blob: 9a71f6e0f2d42abcaf099ec0fd5205db42ac02fd [file] [log] [blame]
The Android Open Source Project9066cfe2009-03-03 19:31:44 -08001/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder. A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism. This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport. As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types. There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}. Most other
66 * data operations are built on top of these. The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items. The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read. These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}. These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data. (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values. This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel. The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects. For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written. When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written. There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system. The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object. Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object. The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor. The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types. These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed. The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178 private static final boolean DEBUG_RECYCLE = false;
179
180 @SuppressWarnings({"UnusedDeclaration"})
181 private int mObject; // used by native code
182 @SuppressWarnings({"UnusedDeclaration"})
183 private int mOwnObject; // used by native code
184 private RuntimeException mStack;
185
186 private static final int POOL_SIZE = 6;
187 private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
188 private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
189
190 private static final int VAL_NULL = -1;
191 private static final int VAL_STRING = 0;
192 private static final int VAL_INTEGER = 1;
193 private static final int VAL_MAP = 2;
194 private static final int VAL_BUNDLE = 3;
195 private static final int VAL_PARCELABLE = 4;
196 private static final int VAL_SHORT = 5;
197 private static final int VAL_LONG = 6;
198 private static final int VAL_FLOAT = 7;
199 private static final int VAL_DOUBLE = 8;
200 private static final int VAL_BOOLEAN = 9;
201 private static final int VAL_CHARSEQUENCE = 10;
202 private static final int VAL_LIST = 11;
203 private static final int VAL_SPARSEARRAY = 12;
204 private static final int VAL_BYTEARRAY = 13;
205 private static final int VAL_STRINGARRAY = 14;
206 private static final int VAL_IBINDER = 15;
207 private static final int VAL_PARCELABLEARRAY = 16;
208 private static final int VAL_OBJECTARRAY = 17;
209 private static final int VAL_INTARRAY = 18;
210 private static final int VAL_LONGARRAY = 19;
211 private static final int VAL_BYTE = 20;
212 private static final int VAL_SERIALIZABLE = 21;
213 private static final int VAL_SPARSEBOOLEANARRAY = 22;
214 private static final int VAL_BOOLEANARRAY = 23;
215
216 private static final int EX_SECURITY = -1;
217 private static final int EX_BAD_PARCELABLE = -2;
218 private static final int EX_ILLEGAL_ARGUMENT = -3;
219 private static final int EX_NULL_POINTER = -4;
220 private static final int EX_ILLEGAL_STATE = -5;
221
222 public final static Parcelable.Creator<String> STRING_CREATOR
223 = new Parcelable.Creator<String>() {
224 public String createFromParcel(Parcel source) {
225 return source.readString();
226 }
227 public String[] newArray(int size) {
228 return new String[size];
229 }
230 };
231
232 /**
233 * Retrieve a new Parcel object from the pool.
234 */
235 public static Parcel obtain() {
236 final Parcel[] pool = sOwnedPool;
237 synchronized (pool) {
238 Parcel p;
239 for (int i=0; i<POOL_SIZE; i++) {
240 p = pool[i];
241 if (p != null) {
242 pool[i] = null;
243 if (DEBUG_RECYCLE) {
244 p.mStack = new RuntimeException();
245 }
246 return p;
247 }
248 }
249 }
250 return new Parcel(0);
251 }
252
253 /**
254 * Put a Parcel object back into the pool. You must not touch
255 * the object after this call.
256 */
257 public final void recycle() {
258 if (DEBUG_RECYCLE) mStack = null;
259 freeBuffer();
260 final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
261 synchronized (pool) {
262 for (int i=0; i<POOL_SIZE; i++) {
263 if (pool[i] == null) {
264 pool[i] = this;
265 return;
266 }
267 }
268 }
269 }
270
271 /**
272 * Returns the total amount of data contained in the parcel.
273 */
274 public final native int dataSize();
275
276 /**
277 * Returns the amount of data remaining to be read from the
278 * parcel. That is, {@link #dataSize}-{@link #dataPosition}.
279 */
280 public final native int dataAvail();
281
282 /**
283 * Returns the current position in the parcel data. Never
284 * more than {@link #dataSize}.
285 */
286 public final native int dataPosition();
287
288 /**
289 * Returns the total amount of space in the parcel. This is always
290 * >= {@link #dataSize}. The difference between it and dataSize() is the
291 * amount of room left until the parcel needs to re-allocate its
292 * data buffer.
293 */
294 public final native int dataCapacity();
295
296 /**
297 * Change the amount of data in the parcel. Can be either smaller or
298 * larger than the current size. If larger than the current capacity,
299 * more memory will be allocated.
300 *
301 * @param size The new number of bytes in the Parcel.
302 */
303 public final native void setDataSize(int size);
304
305 /**
306 * Move the current read/write position in the parcel.
307 * @param pos New offset in the parcel; must be between 0 and
308 * {@link #dataSize}.
309 */
310 public final native void setDataPosition(int pos);
311
312 /**
313 * Change the capacity (current available space) of the parcel.
314 *
315 * @param size The new capacity of the parcel, in bytes. Can not be
316 * less than {@link #dataSize} -- that is, you can not drop existing data
317 * with this method.
318 */
319 public final native void setDataCapacity(int size);
320
321 /**
322 * Returns the raw bytes of the parcel.
323 *
324 * <p class="note">The data you retrieve here <strong>must not</strong>
325 * be placed in any kind of persistent storage (on local disk, across
326 * a network, etc). For that, you should use standard serialization
327 * or another kind of general serialization mechanism. The Parcel
328 * marshalled representation is highly optimized for local IPC, and as
329 * such does not attempt to maintain compatibility with data created
330 * in different versions of the platform.
331 */
332 public final native byte[] marshall();
333
334 /**
335 * Set the bytes in data to be the raw bytes of this Parcel.
336 */
337 public final native void unmarshall(byte[] data, int offest, int length);
338
339 public final native void appendFrom(Parcel parcel, int offset, int length);
340
341 /**
342 * Report whether the parcel contains any marshalled file descriptors.
343 */
344 public final native boolean hasFileDescriptors();
345
346 /**
347 * Store or read an IBinder interface token in the parcel at the current
348 * {@link #dataPosition}. This is used to validate that the marshalled
349 * transaction is intended for the target interface.
350 */
351 public final native void writeInterfaceToken(String interfaceName);
352 public final native void enforceInterface(String interfaceName);
353
354 /**
355 * Write a byte array into the parcel at the current {#link #dataPosition},
356 * growing {@link #dataCapacity} if needed.
357 * @param b Bytes to place into the parcel.
358 */
359 public final void writeByteArray(byte[] b) {
360 writeByteArray(b, 0, (b != null) ? b.length : 0);
361 }
362
363 /**
364 * Write an byte array into the parcel at the current {#link #dataPosition},
365 * growing {@link #dataCapacity} if needed.
366 * @param b Bytes to place into the parcel.
367 * @param offset Index of first byte to be written.
368 * @param len Number of bytes to write.
