| // |
| // Copyright 2010 The Android Open Source Project |
| // |
| // The input dispatcher. |
| // |
| #define LOG_TAG "InputDispatcher" |
| |
| //#define LOG_NDEBUG 0 |
| |
| // Log detailed debug messages about each inbound event notification to the dispatcher. |
| #define DEBUG_INBOUND_EVENT_DETAILS 1 |
| |
| // Log detailed debug messages about each outbound event processed by the dispatcher. |
| #define DEBUG_OUTBOUND_EVENT_DETAILS 1 |
| |
| // Log debug messages about batching. |
| #define DEBUG_BATCHING 1 |
| |
| // Log debug messages about the dispatch cycle. |
| #define DEBUG_DISPATCH_CYCLE 1 |
| |
| // Log debug messages about performance statistics. |
| #define DEBUG_PERFORMANCE_STATISTICS 1 |
| |
| #include <cutils/log.h> |
| #include <ui/InputDispatcher.h> |
| |
| #include <stddef.h> |
| #include <unistd.h> |
| #include <errno.h> |
| #include <limits.h> |
| |
| namespace android { |
| |
| // TODO, this needs to be somewhere else, perhaps in the policy |
| static inline bool isMovementKey(int32_t keyCode) { |
| return keyCode == KEYCODE_DPAD_UP |
| || keyCode == KEYCODE_DPAD_DOWN |
| || keyCode == KEYCODE_DPAD_LEFT |
| || keyCode == KEYCODE_DPAD_RIGHT; |
| } |
| |
| // --- InputDispatcher --- |
| |
| InputDispatcher::InputDispatcher(const sp<InputDispatchPolicyInterface>& policy) : |
| mPolicy(policy) { |
| mPollLoop = new PollLoop(); |
| |
| mInboundQueue.head.refCount = -1; |
| mInboundQueue.head.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.head.eventTime = LONG_LONG_MIN; |
| |
| mInboundQueue.tail.refCount = -1; |
| mInboundQueue.tail.type = EventEntry::TYPE_SENTINEL; |
| mInboundQueue.tail.eventTime = LONG_LONG_MAX; |
| |
| mKeyRepeatState.lastKeyEntry = NULL; |
| } |
| |
| InputDispatcher::~InputDispatcher() { |
| resetKeyRepeatLocked(); |
| |
| while (mConnectionsByReceiveFd.size() != 0) { |
| unregisterInputChannel(mConnectionsByReceiveFd.valueAt(0)->inputChannel); |
| } |
| |
| for (EventEntry* entry = mInboundQueue.head.next; entry != & mInboundQueue.tail; ) { |
| EventEntry* next = entry->next; |
| mAllocator.releaseEventEntry(next); |
| entry = next; |
| } |
| } |
| |
| void InputDispatcher::dispatchOnce() { |
| bool allowKeyRepeat = mPolicy->allowKeyRepeat(); |
| |
| nsecs_t currentTime; |
| nsecs_t nextWakeupTime = LONG_LONG_MAX; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| currentTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| // Reset the key repeat timer whenever we disallow key events, even if the next event |
| // is not a key. This is to ensure that we abort a key repeat if the device is just coming |
| // out of sleep. |
| // XXX we should handle resetting input state coming out of sleep more generally elsewhere |
| if (! allowKeyRepeat) { |
| resetKeyRepeatLocked(); |
| } |
| |
| // Process timeouts for all connections and determine if there are any synchronous |
| // event dispatches pending. |
| bool hasPendingSyncTarget = false; |
| for (size_t i = 0; i < mActiveConnections.size(); ) { |
| Connection* connection = mActiveConnections.itemAt(i); |
| |
| nsecs_t connectionTimeoutTime = connection->nextTimeoutTime; |
| if (connectionTimeoutTime <= currentTime) { |
| bool deactivated = timeoutDispatchCycleLocked(currentTime, connection); |
| if (deactivated) { |
| // Don't increment i because the connection has been removed |
| // from mActiveConnections (hence, deactivated). |
| continue; |
| } |
| } |
| |
| if (connectionTimeoutTime < nextWakeupTime) { |
| nextWakeupTime = connectionTimeoutTime; |
| } |
| |
| if (connection->hasPendingSyncTarget()) { |
| hasPendingSyncTarget = true; |
| } |
| |
| i += 1; |
| } |
| |
| // If we don't have a pending sync target, then we can begin delivering a new event. |
| // (Otherwise we wait for dispatch to complete for that target.) |
| if (! hasPendingSyncTarget) { |
| if (mInboundQueue.isEmpty()) { |
| if (mKeyRepeatState.lastKeyEntry) { |
| if (currentTime >= mKeyRepeatState.nextRepeatTime) { |
| processKeyRepeatLocked(currentTime); |
| return; // dispatched once |
| } else { |
| if (mKeyRepeatState.nextRepeatTime < nextWakeupTime) { |
| nextWakeupTime = mKeyRepeatState.nextRepeatTime; |
| } |
| } |
| } |
| } else { |
| // Inbound queue has at least one entry. Dequeue it and begin dispatching. |
| // Note that we do not hold the lock for this process because dispatching may |
| // involve making many callbacks. |
| EventEntry* entry = mInboundQueue.dequeueAtHead(); |
| |
| switch (entry->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: { |
| ConfigurationChangedEntry* typedEntry = |
| static_cast<ConfigurationChangedEntry*>(entry); |
| processConfigurationChangedLocked(currentTime, typedEntry); |
| mAllocator.releaseConfigurationChangedEntry(typedEntry); |
| break; |
| } |
| |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* typedEntry = static_cast<KeyEntry*>(entry); |
| processKeyLocked(currentTime, typedEntry); |
| mAllocator.releaseKeyEntry(typedEntry); |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* typedEntry = static_cast<MotionEntry*>(entry); |
| processMotionLocked(currentTime, typedEntry); |
| mAllocator.releaseMotionEntry(typedEntry); |
| break; |
| } |
| |
| default: |
| assert(false); |
| break; |
| } |
| return; // dispatched once |
| } |
| } |
| } // release lock |
| |
| // Wait for callback or timeout or wake. |
| nsecs_t timeout = nanoseconds_to_milliseconds(nextWakeupTime - currentTime); |
| int32_t timeoutMillis = timeout > INT_MAX ? -1 : timeout > 0 ? int32_t(timeout) : 0; |
| mPollLoop->pollOnce(timeoutMillis); |
| } |
| |
| void InputDispatcher::processConfigurationChangedLocked(nsecs_t currentTime, |
| ConfigurationChangedEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processConfigurationChanged - eventTime=%lld, touchScreenConfig=%d, " |
| "keyboardConfig=%d, navigationConfig=%d", entry->eventTime, |
