blob: 48b0e47a83b0fd1e1eec668add67ac83d4e9f1d9 [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <hardware/hardware.h>
#include "clz.h"
#include "LayerBase.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
namespace android {
// ---------------------------------------------------------------------------
LayerBase::LayerBase(SurfaceFlinger* flinger, DisplayID display)
: dpy(display), contentDirty(false),
mFlinger(flinger),
mTransformed(false),
mUseLinearFiltering(false),
mOrientation(0),
mLeft(0), mTop(0),
mTransactionFlags(0),
mPremultipliedAlpha(true), mName("unnamed"), mDebug(false),
mInvalidate(0)
{
const DisplayHardware& hw(flinger->graphicPlane(0).displayHardware());
mFlags = hw.getFlags();
}
LayerBase::~LayerBase()
{
}
void LayerBase::setName(const String8& name) {
mName = name;
}
String8 LayerBase::getName() const {
return mName;
}
const GraphicPlane& LayerBase::graphicPlane(int dpy) const
{
return mFlinger->graphicPlane(dpy);
}
GraphicPlane& LayerBase::graphicPlane(int dpy)
{
return mFlinger->graphicPlane(dpy);
}
void LayerBase::initStates(uint32_t w, uint32_t h, uint32_t flags)
{
uint32_t layerFlags = 0;
if (flags & ISurfaceComposer::eHidden)
layerFlags = ISurfaceComposer::eLayerHidden;
if (flags & ISurfaceComposer::eNonPremultiplied)
mPremultipliedAlpha = false;
mCurrentState.z = 0;
mCurrentState.w = w;
mCurrentState.h = h;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
mCurrentState.alpha = 0xFF;
mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.transform.set(0, 0);
// drawing state & current state are identical
mDrawingState = mCurrentState;
}
void LayerBase::commitTransaction() {
mDrawingState = mCurrentState;
}
void LayerBase::forceVisibilityTransaction() {
// this can be called without SurfaceFlinger.mStateLock, but if we
// can atomically increment the sequence number, it doesn't matter.
android_atomic_inc(&mCurrentState.sequence);
requestTransaction();
}
bool LayerBase::requestTransaction() {
int32_t old = setTransactionFlags(eTransactionNeeded);
return ((old & eTransactionNeeded) == 0);
}
uint32_t LayerBase::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t LayerBase::setTransactionFlags(uint32_t flags) {
return android_atomic_or(flags, &mTransactionFlags);
}
bool LayerBase::setPosition(int32_t x, int32_t y) {
if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
return false;
mCurrentState.sequence++;
mCurrentState.transform.set(x, y);
requestTransaction();
return true;
}
bool LayerBase::setLayer(uint32_t z) {
if (mCurrentState.z == z)
return false;
mCurrentState.sequence++;
mCurrentState.z = z;
requestTransaction();
return true;
}
bool LayerBase::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_w == w && mCurrentState.requested_h == h)
return false;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
requestTransaction();
return true;
}
bool LayerBase::setAlpha(uint8_t alpha) {
if (mCurrentState.alpha == alpha)
return false;
mCurrentState.sequence++;
mCurrentState.alpha = alpha;
requestTransaction();
return true;
}
bool LayerBase::setMatrix(const layer_state_t::matrix22_t& matrix) {
// TODO: check the matrix has changed
mCurrentState.sequence++;
mCurrentState.transform.set(
matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
requestTransaction();
return true;
}
bool LayerBase::setTransparentRegionHint(const Region& transparent) {
// TODO: check the region has changed
mCurrentState.sequence++;
mCurrentState.transparentRegion = transparent;
requestTransaction();
return true;
}
bool LayerBase::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags)
return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
requestTransaction();
return true;
}
Rect LayerBase::visibleBounds() const
{
return mTransformedBounds;
}
void LayerBase::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
visibleRegionScreen = visibleRegion;
}
void LayerBase::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
coveredRegionScreen = coveredRegion;
}
uint32_t LayerBase::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
if ((front.requested_w != temp.requested_w) ||
(front.requested_h != temp.requested_h)) {
// resize the layer, set the physical size to the requested size
Layer::State& editTemp(currentState());
editTemp.w = temp.requested_w;
editTemp.h = temp.requested_h;
}
if ((front.w != temp.w) || (front.h != temp.h)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (temp.sequence != front.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
const bool linearFiltering = mUseLinearFiltering;
mUseLinearFiltering = false;
if (!(mFlags & DisplayHardware::SLOW_CONFIG)) {
// we may use linear filtering, if the matrix scales us
const uint8_t type = temp.transform.getType();
if (!temp.transform.preserveRects() || (type >= Transform::SCALE)) {
mUseLinearFiltering = true;
}
}
}
// Commit the transaction
commitTransaction();
return flags;
}
void LayerBase::validateVisibility(const Transform& planeTransform)
{
const Layer::State& s(drawingState());
const Transform tr(planeTransform * s.transform);
const bool transformed = tr.transformed();
uint32_t w = s.w;
uint32_t h = s.h;
tr.transform(mVertices[0], 0, 0);
tr.transform(mVertices[1], 0, h);
tr.transform(mVertices[2], w, h);
tr.transform(mVertices[3], w, 0);
if (UNLIKELY(transformed)) {
// NOTE: here we could also punt if we have too many rectangles
// in the transparent region
if (tr.preserveRects()) {
// transform the transparent region
transparentRegionScreen = tr.transform(s.transparentRegion);
} else {
// transformation too complex, can't do the transparent region
// optimization.