369 */
370 public final void writeByteArray(byte[] b, int offset, int len) {
371 if (b == null) {
372 writeInt(-1);
373 return;
374 }
375 if (b.length < offset + len || len < 0 || offset < 0) {
376 throw new ArrayIndexOutOfBoundsException();
377 }
378 writeNative(b, offset, len);
379 }
380
381 private native void writeNative(byte[] b, int offset, int len);
382
383 /**
384 * Write an integer value into the parcel at the current dataPosition(),
385 * growing dataCapacity() if needed.
386 */
387 public final native void writeInt(int val);
388
389 /**
390 * Write a long integer value into the parcel at the current dataPosition(),
391 * growing dataCapacity() if needed.
392 */
393 public final native void writeLong(long val);
394
395 /**
396 * Write a floating point value into the parcel at the current
397 * dataPosition(), growing dataCapacity() if needed.
398 */
399 public final native void writeFloat(float val);
400
401 /**
402 * Write a double precision floating point value into the parcel at the
403 * current dataPosition(), growing dataCapacity() if needed.
404 */
405 public final native void writeDouble(double val);
406
407 /**
408 * Write a string value into the parcel at the current dataPosition(),
409 * growing dataCapacity() if needed.
410 */
411 public final native void writeString(String val);
412
413 /**
414 * Write an object into the parcel at the current dataPosition(),
415 * growing dataCapacity() if needed.
416 */
417 public final native void writeStrongBinder(IBinder val);
418
419 /**
420 * Write an object into the parcel at the current dataPosition(),
421 * growing dataCapacity() if needed.
422 */
423 public final void writeStrongInterface(IInterface val) {
424 writeStrongBinder(val == null ? null : val.asBinder());
425 }
426
427 /**
428 * Write a FileDescriptor into the parcel at the current dataPosition(),
429 * growing dataCapacity() if needed.
430 */
431 public final native void writeFileDescriptor(FileDescriptor val);
432
433 /**
434 * Write an byte value into the parcel at the current dataPosition(),
435 * growing dataCapacity() if needed.
436 */
437 public final void writeByte(byte val) {
438 writeInt(val);
439 }
440
441 /**
442 * Please use {@link #writeBundle} instead. Flattens a Map into the parcel
443 * at the current dataPosition(),
444 * growing dataCapacity() if needed. The Map keys must be String objects.
445 * The Map values are written using {@link #writeValue} and must follow
446 * the specification there.
447 *
448 * <p>It is strongly recommended to use {@link #writeBundle} instead of
449 * this method, since the Bundle class provides a type-safe API that
450 * allows you to avoid mysterious type errors at the point of marshalling.
451 */
452 public final void writeMap(Map val) {
453 writeMapInternal((Map<String,Object>) val);
454 }
455
456 /**
457 * Flatten a Map into the parcel at the current dataPosition(),
458 * growing dataCapacity() if needed. The Map keys must be String objects.
459 */
460 private void writeMapInternal(Map<String,Object> val) {
461 if (val == null) {
462 writeInt(-1);
463 return;
464 }
465 Set<Map.Entry<String,Object>> entries = val.entrySet();
466 writeInt(entries.size());
467 for (Map.Entry<String,Object> e : entries) {
468 writeValue(e.getKey());
469 writeValue(e.getValue());
470 }
471 }
472
473 /**
474 * Flatten a Bundle into the parcel at the current dataPosition(),
475 * growing dataCapacity() if needed.
476 */
477 public final void writeBundle(Bundle val) {
478 if (val == null) {
479 writeInt(-1);
480 return;
481 }
482
483 if (val.mParcelledData != null) {
484 int length = val.mParcelledData.dataSize();
485 appendFrom(val.mParcelledData, 0, length);
486 } else {
487 writeInt(-1); // dummy, will hold length
488 int oldPos = dataPosition();
489 writeInt(0x4C444E42); // 'B' 'N' 'D' 'L'
490
491 writeMapInternal(val.mMap);
492 int newPos = dataPosition();
493
494 // Backpatch length
495 setDataPosition(oldPos - 4);
496 int length = newPos - oldPos;
497 writeInt(length);
498 setDataPosition(newPos);
499 }
500 }
501
502 /**
503 * Flatten a List into the parcel at the current dataPosition(), growing
504 * dataCapacity() if needed. The List values are written using
505 * {@link #writeValue} and must follow the specification there.
506 */
507 public final void writeList(List val) {
508 if (val == null) {
509 writeInt(-1);
510 return;
511 }
512 int N = val.size();
513 int i=0;
514 writeInt(N);
515 while (i < N) {
516 writeValue(val.get(i));
517 i++;
518 }
519 }
520
521 /**
522 * Flatten an Object array into the parcel at the current dataPosition(),
523 * growing dataCapacity() if needed. The array values are written using
524 * {@link #writeValue} and must follow the specification there.
525 */
526 public final void writeArray(Object[] val) {
527 if (val == null) {
528 writeInt(-1);
529 return;
530 }
531 int N = val.length;
532 int i=0;
533 writeInt(N);
534 while (i < N) {
535 writeValue(val[i]);
536 i++;
537 }
538 }
539
540 /**
541 * Flatten a generic SparseArray into the parcel at the current
542 * dataPosition(), growing dataCapacity() if needed. The SparseArray
543 * values are written using {@link #writeValue} and must follow the
544 * specification there.
545 */
546 public final void writeSparseArray(SparseArray<Object> val) {
547 if (val == null) {
548 writeInt(-1);
549 return;
550 }
551 int N = val.size();
552 writeInt(N);
553 int i=0;
554 while (i < N) {
555 writeInt(val.keyAt(i));
556 writeValue(val.valueAt(i));
557 i++;
558 }
559 }
560
561 public final void writeSparseBooleanArray(SparseBooleanArray val) {
562 if (val == null) {
563 writeInt(-1);
564 return;
565 }
566 int N = val.size();
567 writeInt(N);
568 int i=0;
569 while (i < N) {
570 writeInt(val.keyAt(i));
571 writeByte((byte)(val.valueAt(i) ? 1 : 0));
572 i++;
573 }
574 }
575
576 public final void writeBooleanArray(boolean[] val) {
577 if (val != null) {
578 int N = val.length;
579 writeInt(N);
580 for (int i=0; i<N; i++) {
581 writeInt(val[i] ? 1 : 0);
582 }
583 } else {
584 writeInt(-1);
585 }
586 }
587
588 public final boolean[] createBooleanArray() {
589 int N = readInt();
590 // >>2 as a fast divide-by-4 works in the create*Array() functions
591 // because dataAvail() will never return a negative number. 4 is
592 // the size of a stored boolean in the stream.