| entry->touchScreenConfig, entry->keyboardConfig, entry->navigationConfig); |
| #endif |
| |
| mPolicy->notifyConfigurationChanged(entry->eventTime, entry->touchScreenConfig, |
| entry->keyboardConfig, entry->navigationConfig); |
| } |
| |
| void InputDispatcher::processKeyLocked(nsecs_t currentTime, KeyEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processKey - eventTime=%lld, deviceId=0x%x, nature=0x%x, policyFlags=0x%x, action=0x%x, " |
| "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->nature, entry->policyFlags, entry->action, |
| entry->flags, entry->keyCode, entry->scanCode, entry->metaState, |
| entry->downTime); |
| #endif |
| |
| // TODO: Poke user activity. |
| |
| if (entry->action == KEY_EVENT_ACTION_DOWN) { |
| if (mKeyRepeatState.lastKeyEntry |
| && mKeyRepeatState.lastKeyEntry->keyCode == entry->keyCode) { |
| // We have seen two identical key downs in a row which indicates that the device |
| // driver is automatically generating key repeats itself. We take note of the |
| // repeat here, but we disable our own next key repeat timer since it is clear that |
| // we will not need to synthesize key repeats ourselves. |
| entry->repeatCount = mKeyRepeatState.lastKeyEntry->repeatCount + 1; |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = LONG_LONG_MAX; // don't generate repeats ourselves |
| } else { |
| // Not a repeat. Save key down state in case we do see a repeat later. |
| resetKeyRepeatLocked(); |
| mKeyRepeatState.nextRepeatTime = entry->eventTime + mPolicy->getKeyRepeatTimeout(); |
| } |
| mKeyRepeatState.lastKeyEntry = entry; |
| entry->refCount += 1; |
| } else { |
| resetKeyRepeatLocked(); |
| } |
| |
| identifyInputTargetsAndDispatchKeyLocked(currentTime, entry); |
| } |
| |
| void InputDispatcher::processKeyRepeatLocked(nsecs_t currentTime) { |
| // TODO Old WindowManagerServer code sniffs the input queue for following key up |
| // events and drops the repeat if one is found. We should do something similar. |
| // One good place to do it is in notifyKey as soon as the key up enters the |
| // inbound event queue. |
| |
| // Synthesize a key repeat after the repeat timeout expired. |
| // We reuse the previous key entry if otherwise unreferenced. |
| KeyEntry* entry = mKeyRepeatState.lastKeyEntry; |
| if (entry->refCount == 1) { |
| entry->repeatCount += 1; |
| } else { |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(); |
| newEntry->deviceId = entry->deviceId; |
| newEntry->nature = entry->nature; |
| newEntry->policyFlags = entry->policyFlags; |
| newEntry->action = entry->action; |
| newEntry->flags = entry->flags; |
| newEntry->keyCode = entry->keyCode; |
| newEntry->scanCode = entry->scanCode; |
| newEntry->metaState = entry->metaState; |
| newEntry->repeatCount = entry->repeatCount + 1; |
| |
| mKeyRepeatState.lastKeyEntry = newEntry; |
| mAllocator.releaseKeyEntry(entry); |
| |
| entry = newEntry; |
| } |
| entry->eventTime = currentTime; |
| entry->downTime = currentTime; |
| entry->policyFlags = 0; |
| |
| mKeyRepeatState.nextRepeatTime = currentTime + mPolicy->getKeyRepeatTimeout(); |
| |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processKeyRepeat - eventTime=%lld, deviceId=0x%x, nature=0x%x, policyFlags=0x%x, " |
| "action=0x%x, flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, " |
| "repeatCount=%d, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->nature, entry->policyFlags, |
| entry->action, entry->flags, entry->keyCode, entry->scanCode, entry->metaState, |
| entry->repeatCount, entry->downTime); |
| #endif |
| |
| identifyInputTargetsAndDispatchKeyLocked(currentTime, entry); |
| } |
| |
| void InputDispatcher::processMotionLocked(nsecs_t currentTime, MotionEntry* entry) { |
| #if DEBUG_OUTBOUND_EVENT_DETAILS |
| LOGD("processMotion - eventTime=%lld, deviceId=0x%x, nature=0x%x, policyFlags=0x%x, action=0x%x, " |
| "metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, downTime=%lld", |
| entry->eventTime, entry->deviceId, entry->nature, entry->policyFlags, entry->action, |
| entry->metaState, entry->edgeFlags, entry->xPrecision, entry->yPrecision, |
| entry->downTime); |
| |
| // Print the most recent sample that we have available, this may change due to batching. |
| size_t sampleCount = 1; |
| MotionSample* sample = & entry->firstSample; |
| for (; sample->next != NULL; sample = sample->next) { |
| sampleCount += 1; |
| } |
| for (uint32_t i = 0; i < entry->pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f", |
| i, entry->pointerIds[i], |
| sample->pointerCoords[i].x, |
| sample->pointerCoords[i].y, |
| sample->pointerCoords[i].pressure, |
| sample->pointerCoords[i].size); |
| } |
| |
| // Keep in mind that due to batching, it is possible for the number of samples actually |
| // dispatched to change before the application finally consumed them. |
| if (entry->action == MOTION_EVENT_ACTION_MOVE) { |
| LOGD(" ... Total movement samples currently batched %d ...", sampleCount); |
| } |
| #endif |
| |
| identifyInputTargetsAndDispatchMotionLocked(currentTime, entry); |
| } |
| |
| void InputDispatcher::identifyInputTargetsAndDispatchKeyLocked( |
| nsecs_t currentTime, KeyEntry* entry) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("identifyInputTargetsAndDispatchKey"); |
| #endif |
| |
| mReusableKeyEvent.initialize(entry->deviceId, entry->nature, entry->action, entry->flags, |
| entry->keyCode, entry->scanCode, entry->metaState, entry->repeatCount, |
| entry->downTime, entry->eventTime); |
| |
| mCurrentInputTargets.clear(); |
| mPolicy->getKeyEventTargets(& mReusableKeyEvent, entry->policyFlags, |
| mCurrentInputTargets); |
| |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| } |
| |
| void InputDispatcher::identifyInputTargetsAndDispatchMotionLocked( |
| nsecs_t currentTime, MotionEntry* entry) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("identifyInputTargetsAndDispatchMotion"); |