transparentRegionScreen.clear();
}
} else {
transparentRegionScreen = s.transparentRegion;
}
// cache a few things...
mOrientation = tr.getOrientation();
mTransformedBounds = tr.makeBounds(w, h);
mTransformed = transformed;
mLeft = tr.tx();
mTop = tr.ty();
}
void LayerBase::lockPageFlip(bool& recomputeVisibleRegions)
{
}
void LayerBase::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
if ((android_atomic_and(~1, &mInvalidate)&1) == 1) {
outDirtyRegion.orSelf(visibleRegionScreen);
}
}
void LayerBase::finishPageFlip()
{
}
void LayerBase::invalidate()
{
if ((android_atomic_or(1, &mInvalidate)&1) == 0) {
mFlinger->signalEvent();
}
}
void LayerBase::drawRegion(const Region& reg) const
{
Region::const_iterator it = reg.begin();
Region::const_iterator const end = reg.end();
if (it != end) {
Rect r;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t fbWidth = hw.getWidth();
const int32_t fbHeight = hw.getHeight();
const GLshort vertices[][2] = { { 0, 0 }, { fbWidth, 0 },
{ fbWidth, fbHeight }, { 0, fbHeight } };
glVertexPointer(2, GL_SHORT, 0, vertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
void LayerBase::draw(const Region& inClip) const
{
// invalidate the region we'll update
Region clip(inClip); // copy-on-write, so no-op most of the time
// Remove the transparent area from the clipping region
const State& s = drawingState();
if (LIKELY(!s.transparentRegion.isEmpty())) {
clip.subtract(transparentRegionScreen);
if (clip.isEmpty()) {
// usually this won't happen because this should be taken care of
// by SurfaceFlinger::computeVisibleRegions()
return;
}
}
// reset GL state
glEnable(GL_SCISSOR_TEST);
onDraw(clip);
/*
glDisable(GL_TEXTURE_2D);
glDisable(GL_DITHER);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glColor4x(0, 0x8000, 0, 0x10000);
drawRegion(transparentRegionScreen);
glDisable(GL_BLEND);
*/
}
GLuint LayerBase::createTexture() const
{
GLuint textureName = -1;
glGenTextures(1, &textureName);
glBindTexture(GL_TEXTURE_2D, textureName);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
return textureName;
}
void LayerBase::clearWithOpenGL(const Region& clip, GLclampx red,
GLclampx green, GLclampx blue,
GLclampx alpha) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
glColor4x(red,green,blue,alpha);
glDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glDisable(GL_DITHER);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
glEnable(GL_SCISSOR_TEST);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
void LayerBase::clearWithOpenGL(const Region& clip) const
{
clearWithOpenGL(clip,0,0,0,0);
}
void LayerBase::drawWithOpenGL(const Region& clip, const Texture& texture) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
const State& s(drawingState());
// bind our texture
validateTexture(texture.name);
uint32_t width = texture.width;
uint32_t height = texture.height;
glEnable(GL_TEXTURE_2D);
if (UNLIKELY(s.alpha < 0xFF)) {
// We have an alpha-modulation. We need to modulate all
// texture components by alpha because we're always using
// premultiplied alpha.