593 if (N >= 0 && N <= (dataAvail() >> 2)) {
594 boolean[] val = new boolean[N];
595 for (int i=0; i<N; i++) {
596 val[i] = readInt() != 0;
597 }
598 return val;
599 } else {
600 return null;
601 }
602 }
603
604 public final void readBooleanArray(boolean[] val) {
605 int N = readInt();
606 if (N == val.length) {
607 for (int i=0; i<N; i++) {
608 val[i] = readInt() != 0;
609 }
610 } else {
611 throw new RuntimeException("bad array lengths");
612 }
613 }
614
615 public final void writeCharArray(char[] val) {
616 if (val != null) {
617 int N = val.length;
618 writeInt(N);
619 for (int i=0; i<N; i++) {
620 writeInt((int)val[i]);
621 }
622 } else {
623 writeInt(-1);
624 }
625 }
626
627 public final char[] createCharArray() {
628 int N = readInt();
629 if (N >= 0 && N <= (dataAvail() >> 2)) {
630 char[] val = new char[N];
631 for (int i=0; i<N; i++) {
632 val[i] = (char)readInt();
633 }
634 return val;
635 } else {
636 return null;
637 }
638 }
639
640 public final void readCharArray(char[] val) {
641 int N = readInt();
642 if (N == val.length) {
643 for (int i=0; i<N; i++) {
644 val[i] = (char)readInt();
645 }
646 } else {
647 throw new RuntimeException("bad array lengths");
648 }
649 }
650
651 public final void writeIntArray(int[] val) {
652 if (val != null) {
653 int N = val.length;
654 writeInt(N);
655 for (int i=0; i<N; i++) {
656 writeInt(val[i]);
657 }
658 } else {
659 writeInt(-1);
660 }
661 }
662
663 public final int[] createIntArray() {
664 int N = readInt();
665 if (N >= 0 && N <= (dataAvail() >> 2)) {
666 int[] val = new int[N];
667 for (int i=0; i<N; i++) {
668 val[i] = readInt();
669 }
670 return val;
671 } else {
672 return null;
673 }
674 }
675
676 public final void readIntArray(int[] val) {
677 int N = readInt();
678 if (N == val.length) {
679 for (int i=0; i<N; i++) {
680 val[i] = readInt();
681 }
682 } else {
683 throw new RuntimeException("bad array lengths");
684 }
685 }
686
687 public final void writeLongArray(long[] val) {
688 if (val != null) {
689 int N = val.length;
690 writeInt(N);
691 for (int i=0; i<N; i++) {
692 writeLong(val[i]);
693 }
694 } else {
695 writeInt(-1);
696 }
697 }
698
699 public final long[] createLongArray() {
700 int N = readInt();
701 // >>3 because stored longs are 64 bits
702 if (N >= 0 && N <= (dataAvail() >> 3)) {
703 long[] val = new long[N];
704 for (int i=0; i<N; i++) {
705 val[i] = readLong();
706 }
707 return val;
708 } else {
709 return null;
710 }
711 }
712
713 public final void readLongArray(long[] val) {
714 int N = readInt();
715 if (N == val.length) {
716 for (int i=0; i<N; i++) {
717 val[i] = readLong();
718 }
719 } else {
720 throw new RuntimeException("bad array lengths");
721 }
722 }
723
724 public final void writeFloatArray(float[] val) {
725 if (val != null) {
726 int N = val.length;
727 writeInt(N);
728 for (int i=0; i<N; i++) {
729 writeFloat(val[i]);
730 }
731 } else {
732 writeInt(-1);
733 }
734 }
735
736 public final float[] createFloatArray() {
737 int N = readInt();
738 // >>2 because stored floats are 4 bytes
739 if (N >= 0 && N <= (dataAvail() >> 2)) {
740 float[] val = new float[N];
741 for (int i=0; i<N; i++) {
742 val[i] = readFloat();
743 }
744 return val;
745 } else {
746 return null;
747 }
748 }
749
750 public final void readFloatArray(float[] val) {
751 int N = readInt();
752 if (N == val.length) {
753 for (int i=0; i<N; i++) {
754 val[i] = readFloat();
755 }
756 } else {
757 throw new RuntimeException("bad array lengths");
758 }
759 }
760
761 public final void writeDoubleArray(double[] val) {
762 if (val != null) {
763 int N = val.length;
764 writeInt(N);
765 for (int i=0; i<N; i++) {
766 writeDouble(val[i]);
767 }
768 } else {
769 writeInt(-1);
770 }
771 }
772
773 public final double[] createDoubleArray() {
774 int N = readInt();
775 // >>3 because stored doubles are 8 bytes
776 if (N >= 0 && N <= (dataAvail() >> 3)) {
777 double[] val = new double[N];
778 for (int i=0; i<N; i++) {
779 val[i] = readDouble();
780 }
781 return val;
782 } else {
783 return null;
784 }
785 }
786
787 public final void readDoubleArray(double[] val) {
788 int N = readInt();
789 if (N == val.length) {
790 for (int i=0; i<N; i++) {
791 val[i] = readDouble();
792 }
793 } else {
794 throw new RuntimeException("bad array lengths");
795 }
796 }
797
798 public final void writeStringArray(String[] val) {
799 if (val != null) {
800 int N = val.length;
801 writeInt(N);
802 for (int i=0; i<N; i++) {
803 writeString(val[i]);
804 }
805 } else {
806 writeInt(-1);
807 }
808 }
809
810 public final String[] createStringArray() {
811 int N = readInt();
812 if (N >= 0) {
813 String[] val = new String[N];
814 for (int i=0; i<N; i++) {
815 val[i] = readString();
816 }
817 return val;
818 } else {
819 return null;
820 }
821 }
822
823 public final void readStringArray(String[] val) {
824 int N = readInt();
825 if (N == val.length) {
826 for (int i=0; i<N; i++) {
827 val[i] = readString();
828 }
829 } else {
830 throw new RuntimeException("bad array lengths");
831 }
832 }
833
834 public final void writeBinderArray(IBinder[] val) {
835 if (val != null) {
836 int N = val.length;
837 writeInt(N);
838 for (int i=0; i<N; i++) {
839 writeStrongBinder(val[i]);
840 }
841 } else {
842 writeInt(-1);
843 }
844 }
845
846 public final IBinder[] createBinderArray() {
847 int N = readInt();
848 if (N >= 0) {
849 IBinder[] val = new IBinder[N];
850 for (int i=0; i<N; i++) {
851 val[i] = readStrongBinder();
852 }
853 return val;
854 } else {
855 return null;
856 }
857 }
858
859 public final void readBinderArray(IBinder[] val) {
860 int N = readInt();
861 if (N == val.length) {
862 for (int i=0; i<N; i++) {
863 val[i] = readStrongBinder();
864 }
865 } else {
866 throw new RuntimeException("bad array lengths");
867 }
868 }
869
870 /**
871 * Flatten a List containing a particular object type into the parcel, at
872 * the current dataPosition() and growing dataCapacity() if needed. The
873 * type of the objects in the list must be one that implements Parcelable.
874 * Unlike the generic writeList() method, however, only the raw data of the
875 * objects is written and not their type, so you must use the corresponding
876 * readTypedList() to unmarshall them.
877 *
878 * @param val The list of objects to be written.