| #endif |
| |
| mReusableMotionEvent.initialize(entry->deviceId, entry->nature, entry->action, |
| entry->edgeFlags, entry->metaState, |
| entry->firstSample.pointerCoords[0].x, entry->firstSample.pointerCoords[0].y, |
| entry->xPrecision, entry->yPrecision, |
| entry->downTime, entry->eventTime, entry->pointerCount, entry->pointerIds, |
| entry->firstSample.pointerCoords); |
| |
| mCurrentInputTargets.clear(); |
| mPolicy->getMotionEventTargets(& mReusableMotionEvent, entry->policyFlags, |
| mCurrentInputTargets); |
| |
| dispatchEventToCurrentInputTargetsLocked(currentTime, entry, false); |
| } |
| |
| void InputDispatcher::dispatchEventToCurrentInputTargetsLocked(nsecs_t currentTime, |
| EventEntry* eventEntry, bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("dispatchEventToCurrentInputTargets, " |
| "resumeWithAppendedMotionSample=%s", |
| resumeWithAppendedMotionSample ? "true" : "false"); |
| #endif |
| |
| for (size_t i = 0; i < mCurrentInputTargets.size(); i++) { |
| const InputTarget& inputTarget = mCurrentInputTargets.itemAt(i); |
| |
| ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey( |
| inputTarget.inputChannel->getReceivePipeFd()); |
| if (connectionIndex >= 0) { |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| prepareDispatchCycleLocked(currentTime, connection.get(), eventEntry, & inputTarget, |
| resumeWithAppendedMotionSample); |
| } else { |
| LOGW("Framework requested delivery of an input event to channel '%s' but it " |
| "is not registered with the input dispatcher.", |
| inputTarget.inputChannel->getName().string()); |
| } |
| } |
| } |
| |
| void InputDispatcher::prepareDispatchCycleLocked(nsecs_t currentTime, Connection* connection, |
| EventEntry* eventEntry, const InputTarget* inputTarget, |
| bool resumeWithAppendedMotionSample) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ prepareDispatchCycle, flags=%d, timeout=%lldns, " |
| "xOffset=%f, yOffset=%f, resumeWithAppendedMotionSample=%s", |
| connection->getInputChannelName(), inputTarget->flags, inputTarget->timeout, |
| inputTarget->xOffset, inputTarget->yOffset, |
| resumeWithAppendedMotionSample ? "true" : "false"); |
| #endif |
| |
| // Skip this event if the connection status is not normal. |
| // We don't want to queue outbound events at all if the connection is broken or |
| // not responding. |
| if (connection->status != Connection::STATUS_NORMAL) { |
| LOGV("channel '%s' ~ Dropping event because the channel status is %s", |
| connection->status == Connection::STATUS_BROKEN ? "BROKEN" : "NOT RESPONDING"); |
| return; |
| } |
| |
| // Resume the dispatch cycle with a freshly appended motion sample. |
| // First we check that the last dispatch entry in the outbound queue is for the same |
| // motion event to which we appended the motion sample. If we find such a dispatch |
| // entry, and if it is currently in progress then we try to stream the new sample. |
| bool wasEmpty = connection->outboundQueue.isEmpty(); |
| |
| if (! wasEmpty && resumeWithAppendedMotionSample) { |
| DispatchEntry* motionEventDispatchEntry = |
| connection->findQueuedDispatchEntryForEvent(eventEntry); |
| if (motionEventDispatchEntry) { |
| // If the dispatch entry is not in progress, then we must be busy dispatching an |
| // earlier event. Not a problem, the motion event is on the outbound queue and will |
| // be dispatched later. |
| if (! motionEventDispatchEntry->inProgress) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because the motion event has " |
| "not yet been dispatched. " |
| "(Waiting for earlier events to be consumed.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // If the dispatch entry is in progress but it already has a tail of pending |
| // motion samples, then it must mean that the shared memory buffer filled up. |
| // Not a problem, when this dispatch cycle is finished, we will eventually start |
| // a new dispatch cycle to process the tail and that tail includes the newly |
| // appended motion sample. |
| if (motionEventDispatchEntry->tailMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Not streaming because no new samples can " |
| "be appended to the motion event in this dispatch cycle. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| // The dispatch entry is in progress and is still potentially open for streaming. |
| // Try to stream the new motion sample. This might fail if the consumer has already |
| // consumed the motion event (or if the channel is broken). |
| MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; |
| status_t status = connection->inputPublisher.appendMotionSample( |
| appendedMotionSample->eventTime, appendedMotionSample->pointerCoords); |
| if (status == OK) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Successfully streamed new motion sample.", |
| connection->getInputChannelName()); |
| #endif |
| return; |
| } |
| |
| #if DEBUG_BATCHING |
| if (status == NO_MEMORY) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event because the shared memory buffer is full. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else if (status == status_t(FAILED_TRANSACTION)) { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatchedmove event because the event has already been consumed. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName()); |
| } else { |
| LOGD("channel '%s' ~ Could not append motion sample to currently " |
| "dispatched move event due to an error, status=%d. " |
| "(Waiting for next dispatch cycle to start.)", |
| connection->getInputChannelName(), status); |
| } |
| #endif |
| // Failed to stream. Start a new tail of pending motion samples to dispatch |
| // in the next cycle. |
| motionEventDispatchEntry->tailMotionSample = appendedMotionSample; |
| return; |
| } |
| } |
| |
| // This is a new event. |