// If the texture doesn't have an alpha channel we can
// use REPLACE and switch to non premultiplied alpha
// blending (SRCA/ONE_MINUS_SRCA).
GLenum env, src;
if (needsBlending()) {
env = GL_MODULATE;
src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
} else {
env = GL_REPLACE;
src = GL_SRC_ALPHA;
}
const GLfloat alpha = s.alpha * (1.0f/255.0f);
glColor4f(alpha, alpha, alpha, alpha);
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, env);
} else {
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor4f(1, 1, 1, 1);
if (needsBlending()) {
GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
const GLfloat texCoords[4][2] = {
{ 0, 0 },
{ 0, 1 },
{ 1, 1 },
{ 1, 0 }
};
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
// the texture's source is rotated
switch (texture.transform) {
case HAL_TRANSFORM_ROT_90:
glTranslatef(0, 1, 0);
glRotatef(-90, 0, 0, 1);
break;
case HAL_TRANSFORM_ROT_180:
glTranslatef(1, 1, 0);
glRotatef(-180, 0, 0, 1);
break;
case HAL_TRANSFORM_ROT_270:
glTranslatef(1, 0, 0);
glRotatef(-270, 0, 0, 1);
break;
}
if (texture.NPOTAdjust) {
glScalef(texture.wScale, texture.hScale, 1.0f);
}
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void LayerBase::validateTexture(GLint textureName) const
{
glBindTexture(GL_TEXTURE_2D, textureName);
// TODO: reload the texture if needed
// this is currently done in loadTexture() below
if (mUseLinearFiltering) {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
} else {
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterx(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
}
if (needsDithering()) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
}
bool LayerBase::isSupportedYuvFormat(int format) const
{
switch (format) {
case HAL_PIXEL_FORMAT_YCbCr_422_SP:
case HAL_PIXEL_FORMAT_YCbCr_420_SP:
case HAL_PIXEL_FORMAT_YCbCr_422_P:
case HAL_PIXEL_FORMAT_YCbCr_420_P:
case HAL_PIXEL_FORMAT_YCbCr_422_I:
case HAL_PIXEL_FORMAT_YCbCr_420_I:
case HAL_PIXEL_FORMAT_YCrCb_420_SP:
return true;
}
return false;
}
void LayerBase::loadTexture(Texture* texture,
const Region& dirty, const GGLSurface& t) const
{
if (texture->name == -1U) {
// uh?
return;
}
glBindTexture(GL_TEXTURE_2D, texture->name);
/*
* In OpenGL ES we can't specify a stride with glTexImage2D (however,
* GL_UNPACK_ALIGNMENT is a limited form of stride).
* So if the stride here isn't representable with GL_UNPACK_ALIGNMENT, we
* need to do something reasonable (here creating a bigger texture).
*
* extra pixels = (((stride - width) * pixelsize) / GL_UNPACK_ALIGNMENT);
*
* This situation doesn't happen often, but some h/w have a limitation
* for their framebuffer (eg: must be multiple of 8 pixels), and
* we need to take that into account when using these buffers as
* textures.
