader.string());
}
static inline size_t gradientIndex(const ProgramDescription& description) {
return description.gradientType * 2 + description.isSimpleGradient;
}
String8 ProgramCache::generateVertexShader(const ProgramDescription& description) {
// Add attributes
String8 shader(gVS_Header_Start);
if (description.hasTexture || description.hasExternalTexture) {
shader.append(gVS_Header_Attributes_TexCoords);
}
if (description.hasVertexAlpha) {
shader.append(gVS_Header_Attributes_VertexAlphaParameters);
}
if (description.hasColors) {
shader.append(gVS_Header_Attributes_Colors);
}
// Uniforms
shader.append(gVS_Header_Uniforms);
if (description.hasTextureTransform) {
shader.append(gVS_Header_Uniforms_TextureTransform);
}
if (description.hasGradient) {
shader.append(gVS_Header_Uniforms_HasGradient);
}
if (description.hasBitmap) {
shader.append(gVS_Header_Uniforms_HasBitmap);
}
if (description.hasRoundRectClip) {
shader.append(gVS_Header_Uniforms_HasRoundRectClip);
}
// Varyings
if (description.hasTexture || description.hasExternalTexture) {
shader.append(gVS_Header_Varyings_HasTexture);
}
if (description.hasVertexAlpha) {
shader.append(gVS_Header_Varyings_HasVertexAlpha);
}
if (description.hasColors) {
shader.append(gVS_Header_Varyings_HasColors);
}
if (description.hasGradient) {
shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
}
if (description.hasBitmap) {
shader.append(gVS_Header_Varyings_HasBitmap);
}
if (description.hasRoundRectClip) {
shader.append(gVS_Header_Varyings_HasRoundRectClip);
}
// Begin the shader
shader.append(gVS_Main);
{
if (description.hasTextureTransform) {
shader.append(gVS_Main_OutTransformedTexCoords);
} else if (description.hasTexture || description.hasExternalTexture) {
shader.append(gVS_Main_OutTexCoords);
}
if (description.hasVertexAlpha) {
shader.append(gVS_Main_VertexAlpha);
}
if (description.hasColors) {
shader.append(gVS_Main_OutColors);
}
if (description.hasBitmap) {
shader.append(gVS_Main_OutBitmapTexCoords);
}
// Output transformed position
shader.append(gVS_Main_Position);
if (description.hasGradient) {
shader.append(gVS_Main_OutGradient[gradientIndex(description)]);
}
if (description.hasRoundRectClip) {
shader.append(gVS_Main_HasRoundRectClip);
}
}
// End the shader
shader.append(gVS_Footer);
PROGRAM_LOGD("*** Generated vertex shader:\n\n%s", shader.string());
return shader;
}
static bool shaderOp(const ProgramDescription& description, String8& shader, const int modulateOp,
const char** snippets) {
int op = description.hasAlpha8Texture ? MODULATE_OP_MODULATE_A8 : modulateOp;
op = op * 2 + description.hasGammaCorrection;
shader.append(snippets[op]);
return description.hasAlpha8Texture;
}
String8 ProgramCache::generateFragmentShader(const ProgramDescription& description) {
String8 shader(gFS_Header_Start);
const bool blendFramebuffer = description.framebufferMode >= SkBlendMode::kPlus;
if (blendFramebuffer) {
shader.append(gFS_Header_Extension_FramebufferFetch);
}
if (description.hasExternalTexture ||
(description.hasBitmap && description.isShaderBitmapExternal)) {
shader.append(gFS_Header_Extension_ExternalTexture);
}
shader.append(gFS_Header);
// Varyings
if (description.hasTexture || description.hasExternalTexture) {
shader.append(gVS_Header_Varyings_HasTexture);
}
if (description.hasVertexAlpha) {
shader.append(gVS_Header_Varyings_HasVertexAlpha);
}
if (description.hasColors) {
shader.append(gVS_Header_Varyings_HasColors);
}