| // Enqueue a new dispatch entry onto the outbound queue for this connection. |
| DispatchEntry* dispatchEntry = mAllocator.obtainDispatchEntry(eventEntry); // increments ref |
| dispatchEntry->targetFlags = inputTarget->flags; |
| dispatchEntry->xOffset = inputTarget->xOffset; |
| dispatchEntry->yOffset = inputTarget->yOffset; |
| dispatchEntry->timeout = inputTarget->timeout; |
| dispatchEntry->inProgress = false; |
| dispatchEntry->headMotionSample = NULL; |
| dispatchEntry->tailMotionSample = NULL; |
| |
| // Handle the case where we could not stream a new motion sample because the consumer has |
| // already consumed the motion event (otherwise the corresponding dispatch entry would |
| // still be in the outbound queue for this connection). We set the head motion sample |
| // to the list starting with the newly appended motion sample. |
| if (resumeWithAppendedMotionSample) { |
| #if DEBUG_BATCHING |
| LOGD("channel '%s' ~ Preparing a new dispatch cycle for additional motion samples " |
| "that cannot be streamed because the motion event has already been consumed.", |
| connection->getInputChannelName()); |
| #endif |
| MotionSample* appendedMotionSample = static_cast<MotionEntry*>(eventEntry)->lastSample; |
| dispatchEntry->headMotionSample = appendedMotionSample; |
| } |
| |
| // Enqueue the dispatch entry. |
| connection->outboundQueue.enqueueAtTail(dispatchEntry); |
| |
| // If the outbound queue was previously empty, start the dispatch cycle going. |
| if (wasEmpty) { |
| activateConnectionLocked(connection); |
| startDispatchCycleLocked(currentTime, connection); |
| } |
| } |
| |
| void InputDispatcher::startDispatchCycleLocked(nsecs_t currentTime, Connection* connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ startDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| assert(connection->status == Connection::STATUS_NORMAL); |
| assert(! connection->outboundQueue.isEmpty()); |
| |
| DispatchEntry* dispatchEntry = connection->outboundQueue.head.next; |
| assert(! dispatchEntry->inProgress); |
| |
| // TODO throttle successive ACTION_MOVE motion events for the same device |
| // possible implementation could set a brief poll timeout here and resume starting the |
| // dispatch cycle when elapsed |
| |
| // Publish the event. |
| status_t status; |
| switch (dispatchEntry->eventEntry->type) { |
| case EventEntry::TYPE_KEY: { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(dispatchEntry->eventEntry); |
| |
| // Apply target flags. |
| int32_t action = keyEntry->action; |
| int32_t flags = keyEntry->flags; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { |
| flags |= KEY_EVENT_FLAG_CANCELED; |
| } |
| |
| // Publish the key event. |
| status = connection->inputPublisher.publishKeyEvent(keyEntry->deviceId, keyEntry->nature, |
| action, flags, keyEntry->keyCode, keyEntry->scanCode, |
| keyEntry->metaState, keyEntry->repeatCount, keyEntry->downTime, |
| keyEntry->eventTime); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish key event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| break; |
| } |
| |
| case EventEntry::TYPE_MOTION: { |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(dispatchEntry->eventEntry); |
| |
| // Apply target flags. |
| int32_t action = motionEntry->action; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_OUTSIDE) { |
| action = MOTION_EVENT_ACTION_OUTSIDE; |
| } |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_CANCEL) { |
| action = MOTION_EVENT_ACTION_CANCEL; |
| } |
| |
| // If headMotionSample is non-NULL, then it points to the first new sample that we |
| // were unable to dispatch during the previous cycle so we resume dispatching from |
| // that point in the list of motion samples. |
| // Otherwise, we just start from the first sample of the motion event. |
| MotionSample* firstMotionSample = dispatchEntry->headMotionSample; |
| if (! firstMotionSample) { |
| firstMotionSample = & motionEntry->firstSample; |
| } |
| |
| // Publish the motion event and the first motion sample. |
| status = connection->inputPublisher.publishMotionEvent(motionEntry->deviceId, |
| motionEntry->nature, action, motionEntry->edgeFlags, motionEntry->metaState, |
| dispatchEntry->xOffset, dispatchEntry->yOffset, |
| motionEntry->xPrecision, motionEntry->yPrecision, |
| motionEntry->downTime, firstMotionSample->eventTime, |
| motionEntry->pointerCount, motionEntry->pointerIds, |
| firstMotionSample->pointerCoords); |
| |
| if (status) { |
| LOGE("channel '%s' ~ Could not publish motion event, " |
| "status=%d", connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Append additional motion samples. |
| MotionSample* nextMotionSample = firstMotionSample->next; |
| for (; nextMotionSample != NULL; nextMotionSample = nextMotionSample->next) { |
| status = connection->inputPublisher.appendMotionSample( |
| nextMotionSample->eventTime, nextMotionSample->pointerCoords); |
| if (status == NO_MEMORY) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ Shared memory buffer full. Some motion samples will " |
| "be sent in the next dispatch cycle.", |
| connection->getInputChannelName()); |
| #endif |
| break; |
| } |
| if (status != OK) { |
| LOGE("channel '%s' ~ Could not append motion sample " |
| "for a reason other than out of memory, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| } |
| |
| // Remember the next motion sample that we could not dispatch, in case we ran out |
| // of space in the shared memory buffer. |
| dispatchEntry->tailMotionSample = nextMotionSample; |
| break; |
| } |
| |
| default: { |
| assert(false); |
| } |
| } |
| |
| // Send the dispatch signal. |
| status = connection->inputPublisher.sendDispatchSignal(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not send dispatch signal, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Record information about the newly started dispatch cycle. |