879 *
880 * @see #createTypedArrayList
881 * @see #readTypedList
882 * @see Parcelable
883 */
884 public final <T extends Parcelable> void writeTypedList(List<T> val) {
885 if (val == null) {
886 writeInt(-1);
887 return;
888 }
889 int N = val.size();
890 int i=0;
891 writeInt(N);
892 while (i < N) {
893 T item = val.get(i);
894 if (item != null) {
895 writeInt(1);
896 item.writeToParcel(this, 0);
897 } else {
898 writeInt(0);
899 }
900 i++;
901 }
902 }
903
904 /**
905 * Flatten a List containing String objects into the parcel, at
906 * the current dataPosition() and growing dataCapacity() if needed. They
907 * can later be retrieved with {@link #createStringArrayList} or
908 * {@link #readStringList}.
909 *
910 * @param val The list of strings to be written.
911 *
912 * @see #createStringArrayList
913 * @see #readStringList
914 */
915 public final void writeStringList(List<String> val) {
916 if (val == null) {
917 writeInt(-1);
918 return;
919 }
920 int N = val.size();
921 int i=0;
922 writeInt(N);
923 while (i < N) {
924 writeString(val.get(i));
925 i++;
926 }
927 }
928
929 /**
930 * Flatten a List containing IBinder objects into the parcel, at
931 * the current dataPosition() and growing dataCapacity() if needed. They
932 * can later be retrieved with {@link #createBinderArrayList} or
933 * {@link #readBinderList}.
934 *
935 * @param val The list of strings to be written.
936 *
937 * @see #createBinderArrayList
938 * @see #readBinderList
939 */
940 public final void writeBinderList(List<IBinder> val) {
941 if (val == null) {
942 writeInt(-1);
943 return;
944 }
945 int N = val.size();
946 int i=0;
947 writeInt(N);
948 while (i < N) {
949 writeStrongBinder(val.get(i));
950 i++;
951 }
952 }
953
954 /**
955 * Flatten a heterogeneous array containing a particular object type into
956 * the parcel, at
957 * the current dataPosition() and growing dataCapacity() if needed. The
958 * type of the objects in the array must be one that implements Parcelable.
959 * Unlike the {@link #writeParcelableArray} method, however, only the
960 * raw data of the objects is written and not their type, so you must use
961 * {@link #readTypedArray} with the correct corresponding
962 * {@link Parcelable.Creator} implementation to unmarshall them.
963 *
964 * @param val The array of objects to be written.
965 * @param parcelableFlags Contextual flags as per
966 * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
967 *
968 * @see #readTypedArray
969 * @see #writeParcelableArray
970 * @see Parcelable.Creator
971 */
972 public final <T extends Parcelable> void writeTypedArray(T[] val,
973 int parcelableFlags) {
974 if (val != null) {
975 int N = val.length;
976 writeInt(N);
977 for (int i=0; i<N; i++) {
978 T item = val[i];
979 if (item != null) {
980 writeInt(1);
981 item.writeToParcel(this, parcelableFlags);
982 } else {
983 writeInt(0);
984 }
985 }
986 } else {
987 writeInt(-1);
988 }
989 }
990
991 /**
992 * Flatten a generic object in to a parcel. The given Object value may
993 * currently be one of the following types:
994 *
995 * <ul>
996 * <li> null
997 * <li> String
998 * <li> Byte
999 * <li> Short
1000 * <li> Integer
1001 * <li> Long
1002 * <li> Float
1003 * <li> Double
1004 * <li> Boolean
1005 * <li> String[]
1006 * <li> boolean[]
1007 * <li> byte[]
1008 * <li> int[]
1009 * <li> long[]
1010 * <li> Object[] (supporting objects of the same type defined here).
1011 * <li> {@link Bundle}
1012 * <li> Map (as supported by {@link #writeMap}).
1013 * <li> Any object that implements the {@link Parcelable} protocol.
1014 * <li> Parcelable[]
1015 * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1016 * <li> List (as supported by {@link #writeList}).
1017 * <li> {@link SparseArray} (as supported by {@link #writeSparseArray}).
1018 * <li> {@link IBinder}
1019 * <li> Any object that implements Serializable (but see
1020 * {@link #writeSerializable} for caveats). Note that all of the
1021 * previous types have relatively efficient implementations for
1022 * writing to a Parcel; having to rely on the generic serialization
1023 * approach is much less efficient and should be avoided whenever
1024 * possible.
1025 * </ul>
1026 */
1027 public final void writeValue(Object v) {
1028 if (v == null) {
1029 writeInt(VAL_NULL);
1030 } else if (v instanceof String) {
1031 writeInt(VAL_STRING);
1032 writeString((String) v);
1033 } else if (v instanceof Integer) {
1034 writeInt(VAL_INTEGER);
1035 writeInt((Integer) v);
1036 } else if (v instanceof Map) {
1037 writeInt(VAL_MAP);
1038 writeMap((Map) v);
1039 } else if (v instanceof Bundle) {
1040 // Must be before Parcelable
1041 writeInt(VAL_BUNDLE);
1042 writeBundle((Bundle) v);
1043 } else if (v instanceof Parcelable) {
1044 writeInt(VAL_PARCELABLE);
1045 writeParcelable((Parcelable) v, 0);
1046 } else if (v instanceof Short) {
1047 writeInt(VAL_SHORT);
1048 writeInt(((Short) v).intValue());
1049 } else if (v instanceof Long) {
1050 writeInt(VAL_LONG);
1051 writeLong((Long) v);
1052 } else if (v instanceof Float) {
1053 writeInt(VAL_FLOAT);
1054 writeFloat((Float) v);
1055 } else if (v instanceof Double) {
1056 writeInt(VAL_DOUBLE);
1057 writeDouble((Double) v);
1058 } else if (v instanceof Boolean) {
1059 writeInt(VAL_BOOLEAN);
1060 writeInt((Boolean) v ? 1 : 0);
1061 } else if (v instanceof CharSequence) {
1062 // Must be after String
1063 writeInt(VAL_CHARSEQUENCE);
1064 TextUtils.writeToParcel((CharSequence) v, this, 0);
1065 } else if (v instanceof List) {
1066 writeInt(VAL_LIST);
1067 writeList((List) v);
1068 } else if (v instanceof SparseArray) {
1069 writeInt(VAL_SPARSEARRAY);
1070 writeSparseArray((SparseArray) v);
1071 } else if (v instanceof boolean[]) {
1072 writeInt(VAL_BOOLEANARRAY);
1073 writeBooleanArray((boolean[]) v);
1074 } else if (v instanceof byte[]) {
1075 writeInt(VAL_BYTEARRAY);
1076 writeByteArray((byte[]) v);
1077 } else if (v instanceof String[]) {
1078 writeInt(VAL_STRINGARRAY);
1079 writeStringArray((String[]) v);
1080 } else if (v instanceof IBinder) {
1081 writeInt(VAL_IBINDER);
1082 writeStrongBinder((IBinder) v);
1083 } else if (v instanceof Parcelable[]) {
1084 writeInt(VAL_PARCELABLEARRAY);
1085 writeParcelableArray((Parcelable[]) v, 0);
1086 } else if (v instanceof Object[]) {
1087 writeInt(VAL_OBJECTARRAY);
1088 writeArray((Object[]) v);
1089 } else if (v instanceof int[]) {
1090 writeInt(VAL_INTARRAY);
1091 writeIntArray((int[]) v);
1092 } else if (v instanceof long[]) {
1093 writeInt(VAL_LONGARRAY);
1094 writeLongArray((long[]) v);
1095 } else if (v instanceof Byte) {
1096 writeInt(VAL_BYTE);
1097 writeInt((Byte) v);
1098 } else if (v instanceof Serializable) {
1099 // Must be last
1100 writeInt(VAL_SERIALIZABLE);
1101 writeSerializable((Serializable) v);
1102 } else {
1103 throw new RuntimeException("Parcel: unable to marshal value " + v);
1104 }
1105 }
1106
1107 /**
1108 * Flatten the name of the class of the Parcelable and its contents
1109 * into the parcel.