if (description.hasGradient) {
shader.append(gVS_Header_Varyings_HasGradient[gradientIndex(description)]);
}
if (description.hasBitmap) {
shader.append(gVS_Header_Varyings_HasBitmap);
}
if (description.hasRoundRectClip) {
shader.append(gVS_Header_Varyings_HasRoundRectClip);
}
// Uniforms
int modulateOp = MODULATE_OP_NO_MODULATE;
const bool singleColor = !description.hasTexture && !description.hasExternalTexture &&
!description.hasGradient && !description.hasBitmap;
if (description.modulate || singleColor) {
shader.append(gFS_Uniforms_Color);
if (!singleColor) modulateOp = MODULATE_OP_MODULATE;
}
if (description.hasTexture || description.useShadowAlphaInterp) {
shader.append(gFS_Uniforms_TextureSampler);
} else if (description.hasExternalTexture) {
shader.append(gFS_Uniforms_ExternalTextureSampler);
}
if (description.hasGradient) {
shader.append(gFS_Uniforms_GradientSampler[description.isSimpleGradient]);
}
if (description.hasRoundRectClip) {
shader.append(gFS_Uniforms_HasRoundRectClip);
}
if (description.hasGammaCorrection) {
shader.appendFormat(gFS_Gamma_Preamble, Properties::textGamma,
1.0f / Properties::textGamma);
}
if (description.hasBitmap) {
if (description.isShaderBitmapExternal) {
shader.append(gFS_Uniforms_BitmapExternalSampler);
} else {
shader.append(gFS_Uniforms_BitmapSampler);
}
}
shader.append(gFS_Uniforms_ColorOp[static_cast<int>(description.colorOp)]);
if (description.hasColorSpaceConversion) {
shader.append(gFS_Uniforms_ColorSpaceConversion);
}
shader.append(gFS_Uniforms_TransferFunction[static_cast<int>(description.transferFunction)]);
// Generate required functions
if (description.hasGradient && description.hasBitmap) {
generateBlend(shader, "blendShaders", description.shadersMode);
}
if (description.colorOp == ProgramDescription::ColorFilterMode::Blend) {
generateBlend(shader, "blendColors", description.colorMode);
}
if (blendFramebuffer) {
generateBlend(shader, "blendFramebuffer", description.framebufferMode);
}
if (description.useShaderBasedWrap) {
generateTextureWrap(shader, description.bitmapWrapS, description.bitmapWrapT);
}
if (description.hasGradient || description.hasLinearTexture ||
description.hasColorSpaceConversion) {
shader.append(gFS_sRGB_TransferFunctions);
}
if (description.hasBitmap || ((description.hasTexture || description.hasExternalTexture) &&
!description.hasAlpha8Texture)) {
shader.append(gFS_TransferFunction[static_cast<int>(description.transferFunction)]);
shader.append(
gFS_OETF[(description.hasLinearTexture || description.hasColorSpaceConversion) &&
!mHasLinearBlending]);
shader.append(gFS_ColorConvert[description.hasColorSpaceConversion
? 1 + description.hasTranslucentConversion
: 0]);
}
if (description.hasGradient) {
shader.append(gFS_GradientFunctions);
shader.append(gFS_GradientPreamble[mHasLinearBlending]);
}
// Begin the shader
shader.append(gFS_Main);
{
// Stores the result in fragColor directly
if (description.hasTexture || description.hasExternalTexture) {
if (description.hasAlpha8Texture) {
if (!description.hasGradient && !description.hasBitmap) {
shader.append(gFS_Main_FetchA8Texture[modulateOp * 2 +
description.hasGammaCorrection]);
}
} else {
shader.append(gFS_Main_FetchTexture[modulateOp]);
}
} else {
if (!description.hasGradient && !description.hasBitmap) {
shader.append(gFS_Main_FetchColor);
}
}
if (description.hasGradient) {
shader.append(gFS_Main_FetchGradient[gradientIndex(description)]);
}
if (description.hasBitmap) {