| dispatchEntry->inProgress = true; |
| |
| connection->lastEventTime = dispatchEntry->eventEntry->eventTime; |
| connection->lastDispatchTime = currentTime; |
| |
| nsecs_t timeout = dispatchEntry->timeout; |
| connection->nextTimeoutTime = (timeout >= 0) ? currentTime + timeout : LONG_LONG_MAX; |
| |
| // Notify other system components. |
| onDispatchCycleStartedLocked(currentTime, connection); |
| } |
| |
| void InputDispatcher::finishDispatchCycleLocked(nsecs_t currentTime, Connection* connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ finishDispatchCycle: %01.1fms since event, " |
| "%01.1fms since dispatch", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime)); |
| #endif |
| |
| if (connection->status == Connection::STATUS_BROKEN) { |
| return; |
| } |
| |
| // Clear the pending timeout. |
| connection->nextTimeoutTime = LONG_LONG_MAX; |
| |
| if (connection->status == Connection::STATUS_NOT_RESPONDING) { |
| // Recovering from an ANR. |
| connection->status = Connection::STATUS_NORMAL; |
| |
| // Notify other system components. |
| onDispatchCycleFinishedLocked(currentTime, connection, true /*recoveredFromANR*/); |
| } else { |
| // Normal finish. Not much to do here. |
| |
| // Notify other system components. |
| onDispatchCycleFinishedLocked(currentTime, connection, false /*recoveredFromANR*/); |
| } |
| |
| // Reset the publisher since the event has been consumed. |
| // We do this now so that the publisher can release some of its internal resources |
| // while waiting for the next dispatch cycle to begin. |
| status_t status = connection->inputPublisher.reset(); |
| if (status) { |
| LOGE("channel '%s' ~ Could not reset publisher, status=%d", |
| connection->getInputChannelName(), status); |
| abortDispatchCycleLocked(currentTime, connection, true /*broken*/); |
| return; |
| } |
| |
| // Start the next dispatch cycle for this connection. |
| while (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.head.next; |
| if (dispatchEntry->inProgress) { |
| // Finish or resume current event in progress. |
| if (dispatchEntry->tailMotionSample) { |
| // We have a tail of undispatched motion samples. |
| // Reuse the same DispatchEntry and start a new cycle. |
| dispatchEntry->inProgress = false; |
| dispatchEntry->headMotionSample = dispatchEntry->tailMotionSample; |
| dispatchEntry->tailMotionSample = NULL; |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| // Finished. |
| connection->outboundQueue.dequeueAtHead(); |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } else { |
| // If the head is not in progress, then we must have already dequeued the in |
| // progress event, which means we actually aborted it (due to ANR). |
| // So just start the next event for this connection. |
| startDispatchCycleLocked(currentTime, connection); |
| return; |
| } |
| } |
| |
| // Outbound queue is empty, deactivate the connection. |
| deactivateConnectionLocked(connection); |
| } |
| |
| bool InputDispatcher::timeoutDispatchCycleLocked(nsecs_t currentTime, Connection* connection) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ timeoutDispatchCycle", |
| connection->getInputChannelName()); |
| #endif |
| |
| if (connection->status != Connection::STATUS_NORMAL) { |
| return false; |
| } |
| |
| // Enter the not responding state. |
| connection->status = Connection::STATUS_NOT_RESPONDING; |
| connection->lastANRTime = currentTime; |
| bool deactivated = abortDispatchCycleLocked(currentTime, connection, false /*(not) broken*/); |
| |
| // Notify other system components. |
| onDispatchCycleANRLocked(currentTime, connection); |
| return deactivated; |
| } |
| |
| bool InputDispatcher::abortDispatchCycleLocked(nsecs_t currentTime, Connection* connection, |
| bool broken) { |
| #if DEBUG_DISPATCH_CYCLE |
| LOGD("channel '%s' ~ abortDispatchCycle, broken=%s", |
| connection->getInputChannelName(), broken ? "true" : "false"); |
| #endif |
| |
| if (connection->status == Connection::STATUS_BROKEN) { |
| return false; |
| } |
| |
| // Clear the pending timeout. |
| connection->nextTimeoutTime = LONG_LONG_MAX; |
| |
| // Clear the outbound queue. |
| while (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.dequeueAtHead(); |
| mAllocator.releaseDispatchEntry(dispatchEntry); |
| } |
| |
| // Outbound queue is empty, deactivate the connection. |
| deactivateConnectionLocked(connection); |
| |
| // Handle the case where the connection appears to be unrecoverably broken. |
| if (broken) { |
| connection->status = Connection::STATUS_BROKEN; |
| |
| // Notify other system components. |
| onDispatchCycleBrokenLocked(currentTime, connection); |
| } |
| return true; /*deactivated*/ |
| } |
| |
| bool InputDispatcher::handleReceiveCallback(int receiveFd, int events, void* data) { |
| InputDispatcher* d = static_cast<InputDispatcher*>(data); |
| |
| { // acquire lock |
| AutoMutex _l(d->mLock); |
| |
| ssize_t connectionIndex = d->mConnectionsByReceiveFd.indexOfKey(receiveFd); |
| if (connectionIndex < 0) { |
| LOGE("Received spurious receive callback for unknown input channel. " |
| "fd=%d, events=0x%x", receiveFd, events); |
| return false; // remove the callback |
| } |
| |
| nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| |
| sp<Connection> connection = d->mConnectionsByReceiveFd.valueAt(connectionIndex); |
| if (events & (POLLERR | POLLHUP | POLLNVAL)) { |
| LOGE("channel '%s' ~ Consumer closed input channel or an error occurred. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| d->abortDispatchCycleLocked(currentTime, connection.get(), true /*broken*/); |
| return false; // remove the callback |
| } |
| |
| if (! (events & POLLIN)) { |
| LOGW("channel '%s' ~ Received spurious callback for unhandled poll event. " |
| "events=0x%x", connection->getInputChannelName(), events); |
| return true; |
| } |
| |