*
* This should never be a problem with POT textures
*/
int unpack = __builtin_ctz(t.stride * bytesPerPixel(t.format));
unpack = 1 << ((unpack > 3) ? 3 : unpack);
glPixelStorei(GL_UNPACK_ALIGNMENT, unpack);
/*
* round to POT if needed
*/
if (!(mFlags & DisplayHardware::NPOT_EXTENSION)) {
texture->NPOTAdjust = true;
}
if (texture->NPOTAdjust) {
// find the smallest power-of-two that will accommodate our surface
texture->potWidth = 1 << (31 - clz(t.width));
texture->potHeight = 1 << (31 - clz(t.height));
if (texture->potWidth < t.width) texture->potWidth <<= 1;
if (texture->potHeight < t.height) texture->potHeight <<= 1;
texture->wScale = float(t.width) / texture->potWidth;
texture->hScale = float(t.height) / texture->potHeight;
} else {
texture->potWidth = t.width;
texture->potHeight = t.height;
}
Rect bounds(dirty.bounds());
GLvoid* data = 0;
if (texture->width != t.width || texture->height != t.height) {
texture->width = t.width;
texture->height = t.height;
// texture size changed, we need to create a new one
bounds.set(Rect(t.width, t.height));
if (t.width == texture->potWidth &&
t.height == texture->potHeight) {
// we can do it one pass
data = t.data;
}
if (t.format == HAL_PIXEL_FORMAT_RGB_565) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGB, texture->potWidth, texture->potHeight, 0,
GL_RGB, GL_UNSIGNED_SHORT_5_6_5, data);
} else if (t.format == HAL_PIXEL_FORMAT_RGBA_4444) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA, texture->potWidth, texture->potHeight, 0,
GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4, data);
} else if (t.format == HAL_PIXEL_FORMAT_RGBA_8888 ||
t.format == HAL_PIXEL_FORMAT_RGBX_8888) {
glTexImage2D(GL_TEXTURE_2D, 0,
GL_RGBA, texture->potWidth, texture->potHeight, 0,
GL_RGBA, GL_UNSIGNED_BYTE, data);
} else if (isSupportedYuvFormat(t.format)) {
// just show the Y plane of YUV buffers
glTexImage2D(GL_TEXTURE_2D, 0,
GL_LUMINANCE, texture->potWidth, texture->potHeight, 0,
GL_LUMINANCE, GL_UNSIGNED_BYTE, data);
} else {
// oops, we don't handle this format!
LOGE("layer %p, texture=%d, using format %d, which is not "
"supported by the GL", this, texture->name, t.format);
}
}
if (!data) {
if (t.format == HAL_PIXEL_FORMAT_RGB_565) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGB, GL_UNSIGNED_SHORT_5_6_5,
t.data + bounds.top*t.stride*2);
} else if (t.format == HAL_PIXEL_FORMAT_RGBA_4444) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4,
t.data + bounds.top*t.stride*2);
} else if (t.format == HAL_PIXEL_FORMAT_RGBA_8888 ||
t.format == HAL_PIXEL_FORMAT_RGBX_8888) {
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_RGBA, GL_UNSIGNED_BYTE,
t.data + bounds.top*t.stride*4);
} else if (isSupportedYuvFormat(t.format)) {
// just show the Y plane of YUV buffers
glTexSubImage2D(GL_TEXTURE_2D, 0,
0, bounds.top, t.width, bounds.height(),
GL_LUMINANCE, GL_UNSIGNED_BYTE,
t.data + bounds.top*t.stride);
}
}
}
status_t LayerBase::initializeEglImage(
const sp<GraphicBuffer>& buffer, Texture* texture)
{
status_t err = NO_ERROR;
// we need to recreate the texture
EGLDisplay dpy(mFlinger->graphicPlane(0).getEGLDisplay());
// free the previous image
if (texture->image != EGL_NO_IMAGE_KHR) {
eglDestroyImageKHR(dpy, texture->image);
texture->image = EGL_NO_IMAGE_KHR;
}
// construct an EGL_NATIVE_BUFFER_ANDROID
android_native_buffer_t* clientBuf = buffer->getNativeBuffer();
// create the new EGLImageKHR
const EGLint attrs[] = {
EGL_IMAGE_PRESERVED_KHR, EGL_TRUE,
EGL_NONE, EGL_NONE
};
texture->image = eglCreateImageKHR(
dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
(EGLClientBuffer)clientBuf, attrs);
if (texture->image != EGL_NO_IMAGE_KHR) {
glBindTexture(GL_TEXTURE_2D, texture->name);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D,
(GLeglImageOES)texture->image);
GLint error = glGetError();
if (UNLIKELY(error != GL_NO_ERROR)) {
LOGE("layer=%p, glEGLImageTargetTexture2DOES(%p) "
"failed err=0x%04x",
this, texture->image, error);
err = INVALID_OPERATION;
} else {
// Everything went okay!
