blob: f34af471cc8c979ea4c8305df1db310df41e362a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsMatrix2x2.h"
#include "rsMatrix3x3.h"
#include "rsMatrix4x4.h"
#include "stdlib.h"
#include "string.h"
#include "math.h"
using namespace android;
using namespace android::renderscript;
//////////////////////////////////////////////////////////////////////////////
// Heavy math functions
//////////////////////////////////////////////////////////////////////////////
// Returns true if the matrix was successfully inversed
bool Matrix4x4::inverse() {
rs_matrix4x4 result;
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
// computeCofactor for int i, int j
int c0 = (i+1) % 4;
int c1 = (i+2) % 4;
int c2 = (i+3) % 4;
int r0 = (j+1) % 4;
int r1 = (j+2) % 4;
int r2 = (j+3) % 4;
float minor =
(m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
- (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
+ (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));
float cofactor = (i+j) & 1 ? -minor : minor;
result.m[4*i + j] = cofactor;
}
}
// Dot product of 0th column of source and 0th row of result
float det = m[0]*result.m[0] + m[4]*result.m[1] +
m[8]*result.m[2] + m[12]*result.m[3];
if (fabs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (i = 0; i < 16; ++i) {
m[i] = result.m[i] * det;
}
return true;
}
// Returns true if the matrix was successfully inversed
bool Matrix4x4::inverseTranspose() {
rs_matrix4x4 result;
int i, j;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
// computeCofactor for int i, int j
int c0 = (i+1) % 4;
int c1 = (i+2) % 4;
int c2 = (i+3) % 4;
int r0 = (j+1) % 4;
int r1 = (j+2) % 4;
int r2 = (j+3) % 4;
float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
- (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
+ (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));
float cofactor = (i+j) & 1 ? -minor : minor;
result.m[4*j + i] = cofactor;
}
}
// Dot product of 0th column of source and 0th column of result
float det = m[0]*result.m[0] + m[4]*result.m[4] +
m[8]*result.m[8] + m[12]*result.m[12];
if (fabs(det) < 1e-6) {
return false;
}
det = 1.0f / det;
for (i = 0; i < 16; ++i) {
m[i] = result.m[i] * det;
}
return true;
}
void Matrix4x4::transpose() {
int i, j;
float temp;
for (i = 0; i < 3; ++i) {
for (j = i + 1; j < 4; ++j) {
temp = m[i*4 + j];
m[i*4 + j] = m[j*4 + i];
m[j*4 + i] = temp;
}
}
}
///////////////////////////////////////////////////////////////////////////////////
void Matrix4x4::loadIdentity() {
m[0] = 1.f;
m[1] = 0.f;
m[2] = 0.f;
m[3] = 0.f;
m[4] = 0.f;
m[5] = 1.f;
m[6] = 0.f;
m[7] = 0.f;
m[8] = 0.f;
m[9] = 0.f;
m[10] = 1.f;
m[11] = 0.f;
m[12] = 0.f;
m[13] = 0.f;
m[14] = 0.f;
m[15] = 1.f;
}
void Matrix4x4::load(const float *v) {
memcpy(m, v, sizeof(m));
}
void Matrix4x4::load(const rs_matrix4x4 *v) {
memcpy(m, v->m, sizeof(m));
}
void Matrix4x4::load(const rs_matrix3x3 *v) {
m[0] = v->m[0];
m[1] = v->m[1];
m[2] = v->m[2];
m[3] = 0.f;
m[4] = v->m[3];
m[5] = v->m[4];
m[6] = v->m[5];
m[7] = 0.f;
m[8] = v->m[6];
m[9] = v->m[7];
m[10] = v->m[8];
m[11] = 0.f;
m[12] = 0.f;
m[13] = 0.f;
m[14] = 0.f;
m[15] = 1.f;
}
void Matrix4x4::load(const rs_matrix2x2 *v) {
m[0] = v->m[0];
m[1] = v->m[1];
m[2] = 0.f;
m[3] = 0.f;
m[4] = v->m[2];
m[5] = v->m[3];
m[6] = 0.f;
m[7] = 0.f;
m[8] = 0.f;
m[9] = 0.f;
m[10] = 1.f;
m[11] = 0.f;
m[12] = 0.f;
m[13] = 0.f;
m[14] = 0.f;
m[15] = 1.f;
}
void Matrix4x4::loadRotate(float rot, float x, float y, float z) {
float c, s;
m[3] = 0;
m[7] = 0;
m[11]= 0;
m[12]= 0;
m[13]= 0;
m[14]= 0;
m[15]= 1;
rot *= float(M_PI / 180.0f);
c = cosf(rot);
s = sinf(rot);
const float len = x*x + y*y + z*z;
if (len != 1) {
const float recipLen = 1.f / sqrtf(len);
x *= recipLen;
y *= recipLen;
z *= recipLen;
}
const float nc = 1.0f - c;
const float xy = x * y;
const float yz = y * z;
const float zx = z * x;
const float xs = x * s;
const float ys = y * s;
const float zs = z * s;
m[ 0] = x*x*nc + c;
m[ 4] = xy*nc - zs;
m[ 8] = zx*nc + ys;
m[ 1] = xy*nc + zs;
m[ 5] = y*y*nc + c;
m[ 9] = yz*nc - xs;
m[ 2] = zx*nc - ys;
m[ 6] = yz*nc + xs;
m[10] = z*z*nc + c;
}
void Matrix4x4::loadScale(float x, float y, float z) {
loadIdentity();
set(0, 0, x);
set(1, 1, y);
set(2, 2, z);
}
void Matrix4x4::loadTranslate(float x, float y, float z) {
loadIdentity();
m[12] = x;
m[13] = y;
m[14] = z;
}
void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) {
for (int i=0 ; i<4 ; i++) {
float ri0 = 0;
float ri1 = 0;
float ri2 = 0;
float ri3 = 0;
for (int j=0 ; j<4 ; j++) {
const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j);
ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij;
ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij;
ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij;
ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij;
}
set(i,0, ri0);
set(i,1, ri1);
set(i,2, ri2);
set(i,3, ri3);
}
}
void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
loadIdentity();
m[0] = 2.f / (right - left);
m[5] = 2.f / (top - bottom);
m[10]= -2.f / (far - near);
m[12]= -(right + left) / (right - left);
m[13]= -(top + bottom) / (top - bottom);
m[14]= -(far + near) / (far - near);
}
void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) {
loadIdentity();
m[0] = 2.f * near / (right - left);
m[5] = 2.f * near / (top - bottom);
m[8] = (right + left) / (right - left);
m[9] = (top + bottom) / (top - bottom);
m[10]= -(far + near) / (far - near);
m[11]= -1.f;
m[14]= -2.f * far * near / (far - near);
m[15]= 0.f;
}
void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) {
float top = near * tan((float) (fovy * M_PI / 360.0f));
float bottom = -top;
float left = bottom * aspect;
float right = top * aspect;
loadFrustum(left, right, bottom, top, near, far);
}
void Matrix4x4::vectorMultiply(float *out, const float *in) const {
out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12];
out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13];
out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14];
out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15];
}
void Matrix4x4::logv(const char *s) const {
LOGV("%s {%f, %f, %f, %f", s, m[0], m[4], m[8], m[12]);
LOGV("%s %f, %f, %f, %f", s, m[1], m[5], m[9], m[13]);
LOGV("%s %f, %f, %f, %f", s, m[2], m[6], m[10], m[14]);
LOGV("%s %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]);
}