| status_t status = connection->inputPublisher.receiveFinishedSignal(); |
| if (status) { |
| LOGE("channel '%s' ~ Failed to receive finished signal. status=%d", |
| connection->getInputChannelName(), status); |
| d->abortDispatchCycleLocked(currentTime, connection.get(), true /*broken*/); |
| return false; // remove the callback |
| } |
| |
| d->finishDispatchCycleLocked(currentTime, connection.get()); |
| return true; |
| } // release lock |
| } |
| |
| void InputDispatcher::notifyConfigurationChanged(nsecs_t eventTime, int32_t touchScreenConfig, |
| int32_t keyboardConfig, int32_t navigationConfig) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyConfigurationChanged - eventTime=%lld, touchScreenConfig=%d, " |
| "keyboardConfig=%d, navigationConfig=%d", eventTime, |
| touchScreenConfig, keyboardConfig, navigationConfig); |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| ConfigurationChangedEntry* newEntry = mAllocator.obtainConfigurationChangedEntry(); |
| newEntry->eventTime = eventTime; |
| newEntry->touchScreenConfig = touchScreenConfig; |
| newEntry->keyboardConfig = keyboardConfig; |
| newEntry->navigationConfig = navigationConfig; |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyLidSwitchChanged(nsecs_t eventTime, bool lidOpen) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyLidSwitchChanged - eventTime=%lld, open=%s", eventTime, |
| lidOpen ? "true" : "false"); |
| #endif |
| |
| // Send lid switch notification immediately and synchronously. |
| mPolicy->notifyLidSwitchChanged(eventTime, lidOpen); |
| } |
| |
| void InputDispatcher::notifyAppSwitchComing(nsecs_t eventTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyAppSwitchComing - eventTime=%lld", eventTime); |
| #endif |
| |
| // Remove movement keys from the queue from most recent to least recent, stopping at the |
| // first non-movement key. |
| // TODO: Include a detailed description of why we do this... |
| |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| for (EventEntry* entry = mInboundQueue.tail.prev; entry != & mInboundQueue.head; ) { |
| EventEntry* prev = entry->prev; |
| |
| if (entry->type == EventEntry::TYPE_KEY) { |
| KeyEntry* keyEntry = static_cast<KeyEntry*>(entry); |
| if (isMovementKey(keyEntry->keyCode)) { |
| LOGV("Dropping movement key during app switch: keyCode=%d, action=%d", |
| keyEntry->keyCode, keyEntry->action); |
| mInboundQueue.dequeue(keyEntry); |
| mAllocator.releaseKeyEntry(keyEntry); |
| } else { |
| // stop at last non-movement key |
| break; |
| } |
| } |
| |
| entry = prev; |
| } |
| } // release lock |
| } |
| |
| void InputDispatcher::notifyKey(nsecs_t eventTime, int32_t deviceId, int32_t nature, |
| uint32_t policyFlags, int32_t action, int32_t flags, |
| int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyKey - eventTime=%lld, deviceId=0x%x, nature=0x%x, policyFlags=0x%x, action=0x%x, " |
| "flags=0x%x, keyCode=0x%x, scanCode=0x%x, metaState=0x%x, downTime=%lld", |
| eventTime, deviceId, nature, policyFlags, action, flags, |
| keyCode, scanCode, metaState, downTime); |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| KeyEntry* newEntry = mAllocator.obtainKeyEntry(); |
| newEntry->eventTime = eventTime; |
| newEntry->deviceId = deviceId; |
| newEntry->nature = nature; |
| newEntry->policyFlags = policyFlags; |
| newEntry->action = action; |
| newEntry->flags = flags; |
| newEntry->keyCode = keyCode; |
| newEntry->scanCode = scanCode; |
| newEntry->metaState = metaState; |
| newEntry->repeatCount = 0; |
| newEntry->downTime = downTime; |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| void InputDispatcher::notifyMotion(nsecs_t eventTime, int32_t deviceId, int32_t nature, |
| uint32_t policyFlags, int32_t action, int32_t metaState, int32_t edgeFlags, |
| uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords, |
| float xPrecision, float yPrecision, nsecs_t downTime) { |
| #if DEBUG_INBOUND_EVENT_DETAILS |
| LOGD("notifyMotion - eventTime=%lld, deviceId=0x%x, nature=0x%x, policyFlags=0x%x, " |
| "action=0x%x, metaState=0x%x, edgeFlags=0x%x, xPrecision=%f, yPrecision=%f, " |
| "downTime=%lld", |
| eventTime, deviceId, nature, policyFlags, action, metaState, edgeFlags, |
| xPrecision, yPrecision, downTime); |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| LOGD(" Pointer %d: id=%d, x=%f, y=%f, pressure=%f, size=%f", |
| i, pointerIds[i], pointerCoords[i].x, pointerCoords[i].y, |
| pointerCoords[i].pressure, pointerCoords[i].size); |
| } |
| #endif |
| |
| bool wasEmpty; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| // Attempt batching and streaming of move events. |
| if (action == MOTION_EVENT_ACTION_MOVE) { |
| // BATCHING CASE |
| // |
| // Try to append a move sample to the tail of the inbound queue for this device. |
| // Give up if we encounter a non-move motion event for this device since that |
| // means we cannot append any new samples until a new motion event has started. |
| for (EventEntry* entry = mInboundQueue.tail.prev; |
| entry != & mInboundQueue.head; entry = entry->prev) { |
| if (entry->type != EventEntry::TYPE_MOTION) { |
| // Keep looking for motion events. |
| continue; |
| } |
| |
| MotionEntry* motionEntry = static_cast<MotionEntry*>(entry); |
| if (motionEntry->deviceId != deviceId) { |
| // Keep looking for this device. |
| continue; |
| } |
| |
| if (motionEntry->action != MOTION_EVENT_ACTION_MOVE |
| || motionEntry->pointerCount != pointerCount) { |
| // Last motion event in the queue for this device is not compatible for |
| // appending new samples. Stop here. |
| goto NoBatchingOrStreaming; |
| } |
| |
| // The last motion event is a move and is compatible for appending. |
| // Do the batching magic and exit. |
| mAllocator.appendMotionSample(motionEntry, eventTime, pointerCount, pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recent " |
| "motion event for this device in the inbound queue."); |