1110 *
1111 * @param p The Parcelable object to be written.
1112 * @param parcelableFlags Contextual flags as per
1113 * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1114 */
1115 public final void writeParcelable(Parcelable p, int parcelableFlags) {
1116 if (p == null) {
1117 writeString(null);
1118 return;
1119 }
1120 String name = p.getClass().getName();
1121 writeString(name);
1122 p.writeToParcel(this, parcelableFlags);
1123 }
1124
1125 /**
1126 * Write a generic serializable object in to a Parcel. It is strongly
1127 * recommended that this method be avoided, since the serialization
1128 * overhead is extremely large, and this approach will be much slower than
1129 * using the other approaches to writing data in to a Parcel.
1130 */
1131 public final void writeSerializable(Serializable s) {
1132 if (s == null) {
1133 writeString(null);
1134 return;
1135 }
1136 String name = s.getClass().getName();
1137 writeString(name);
1138
1139 ByteArrayOutputStream baos = new ByteArrayOutputStream();
1140 try {
1141 ObjectOutputStream oos = new ObjectOutputStream(baos);
1142 oos.writeObject(s);
1143 oos.close();
1144
1145 writeByteArray(baos.toByteArray());
1146 } catch (IOException ioe) {
1147 throw new RuntimeException("Parcelable encountered " +
1148 "IOException writing serializable object (name = " + name +
1149 ")", ioe);
1150 }
1151 }
1152
1153 /**
1154 * Special function for writing an exception result at the header of
1155 * a parcel, to be used when returning an exception from a transaction.
1156 * Note that this currently only supports a few exception types; any other
1157 * exception will be re-thrown by this function as a RuntimeException
1158 * (to be caught by the system's last-resort exception handling when
1159 * dispatching a transaction).
1160 *
1161 * <p>The supported exception types are:
1162 * <ul>
1163 * <li>{@link BadParcelableException}
1164 * <li>{@link IllegalArgumentException}
1165 * <li>{@link IllegalStateException}
1166 * <li>{@link NullPointerException}
1167 * <li>{@link SecurityException}
1168 * </ul>
1169 *
1170 * @param e The Exception to be written.
1171 *
1172 * @see #writeNoException
1173 * @see #readException
1174 */
1175 public final void writeException(Exception e) {
1176 int code = 0;
1177 if (e instanceof SecurityException) {
1178 code = EX_SECURITY;
1179 } else if (e instanceof BadParcelableException) {
1180 code = EX_BAD_PARCELABLE;
1181 } else if (e instanceof IllegalArgumentException) {
1182 code = EX_ILLEGAL_ARGUMENT;
1183 } else if (e instanceof NullPointerException) {
1184 code = EX_NULL_POINTER;
1185 } else if (e instanceof IllegalStateException) {
1186 code = EX_ILLEGAL_STATE;
1187 }
1188 writeInt(code);
1189 if (code == 0) {
1190 if (e instanceof RuntimeException) {
1191 throw (RuntimeException) e;
1192 }
1193 throw new RuntimeException(e);
1194 }
1195 writeString(e.getMessage());
1196 }
1197
1198 /**
1199 * Special function for writing information at the front of the Parcel
1200 * indicating that no exception occurred.
1201 *
1202 * @see #writeException
1203 * @see #readException
1204 */
1205 public final void writeNoException() {
1206 writeInt(0);
1207 }
1208
1209 /**
1210 * Special function for reading an exception result from the header of
1211 * a parcel, to be used after receiving the result of a transaction. This
1212 * will throw the exception for you if it had been written to the Parcel,
1213 * otherwise return and let you read the normal result data from the Parcel.
1214 *
1215 * @see #writeException
1216 * @see #writeNoException
1217 */
1218 public final void readException() {
1219 int code = readInt();
1220 if (code == 0) return;
1221 String msg = readString();
1222 readException(code, msg);
1223 }
1224
1225 /**
1226 * Use this function for customized exception handling.
1227 * customized method call this method for all unknown case
1228 * @param code exception code
1229 * @param msg exception message
1230 */
1231 public final void readException(int code, String msg) {
1232 switch (code) {
1233 case EX_SECURITY:
1234 throw new SecurityException(msg);
1235 case EX_BAD_PARCELABLE:
1236 throw new BadParcelableException(msg);
1237 case EX_ILLEGAL_ARGUMENT:
1238 throw new IllegalArgumentException(msg);
1239 case EX_NULL_POINTER:
1240 throw new NullPointerException(msg);
1241 case EX_ILLEGAL_STATE:
1242 throw new IllegalStateException(msg);
1243 }
1244 throw new RuntimeException("Unknown exception code: " + code
1245 + " msg " + msg);
1246 }
1247
1248 /**
1249 * Read an integer value from the parcel at the current dataPosition().
1250 */
1251 public final native int readInt();
1252
1253 /**
1254 * Read a long integer value from the parcel at the current dataPosition().
1255 */
1256 public final native long readLong();
1257
1258 /**
1259 * Read a floating point value from the parcel at the current
1260 * dataPosition().
1261 */
1262 public final native float readFloat();
1263
1264 /**
1265 * Read a double precision floating point value from the parcel at the
1266 * current dataPosition().
1267 */
1268 public final native double readDouble();
1269
1270 /**
1271 * Read a string value from the parcel at the current dataPosition().
1272 */
1273 public final native String readString();
1274
1275 /**
1276 * Read an object from the parcel at the current dataPosition().
1277 */
1278 public final native IBinder readStrongBinder();
1279
1280 /**
1281 * Read a FileDescriptor from the parcel at the current dataPosition().
1282 */
1283 public final ParcelFileDescriptor readFileDescriptor() {
1284 FileDescriptor fd = internalReadFileDescriptor();
1285 return fd != null ? new ParcelFileDescriptor(fd) : null;
1286 }
1287
1288 private native FileDescriptor internalReadFileDescriptor();
1289 /*package*/ static native FileDescriptor openFileDescriptor(String file,
1290 int mode) throws FileNotFoundException;
1291 /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1292 throws IOException;
1293
1294 /**
1295 * Read a byte value from the parcel at the current dataPosition().