if (!description.useShaderBasedWrap) {
shader.append(gFS_Main_FetchBitmap);
} else {
shader.append(gFS_Main_FetchBitmapNpot);
}
}
bool applyModulate = false;
// Case when we have two shaders set
if (description.hasGradient && description.hasBitmap) {
if (description.isBitmapFirst) {
shader.append(gFS_Main_BlendShadersBG);
} else {
shader.append(gFS_Main_BlendShadersGB);
}
applyModulate =
shaderOp(description, shader, modulateOp, gFS_Main_BlendShaders_Modulate);
} else {
if (description.hasGradient) {
applyModulate =
shaderOp(description, shader, modulateOp, gFS_Main_GradientShader_Modulate);
} else if (description.hasBitmap) {
applyModulate =
shaderOp(description, shader, modulateOp, gFS_Main_BitmapShader_Modulate);
}
}
if (description.modulate && applyModulate) {
shader.append(gFS_Main_ModulateColor);
}
// Apply the color op if needed
shader.append(gFS_Main_ApplyColorOp[static_cast<int>(description.colorOp)]);
if (description.hasVertexAlpha) {
if (description.useShadowAlphaInterp) {
shader.append(gFS_Main_ApplyVertexAlphaShadowInterp);
} else {
shader.append(gFS_Main_ApplyVertexAlphaLinearInterp);
}
}
if (description.hasGradient) {
shader.append(gFS_Main_AddDither);
}
// Output the fragment
if (!blendFramebuffer) {
shader.append(gFS_Main_FragColor);
} else {
shader.append(!description.swapSrcDst ? gFS_Main_FragColor_Blend
: gFS_Main_FragColor_Blend_Swap);
}
if (description.hasColors) {
shader.append(gFS_Main_FragColor_HasColors);
}
if (description.hasRoundRectClip) {
shader.append(gFS_Main_FragColor_HasRoundRectClip);
}
if (description.hasDebugHighlight) {
shader.append(gFS_Main_DebugHighlight);
}
}
// End the shader
shader.append(gFS_Footer);
#if DEBUG_PROGRAMS
PROGRAM_LOGD("*** Generated fragment shader:\n\n");
printLongString(shader);
#endif
return shader;
}
void ProgramCache::generateBlend(String8& shader, const char* name, SkBlendMode mode) {
shader.append("\nvec4 ");
shader.append(name);
shader.append("(vec4 src, vec4 dst) {\n");
shader.append(" ");
shader.append(gBlendOps[(int)mode]);
shader.append("}\n");
}
void ProgramCache::generateTextureWrap(String8& shader, GLenum wrapS, GLenum wrapT) {
shader.append("\nhighp vec2 wrap(highp vec2 texCoords) {\n");
if (wrapS == GL_MIRRORED_REPEAT) {
shader.append(" highp float xMod2 = mod(texCoords.x, 2.0);\n");
shader.append(" if (xMod2 > 1.0) xMod2 = 2.0 - xMod2;\n");
}
if (wrapT == GL_MIRRORED_REPEAT) {
shader.append(" highp float yMod2 = mod(texCoords.y, 2.0);\n");
shader.append(" if (yMod2 > 1.0) yMod2 = 2.0 - yMod2;\n");
}
shader.append(" return vec2(");
switch (wrapS) {
case GL_CLAMP_TO_EDGE:
shader.append("texCoords.x");
break;
case GL_REPEAT:
shader.append("mod(texCoords.x, 1.0)");
break;
case GL_MIRRORED_REPEAT:
shader.append("xMod2");
break;
}
shader.append(", ");
switch (wrapT) {
case GL_CLAMP_TO_EDGE:
shader.append("texCoords.y");
break;
case GL_REPEAT:
shader.append("mod(texCoords.y, 1.0)");
break;
case GL_MIRRORED_REPEAT:
shader.append("yMod2");
break;
}
shader.append(");\n");
shader.append("}\n");
}
void ProgramCache::printLongString(const String8& shader) const {
ssize_t index = 0;
ssize_t lastIndex = 0;
const char* str = shader.string();
while ((index = shader.find("\n", index)) > -1) {
String8 line(str, index - lastIndex);
if (line.length() == 0) line.append("\n");
ALOGD("%s", line.string());
index++;
str += (index - lastIndex);
lastIndex = index;
}
}
}; // namespace uirenderer
}; // namespace android