| #endif |
| return; // done |
| } |
| |
| // STREAMING CASE |
| // |
| // There is no pending motion event (of any kind) for this device in the inbound queue. |
| // Search the outbound queues for a synchronously dispatched motion event for this |
| // device. If found, then we append the new sample to that event and then try to |
| // push it out to all current targets. It is possible that some targets will already |
| // have consumed the motion event. This case is automatically handled by the |
| // logic in prepareDispatchCycleLocked by tracking where resumption takes place. |
| // |
| // The reason we look for a synchronously dispatched motion event is because we |
| // want to be sure that no other motion events have been dispatched since the move. |
| // It's also convenient because it means that the input targets are still valid. |
| // This code could be improved to support streaming of asynchronously dispatched |
| // motion events (which might be significantly more efficient) but it may become |
| // a little more complicated as a result. |
| // |
| // Note: This code crucially depends on the invariant that an outbound queue always |
| // contains at most one synchronous event and it is always last (but it might |
| // not be first!). |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| Connection* connection = mActiveConnections.itemAt(i); |
| if (! connection->outboundQueue.isEmpty()) { |
| DispatchEntry* dispatchEntry = connection->outboundQueue.tail.prev; |
| if (dispatchEntry->targetFlags & InputTarget::FLAG_SYNC) { |
| if (dispatchEntry->eventEntry->type != EventEntry::TYPE_MOTION) { |
| goto NoBatchingOrStreaming; |
| } |
| |
| MotionEntry* syncedMotionEntry = static_cast<MotionEntry*>( |
| dispatchEntry->eventEntry); |
| if (syncedMotionEntry->action != MOTION_EVENT_ACTION_MOVE |
| || syncedMotionEntry->deviceId != deviceId |
| || syncedMotionEntry->pointerCount != pointerCount) { |
| goto NoBatchingOrStreaming; |
| } |
| |
| // Found synced move entry. Append sample and resume dispatch. |
| mAllocator.appendMotionSample(syncedMotionEntry, eventTime, |
| pointerCount, pointerCoords); |
| #if DEBUG_BATCHING |
| LOGD("Appended motion sample onto batch for most recent synchronously " |
| "dispatched motion event for this device in the outbound queues."); |
| #endif |
| nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| dispatchEventToCurrentInputTargetsLocked(currentTime, syncedMotionEntry, |
| true /*resumeWithAppendedMotionSample*/); |
| return; // done! |
| } |
| } |
| } |
| |
| NoBatchingOrStreaming:; |
| } |
| |
| // Just enqueue a new motion event. |
| MotionEntry* newEntry = mAllocator.obtainMotionEntry(); |
| newEntry->eventTime = eventTime; |
| newEntry->deviceId = deviceId; |
| newEntry->nature = nature; |
| newEntry->policyFlags = policyFlags; |
| newEntry->action = action; |
| newEntry->metaState = metaState; |
| newEntry->edgeFlags = edgeFlags; |
| newEntry->xPrecision = xPrecision; |
| newEntry->yPrecision = yPrecision; |
| newEntry->downTime = downTime; |
| newEntry->pointerCount = pointerCount; |
| newEntry->firstSample.eventTime = eventTime; |
| newEntry->lastSample = & newEntry->firstSample; |
| for (uint32_t i = 0; i < pointerCount; i++) { |
| newEntry->pointerIds[i] = pointerIds[i]; |
| newEntry->firstSample.pointerCoords[i] = pointerCoords[i]; |
| } |
| |
| wasEmpty = mInboundQueue.isEmpty(); |
| mInboundQueue.enqueueAtTail(newEntry); |
| } // release lock |
| |
| if (wasEmpty) { |
| mPollLoop->wake(); |
| } |
| } |
| |
| void InputDispatcher::resetKeyRepeatLocked() { |
| if (mKeyRepeatState.lastKeyEntry) { |
| mAllocator.releaseKeyEntry(mKeyRepeatState.lastKeyEntry); |
| mKeyRepeatState.lastKeyEntry = NULL; |
| } |
| } |
| |
| status_t InputDispatcher::registerInputChannel(const sp<InputChannel>& inputChannel) { |
| int receiveFd; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| receiveFd = inputChannel->getReceivePipeFd(); |
| if (mConnectionsByReceiveFd.indexOfKey(receiveFd) >= 0) { |
| LOGW("Attempted to register already registered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = new Connection(inputChannel); |
| status_t status = connection->initialize(); |
| if (status) { |
| LOGE("Failed to initialize input publisher for input channel '%s', status=%d", |
| inputChannel->getName().string(), status); |
| return status; |
| } |
| |
| mConnectionsByReceiveFd.add(receiveFd, connection); |
| } // release lock |
| |
| mPollLoop->setCallback(receiveFd, POLLIN, handleReceiveCallback, this); |
| return OK; |
| } |
| |
| status_t InputDispatcher::unregisterInputChannel(const sp<InputChannel>& inputChannel) { |
| int32_t receiveFd; |
| { // acquire lock |
| AutoMutex _l(mLock); |
| |
| receiveFd = inputChannel->getReceivePipeFd(); |
| ssize_t connectionIndex = mConnectionsByReceiveFd.indexOfKey(receiveFd); |
| if (connectionIndex < 0) { |
| LOGW("Attempted to unregister already unregistered input channel '%s'", |
| inputChannel->getName().string()); |
| return BAD_VALUE; |
| } |
| |
| sp<Connection> connection = mConnectionsByReceiveFd.valueAt(connectionIndex); |
| mConnectionsByReceiveFd.removeItemsAt(connectionIndex); |
| |
| connection->status = Connection::STATUS_ZOMBIE; |
| |
| nsecs_t currentTime = systemTime(SYSTEM_TIME_MONOTONIC); |
| abortDispatchCycleLocked(currentTime, connection.get(), true /*broken*/); |
| } // release lock |
| |
| mPollLoop->removeCallback(receiveFd); |
| |
| // Wake the poll loop because removing the connection may have changed the current |
| // synchronization state. |
| mPollLoop->wake(); |
| return OK; |
| } |
| |
| void InputDispatcher::activateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| return; |
| } |
| } |
| mActiveConnections.add(connection); |
| } |
| |
| void InputDispatcher::deactivateConnectionLocked(Connection* connection) { |