1296 */
1297 public final byte readByte() {
1298 return (byte)(readInt() & 0xff);
1299 }
1300
1301 /**
1302 * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1303 * been written with {@link #writeBundle}. Read into an existing Map object
1304 * from the parcel at the current dataPosition().
1305 */
1306 public final void readMap(Map outVal, ClassLoader loader) {
1307 int N = readInt();
1308 readMapInternal(outVal, N, loader);
1309 }
1310
1311 /**
1312 * Read into an existing List object from the parcel at the current
1313 * dataPosition(), using the given class loader to load any enclosed
1314 * Parcelables. If it is null, the default class loader is used.
1315 */
1316 public final void readList(List outVal, ClassLoader loader) {
1317 int N = readInt();
1318 readListInternal(outVal, N, loader);
1319 }
1320
1321 /**
1322 * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1323 * been written with {@link #writeBundle}. Read and return a new HashMap
1324 * object from the parcel at the current dataPosition(), using the given
1325 * class loader to load any enclosed Parcelables. Returns null if
1326 * the previously written map object was null.
1327 */
1328 public final HashMap readHashMap(ClassLoader loader)
1329 {
1330 int N = readInt();
1331 if (N < 0) {
1332 return null;
1333 }
1334 HashMap m = new HashMap(N);
1335 readMapInternal(m, N, loader);
1336 return m;
1337 }
1338
1339 /**
1340 * Read and return a new Bundle object from the parcel at the current
1341 * dataPosition(). Returns null if the previously written Bundle object was
1342 * null.
1343 */
1344 public final Bundle readBundle() {
1345 return readBundle(null);
1346 }
1347
1348 /**
1349 * Read and return a new Bundle object from the parcel at the current
1350 * dataPosition(), using the given class loader to initialize the class
1351 * loader of the Bundle for later retrieval of Parcelable objects.
1352 * Returns null if the previously written Bundle object was null.
1353 */
1354 public final Bundle readBundle(ClassLoader loader) {
1355 int offset = dataPosition();
1356 int length = readInt();
1357 if (length < 0) {
1358 return null;
1359 }
1360 int magic = readInt();
1361 if (magic != 0x4C444E42) {
1362 //noinspection ThrowableInstanceNeverThrown
1363 String st = Log.getStackTraceString(new RuntimeException());
1364 Log.e("Bundle", "readBundle: bad magic number");
1365 Log.e("Bundle", "readBundle: trace = " + st);
1366 }
1367
1368 // Advance within this Parcel
1369 setDataPosition(offset + length + 4);
1370
1371 Parcel p = new Parcel(0);
1372 p.setDataPosition(0);
1373 p.appendFrom(this, offset, length + 4);
1374 p.setDataPosition(0);
1375 final Bundle bundle = new Bundle(p);
1376 if (loader != null) {
1377 bundle.setClassLoader(loader);
1378 }
1379 return bundle;
1380 }
1381
1382 /**
1383 * Read and return a new Bundle object from the parcel at the current
1384 * dataPosition(). Returns null if the previously written Bundle object was
1385 * null. The returned bundle will have its contents fully unpacked using
1386 * the given ClassLoader.
1387 */
1388 /* package */ Bundle readBundleUnpacked(ClassLoader loader) {
1389 int length = readInt();
1390 if (length == -1) {
1391 return null;
1392 }
1393 int magic = readInt();
1394 if (magic != 0x4C444E42) {
1395 //noinspection ThrowableInstanceNeverThrown
1396 String st = Log.getStackTraceString(new RuntimeException());
1397 Log.e("Bundle", "readBundleUnpacked: bad magic number");
1398 Log.e("Bundle", "readBundleUnpacked: trace = " + st);
1399 }
1400 Bundle m = new Bundle(loader);
1401 int N = readInt();
1402 if (N < 0) {
1403 return null;
1404 }
1405 readMapInternal(m.mMap, N, loader);
1406 return m;
1407 }
1408
1409 /**
1410 * Read and return a byte[] object from the parcel.
1411 */
1412 public final native byte[] createByteArray();
1413
1414 /**
1415 * Read a byte[] object from the parcel and copy it into the
1416 * given byte array.
1417 */
1418 public final void readByteArray(byte[] val) {
1419 // TODO: make this a native method to avoid the extra copy.
1420 byte[] ba = createByteArray();
1421 if (ba.length == val.length) {
1422 System.arraycopy(ba, 0, val, 0, ba.length);
1423 } else {
1424 throw new RuntimeException("bad array lengths");
1425 }
1426 }
1427
1428 /**
1429 * Read and return a String[] object from the parcel.
1430 * {@hide}
1431 */
1432 public final String[] readStringArray() {
1433 String[] array = null;
1434
1435 int length = readInt();
1436 if (length >= 0)
1437 {
1438 array = new String[length];
1439
1440 for (int i = 0 ; i < length ; i++)
1441 {
1442 array[i] = readString();
1443 }
1444 }
1445
1446 return array;
1447 }
1448
1449 /**
1450 * Read and return a new ArrayList object from the parcel at the current
1451 * dataPosition(). Returns null if the previously written list object was
1452 * null. The given class loader will be used to load any enclosed
1453 * Parcelables.
1454 */
1455 public final ArrayList readArrayList(ClassLoader loader) {
1456 int N = readInt();
1457 if (N < 0) {
1458 return null;
1459 }
1460 ArrayList l = new ArrayList(N);
1461 readListInternal(l, N, loader);
1462 return l;
1463 }
1464
1465 /**
1466 * Read and return a new Object array from the parcel at the current
1467 * dataPosition(). Returns null if the previously written array was
1468 * null. The given class loader will be used to load any enclosed
1469 * Parcelables.
1470 */
1471 public final Object[] readArray(ClassLoader loader) {
1472 int N = readInt();
1473 if (N < 0) {
1474 return null;
1475 }
1476 Object[] l = new Object[N];
1477 readArrayInternal(l, N, loader);
1478 return l;
1479 }
1480
1481 /**
1482 * Read and return a new SparseArray object from the parcel at the current
1483 * dataPosition(). Returns null if the previously written list object was
1484 * null. The given class loader will be used to load any enclosed
1485 * Parcelables.
1486 */
1487 public final SparseArray readSparseArray(ClassLoader loader) {
1488 int N = readInt();
1489 if (N < 0) {
1490 return null;
1491 }
1492 SparseArray sa = new SparseArray(N);
1493 readSparseArrayInternal(sa, N, loader);
1494 return sa;
1495 }
1496
1497 /**
1498 * Read and return a new SparseBooleanArray object from the parcel at the current
1499 * dataPosition(). Returns null if the previously written list object was
1500 * null.