texture->NPOTAdjust = false;
texture->dirty = false;
texture->width = clientBuf->width;
texture->height = clientBuf->height;
}
} else {
LOGE("layer=%p, eglCreateImageKHR() failed. err=0x%4x",
this, eglGetError());
err = INVALID_OPERATION;
}
return err;
}
void LayerBase::dump(String8& result, char* buffer, size_t SIZE) const
{
const Layer::State& s(drawingState());
snprintf(buffer, SIZE,
"+ %s %p\n"
" "
"z=%9d, pos=(%4d,%4d), size=(%4d,%4d), "
"needsBlending=%1d, needsDithering=%1d, invalidate=%1d, "
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n",
getTypeId(), this, s.z, tx(), ty(), s.w, s.h,
needsBlending(), needsDithering(), contentDirty,
s.alpha, s.flags,
s.transform[0][0], s.transform[0][1],
s.transform[1][0], s.transform[1][1]);
result.append(buffer);
}
// ---------------------------------------------------------------------------
int32_t LayerBaseClient::sIdentity = 0;
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,
const sp<Client>& client, int32_t i)
: LayerBase(flinger, display), lcblk(NULL), client(client), mIndex(i),
mIdentity(uint32_t(android_atomic_inc(&sIdentity)))
{
lcblk = new SharedBufferServer(
client->ctrlblk, i, NUM_BUFFERS,
mIdentity);
}
void LayerBaseClient::onFirstRef()
{
sp<Client> client(this->client.promote());
if (client != 0) {
client->bindLayer(this, mIndex);
}
}
LayerBaseClient::~LayerBaseClient()
{
sp<Client> client(this->client.promote());
if (client != 0) {
client->free(mIndex);
}
delete lcblk;
}
ssize_t LayerBaseClient::serverIndex() const
{
sp<Client> client(this->client.promote());
if (client != 0) {
return (client->cid<<16)|mIndex;
}
return ssize_t(0xFFFF0000 | mIndex);
}
sp<LayerBaseClient::Surface> LayerBaseClient::getSurface()
{
sp<Surface> s;
Mutex::Autolock _l(mLock);
s = mClientSurface.promote();
if (s == 0) {
s = createSurface();
mClientSurface = s;
}
return s;
}
sp<LayerBaseClient::Surface> LayerBaseClient::createSurface() const
{
return new Surface(mFlinger, clientIndex(), mIdentity,
const_cast<LayerBaseClient *>(this));
}
// called with SurfaceFlinger::mStateLock as soon as the layer is entered
// in the purgatory list
void LayerBaseClient::onRemoved()
{
// wake up the condition
lcblk->setStatus(NO_INIT);
}
void LayerBaseClient::dump(String8& result, char* buffer, size_t SIZE) const
{
LayerBase::dump(result, buffer, SIZE);
sp<Client> client(this->client.promote());
snprintf(buffer, SIZE,
" name=%s\n"
" id=0x%08x, client=0x%08x, identity=%u\n",
getName().string(),
clientIndex(), client.get() ? client->cid : 0,
getIdentity());
result.append(buffer);
}
// ---------------------------------------------------------------------------
LayerBaseClient::Surface::Surface(
const sp<SurfaceFlinger>& flinger,
SurfaceID id, int identity,
const sp<LayerBaseClient>& owner)
: mFlinger(flinger), mToken(id), mIdentity(identity), mOwner(owner)
{
}
LayerBaseClient::Surface::~Surface()
{
/*
* This is a good place to clean-up all client resources
*/
// destroy client resources
sp<LayerBaseClient> layer = getOwner();
if (layer != 0) {
mFlinger->destroySurface(layer);
}
}
sp<LayerBaseClient> LayerBaseClient::Surface::getOwner() const {
sp<LayerBaseClient> owner(mOwner.promote());
return owner;
}
status_t LayerBaseClient::Surface::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case REGISTER_BUFFERS:
case UNREGISTER_BUFFERS:
case CREATE_OVERLAY:
{
if (!mFlinger->mAccessSurfaceFlinger.checkCalling()) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
}
}
return BnSurface::onTransact(code, data, reply, flags);
}
sp<GraphicBuffer> LayerBaseClient::Surface::requestBuffer(int index, int usage)
{
return NULL;
}
status_t LayerBaseClient::Surface::registerBuffers(
const ISurface::BufferHeap& buffers)
{
return INVALID_OPERATION;
}
void LayerBaseClient::Surface::postBuffer(ssize_t offset)
{
}
void LayerBaseClient::Surface::unregisterBuffers()
{
}
sp<OverlayRef> LayerBaseClient::Surface::createOverlay(
uint32_t w, uint32_t h, int32_t format, int32_t orientation)
{
return NULL;
};
// ---------------------------------------------------------------------------
}; // namespace android