| for (size_t i = 0; i < mActiveConnections.size(); i++) { |
| if (mActiveConnections.itemAt(i) == connection) { |
| mActiveConnections.removeAt(i); |
| return; |
| } |
| } |
| } |
| |
| void InputDispatcher::onDispatchCycleStartedLocked(nsecs_t currentTime, Connection* connection) { |
| } |
| |
| void InputDispatcher::onDispatchCycleFinishedLocked(nsecs_t currentTime, |
| Connection* connection, bool recoveredFromANR) { |
| if (recoveredFromANR) { |
| LOGI("channel '%s' ~ Recovered from ANR. %01.1fms since event, " |
| "%01.1fms since dispatch, %01.1fms since ANR", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime), |
| connection->getANRLatencyMillis(currentTime)); |
| |
| // TODO tell framework |
| } |
| } |
| |
| void InputDispatcher::onDispatchCycleANRLocked(nsecs_t currentTime, Connection* connection) { |
| LOGI("channel '%s' ~ Not responding! %01.1fms since event, %01.1fms since dispatch", |
| connection->getInputChannelName(), |
| connection->getEventLatencyMillis(currentTime), |
| connection->getDispatchLatencyMillis(currentTime)); |
| |
| // TODO tell framework |
| } |
| |
| void InputDispatcher::onDispatchCycleBrokenLocked(nsecs_t currentTime, Connection* connection) { |
| LOGE("channel '%s' ~ Channel is unrecoverably broken and will be disposed!", |
| connection->getInputChannelName()); |
| |
| // TODO tell framework |
| } |
| |
| // --- InputDispatcher::Allocator --- |
| |
| InputDispatcher::Allocator::Allocator() { |
| } |
| |
| InputDispatcher::ConfigurationChangedEntry* |
| InputDispatcher::Allocator::obtainConfigurationChangedEntry() { |
| ConfigurationChangedEntry* entry = mConfigurationChangeEntryPool.alloc(); |
| entry->refCount = 1; |
| entry->type = EventEntry::TYPE_CONFIGURATION_CHANGED; |
| return entry; |
| } |
| |
| InputDispatcher::KeyEntry* InputDispatcher::Allocator::obtainKeyEntry() { |
| KeyEntry* entry = mKeyEntryPool.alloc(); |
| entry->refCount = 1; |
| entry->type = EventEntry::TYPE_KEY; |
| return entry; |
| } |
| |
| InputDispatcher::MotionEntry* InputDispatcher::Allocator::obtainMotionEntry() { |
| MotionEntry* entry = mMotionEntryPool.alloc(); |
| entry->refCount = 1; |
| entry->type = EventEntry::TYPE_MOTION; |
| entry->firstSample.next = NULL; |
| return entry; |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Allocator::obtainDispatchEntry( |
| EventEntry* eventEntry) { |
| DispatchEntry* entry = mDispatchEntryPool.alloc(); |
| entry->eventEntry = eventEntry; |
| eventEntry->refCount += 1; |
| return entry; |
| } |
| |
| void InputDispatcher::Allocator::releaseEventEntry(EventEntry* entry) { |
| switch (entry->type) { |
| case EventEntry::TYPE_CONFIGURATION_CHANGED: |
| releaseConfigurationChangedEntry(static_cast<ConfigurationChangedEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_KEY: |
| releaseKeyEntry(static_cast<KeyEntry*>(entry)); |
| break; |
| case EventEntry::TYPE_MOTION: |
| releaseMotionEntry(static_cast<MotionEntry*>(entry)); |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseConfigurationChangedEntry( |
| ConfigurationChangedEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| mConfigurationChangeEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseKeyEntry(KeyEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| mKeyEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseMotionEntry(MotionEntry* entry) { |
| entry->refCount -= 1; |
| if (entry->refCount == 0) { |
| freeMotionSampleList(entry->firstSample.next); |
| mMotionEntryPool.free(entry); |
| } else { |
| assert(entry->refCount > 0); |
| } |
| } |
| |
| void InputDispatcher::Allocator::releaseDispatchEntry(DispatchEntry* entry) { |
| releaseEventEntry(entry->eventEntry); |
| mDispatchEntryPool.free(entry); |
| } |
| |
| void InputDispatcher::Allocator::appendMotionSample(MotionEntry* motionEntry, |
| nsecs_t eventTime, int32_t pointerCount, const PointerCoords* pointerCoords) { |
| MotionSample* sample = mMotionSamplePool.alloc(); |
| sample->eventTime = eventTime; |
| for (int32_t i = 0; i < pointerCount; i++) { |
| sample->pointerCoords[i] = pointerCoords[i]; |
| } |
| |
| sample->next = NULL; |
| motionEntry->lastSample->next = sample; |
| motionEntry->lastSample = sample; |
| } |
| |
| void InputDispatcher::Allocator::freeMotionSample(MotionSample* sample) { |
| mMotionSamplePool.free(sample); |
| } |
| |
| void InputDispatcher::Allocator::freeMotionSampleList(MotionSample* head) { |
| while (head) { |
| MotionSample* next = head->next; |
| mMotionSamplePool.free(head); |
| head = next; |
| } |
| } |
| |
| // --- InputDispatcher::Connection --- |
| |
| InputDispatcher::Connection::Connection(const sp<InputChannel>& inputChannel) : |
| status(STATUS_NORMAL), inputChannel(inputChannel), inputPublisher(inputChannel), |
| nextTimeoutTime(LONG_LONG_MAX), |
| lastEventTime(LONG_LONG_MAX), lastDispatchTime(LONG_LONG_MAX), |
| lastANRTime(LONG_LONG_MAX) { |
| } |
| |
| InputDispatcher::Connection::~Connection() { |
| } |
| |
| status_t InputDispatcher::Connection::initialize() { |
| return inputPublisher.initialize(); |
| } |
| |
| InputDispatcher::DispatchEntry* InputDispatcher::Connection::findQueuedDispatchEntryForEvent( |
| const EventEntry* eventEntry) const { |
| for (DispatchEntry* dispatchEntry = outboundQueue.tail.prev; |
| dispatchEntry != & outboundQueue.head; dispatchEntry = dispatchEntry->prev) { |
| if (dispatchEntry->eventEntry == eventEntry) { |
| return dispatchEntry; |
| } |
| } |
| return NULL; |
| } |
| |
| |
| // --- InputDispatcherThread --- |
| |
| InputDispatcherThread::InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher) : |
| Thread(/*canCallJava*/ true), mDispatcher(dispatcher) { |
| } |
| |
| InputDispatcherThread::~InputDispatcherThread() { |
| } |
| |
| bool InputDispatcherThread::threadLoop() { |
| mDispatcher->dispatchOnce(); |
| return true; |
| } |
| |
| } // namespace android |