1501 */
1502 public final SparseBooleanArray readSparseBooleanArray() {
1503 int N = readInt();
1504 if (N < 0) {
1505 return null;
1506 }
1507 SparseBooleanArray sa = new SparseBooleanArray(N);
1508 readSparseBooleanArrayInternal(sa, N);
1509 return sa;
1510 }
1511
1512 /**
1513 * Read and return a new ArrayList containing a particular object type from
1514 * the parcel that was written with {@link #writeTypedList} at the
1515 * current dataPosition(). Returns null if the
1516 * previously written list object was null. The list <em>must</em> have
1517 * previously been written via {@link #writeTypedList} with the same object
1518 * type.
1519 *
1520 * @return A newly created ArrayList containing objects with the same data
1521 * as those that were previously written.
1522 *
1523 * @see #writeTypedList
1524 */
1525 public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1526 int N = readInt();
1527 if (N < 0) {
1528 return null;
1529 }
1530 ArrayList<T> l = new ArrayList<T>(N);
1531 while (N > 0) {
1532 if (readInt() != 0) {
1533 l.add(c.createFromParcel(this));
1534 } else {
1535 l.add(null);
1536 }
1537 N--;
1538 }
1539 return l;
1540 }
1541
1542 /**
1543 * Read into the given List items containing a particular object type
1544 * that were written with {@link #writeTypedList} at the
1545 * current dataPosition(). The list <em>must</em> have
1546 * previously been written via {@link #writeTypedList} with the same object
1547 * type.
1548 *
1549 * @return A newly created ArrayList containing objects with the same data
1550 * as those that were previously written.
1551 *
1552 * @see #writeTypedList
1553 */
1554 public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1555 int M = list.size();
1556 int N = readInt();
1557 int i = 0;
1558 for (; i < M && i < N; i++) {
1559 if (readInt() != 0) {
1560 list.set(i, c.createFromParcel(this));
1561 } else {
1562 list.set(i, null);
1563 }
1564 }
1565 for (; i<N; i++) {
1566 if (readInt() != 0) {
1567 list.add(c.createFromParcel(this));
1568 } else {
1569 list.add(null);
1570 }
1571 }
1572 for (; i<M; i++) {
1573 list.remove(N);
1574 }
1575 }
1576
1577 /**
1578 * Read and return a new ArrayList containing String objects from
1579 * the parcel that was written with {@link #writeStringList} at the
1580 * current dataPosition(). Returns null if the
1581 * previously written list object was null.
1582 *
1583 * @return A newly created ArrayList containing strings with the same data
1584 * as those that were previously written.
1585 *
1586 * @see #writeStringList
1587 */
1588 public final ArrayList<String> createStringArrayList() {
1589 int N = readInt();
1590 if (N < 0) {
1591 return null;
1592 }
1593 ArrayList<String> l = new ArrayList<String>(N);
1594 while (N > 0) {
1595 l.add(readString());
1596 N--;
1597 }
1598 return l;
1599 }
1600
1601 /**
1602 * Read and return a new ArrayList containing IBinder objects from
1603 * the parcel that was written with {@link #writeBinderList} at the
1604 * current dataPosition(). Returns null if the
1605 * previously written list object was null.
1606 *
1607 * @return A newly created ArrayList containing strings with the same data
1608 * as those that were previously written.
1609 *
1610 * @see #writeBinderList
1611 */
1612 public final ArrayList<IBinder> createBinderArrayList() {
1613 int N = readInt();
1614 if (N < 0) {
1615 return null;
1616 }
1617 ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1618 while (N > 0) {
1619 l.add(readStrongBinder());
1620 N--;
1621 }
1622 return l;
1623 }
1624
1625 /**
1626 * Read into the given List items String objects that were written with
1627 * {@link #writeStringList} at the current dataPosition().
1628 *
1629 * @return A newly created ArrayList containing strings with the same data
1630 * as those that were previously written.
1631 *
1632 * @see #writeStringList
1633 */
1634 public final void readStringList(List<String> list) {
1635 int M = list.size();
1636 int N = readInt();
1637 int i = 0;
1638 for (; i < M && i < N; i++) {
1639 list.set(i, readString());
1640 }
1641 for (; i<N; i++) {
1642 list.add(readString());
1643 }
1644 for (; i<M; i++) {
1645 list.remove(N);
1646 }
1647 }
1648
1649 /**
1650 * Read into the given List items IBinder objects that were written with
1651 * {@link #writeBinderList} at the current dataPosition().
1652 *
1653 * @return A newly created ArrayList containing strings with the same data
1654 * as those that were previously written.
1655 *
1656 * @see #writeBinderList
1657 */
1658 public final void readBinderList(List<IBinder> list) {
1659 int M = list.size();
1660 int N = readInt();
1661 int i = 0;
1662 for (; i < M && i < N; i++) {
1663 list.set(i, readStrongBinder());
1664 }
1665 for (; i<N; i++) {
1666 list.add(readStrongBinder());
1667 }
1668 for (; i<M; i++) {
1669 list.remove(N);
1670 }
1671 }
1672
1673 /**
1674 * Read and return a new array containing a particular object type from
1675 * the parcel at the current dataPosition(). Returns null if the
1676 * previously written array was null. The array <em>must</em> have
1677 * previously been written via {@link #writeTypedArray} with the same
1678 * object type.
1679 *
1680 * @return A newly created array containing objects with the same data
1681 * as those that were previously written.
1682 *
1683 * @see #writeTypedArray
1684 */
1685 public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1686 int N = readInt();
1687 if (N < 0) {
1688 return null;
1689 }
1690 T[] l = c.newArray(N);
1691 for (int i=0; i<N; i++) {
1692 if (readInt() != 0) {
1693 l[i] = c.createFromParcel(this);
1694 }
1695 }
1696 return l;
1697 }
1698
1699 public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1700 int N = readInt();
1701 if (N == val.length) {
1702 for (int i=0; i<N; i++) {
1703 if (readInt() != 0) {
1704 val[i] = c.createFromParcel(this);
1705 } else {
1706 val[i] = null;
1707 }
1708 }
1709 } else {
1710 throw new RuntimeException("bad array lengths");
1711 }
1712 }
1713
1714 /**
1715 * @deprecated
1716 * @hide
1717 */
1718 @Deprecated
1719 public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1720 return createTypedArray(c);
1721 }
1722
1723 /**
1724 * Write a heterogeneous array of Parcelable objects into the Parcel.
1725 * Each object in the array is written along with its class name, so
1726 * that the correct class can later be instantiated. As a result, this
1727 * has significantly more overhead than {@link #writeTypedArray}, but will
1728 * correctly handle an array containing more than one type of object.
1729 *
1730 * @param value The array of objects to be written.
1731 * @param parcelableFlags Contextual flags as per
1732 * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1733 *
1734 * @see #writeTypedArray
1735 */
1736 public final <T extends Parcelable> void writeParcelableArray(T[] value,
1737 int parcelableFlags) {
1738 if (value != null) {
1739 int N = value.length;
1740 writeInt(N);
1741 for (int i=0; i<N; i++) {
1742 writeParcelable(value[i], parcelableFlags);
1743 }
1744 } else {
1745 writeInt(-1);
1746 }
1747 }
1748
1749 /**
1750 * Read a typed object from a parcel. The given class loader will be
1751 * used to load any enclosed Parcelables. If it is null, the default class
1752 * loader will be used.
1753 */
1754 public final Object readValue(ClassLoader loader) {
1755 int type = readInt();
1756
1757 switch (type) {
1758 case VAL_NULL:
1759 return null;
1760
1761 case VAL_STRING:
1762 return readString();
1763
1764 case VAL_INTEGER:
1765 return readInt();
1766
1767 case VAL_MAP:
1768 return readHashMap(loader);
1769
1770 case VAL_PARCELABLE:
1771 return readParcelable(loader);
1772
1773 case VAL_SHORT:
1774 return (short) readInt();
1775
1776 case VAL_LONG:
1777 return readLong();
1778
1779 case VAL_FLOAT:
1780 return readFloat();
1781
1782 case VAL_DOUBLE:
1783 return readDouble();
1784
1785 case VAL_BOOLEAN:
1786 return readInt() == 1;
1787
1788 case VAL_CHARSEQUENCE:
1789 return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1790
1791 case VAL_LIST:
1792 return readArrayList(loader);
1793
1794 case VAL_BOOLEANARRAY:
1795 return createBooleanArray();
1796
1797 case VAL_BYTEARRAY:
1798 return createByteArray();
1799
1800 case VAL_STRINGARRAY:
1801 return readStringArray();
1802
1803 case VAL_IBINDER:
1804 return readStrongBinder();
1805
1806 case VAL_OBJECTARRAY:
1807 return readArray(loader);
1808
1809 case VAL_INTARRAY:
1810 return createIntArray();
1811
1812 case VAL_LONGARRAY:
1813 return createLongArray();
1814
1815 case VAL_BYTE:
1816 return readByte();
1817
1818 case VAL_SERIALIZABLE:
1819 return readSerializable();
1820
1821 case VAL_PARCELABLEARRAY:
1822 return readParcelableArray(loader);
1823
1824 case VAL_SPARSEARRAY:
1825 return readSparseArray(loader);
1826
1827 case VAL_SPARSEBOOLEANARRAY:
1828 return readSparseBooleanArray();
1829
1830 case VAL_BUNDLE:
1831 return readBundle(loader); // loading will be deferred
1832
1833 default:
1834 int off = dataPosition() - 4;
1835 throw new RuntimeException(
1836 "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1837 }
1838 }
1839
1840 /**
1841 * Read and return a new Parcelable from the parcel. The given class loader
1842 * will be used to load any enclosed Parcelables. If it is null, the default
1843 * class loader will be used.
1844 * @param loader A ClassLoader from which to instantiate the Parcelable
1845 * object, or null for the default class loader.
1846 * @return Returns the newly created Parcelable, or null if a null
1847 * object has been written.
1848 * @throws BadParcelableException Throws BadParcelableException if there
1849 * was an error trying to instantiate the Parcelable.
1850 */
1851 public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1852 String name = readString();
1853 if (name == null) {
1854 return null;
1855 }
1856 Parcelable.Creator<T> creator;
1857 synchronized (mCreators) {
1858 HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1859 if (map == null) {
1860 map = new HashMap<String,Parcelable.Creator>();
1861 mCreators.put(loader, map);
1862 }
1863 creator = map.get(name);
1864 if (creator == null) {
1865 try {
1866 Class c = loader == null ?
1867 Class.forName(name) : Class.forName(name, true, loader);
1868 Field f = c.getField("CREATOR");
1869 creator = (Parcelable.Creator)f.get(null);
1870 }
1871 catch (IllegalAccessException e) {
1872 Log.e("Parcel", "Class not found when unmarshalling: "
1873 + name + ", e: " + e);
1874 throw new BadParcelableException(
1875 "IllegalAccessException when unmarshalling: " + name);
1876 }
1877 catch (ClassNotFoundException e) {
1878 Log.e("Parcel", "Class not found when unmarshalling: "
1879 + name + ", e: " + e);
1880 throw new BadParcelableException(
1881 "ClassNotFoundException when unmarshalling: " + name);
1882 }
1883 catch (ClassCastException e) {
1884 throw new BadParcelableException("Parcelable protocol requires a "
1885 + "Parcelable.Creator object called "
1886 + " CREATOR on class " + name);
1887 }
1888 catch (NoSuchFieldException e) {
1889 throw new BadParcelableException("Parcelable protocol requires a "
1890 + "Parcelable.Creator object called "
1891 + " CREATOR on class " + name);
1892 }
1893 if (creator == null) {
1894 throw new BadParcelableException("Parcelable protocol requires a "
1895 + "Parcelable.Creator object called "
1896 + " CREATOR on class " + name);
1897 }
1898
1899 map.put(name, creator);
1900 }
1901 }
1902
1903 return creator.createFromParcel(this);
1904 }
1905
1906 /**
1907 * Read and return a new Parcelable array from the parcel.
1908 * The given class loader will be used to load any enclosed
1909 * Parcelables.
1910 * @return the Parcelable array, or null if the array is null
1911 */
1912 public final Parcelable[] readParcelableArray(ClassLoader loader) {
1913 int N = readInt();
1914 if (N < 0) {
1915 return null;
1916 }
1917 Parcelable[] p = new Parcelable[N];
1918 for (int i = 0; i < N; i++) {
1919 p[i] = (Parcelable) readParcelable(loader);
1920 }
1921 return p;
1922 }
1923
1924 /**
1925 * Read and return a new Serializable object from the parcel.
1926 * @return the Serializable object, or null if the Serializable name
1927 * wasn't found in the parcel.
1928 */
1929 public final Serializable readSerializable() {
1930 String name = readString();
1931 if (name == null) {
1932 // For some reason we were unable to read the name of the Serializable (either there
1933 // is nothing left in the Parcel to read, or the next value wasn't a String), so
1934 // return null, which indicates that the name wasn't found in the parcel.
1935 return null;
1936 }
1937
1938 byte[] serializedData = createByteArray();
1939 ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
1940 try {
1941 ObjectInputStream ois = new ObjectInputStream(bais);
1942 return (Serializable) ois.readObject();
1943 } catch (IOException ioe) {
1944 throw new RuntimeException("Parcelable encountered " +
1945 "IOException reading a Serializable object (name = " + name +
1946 ")", ioe);
1947 } catch (ClassNotFoundException cnfe) {
1948 throw new RuntimeException("Parcelable encountered" +
1949 "ClassNotFoundException reading a Serializable object (name = "
1950 + name + ")", cnfe);
1951 }
1952 }
1953
1954 // Cache of previously looked up CREATOR.createFromParcel() methods for
1955 // particular classes. Keys are the names of the classes, values are
1956 // Method objects.
1957 private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
1958 mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
1959
1960 static protected final Parcel obtain(int obj) {
1961 final Parcel[] pool = sHolderPool;
1962 synchronized (pool) {
1963 Parcel p;
1964 for (int i=0; i<POOL_SIZE; i++) {
1965 p = pool[i];
1966 if (p != null) {
1967 pool[i] = null;
1968 if (DEBUG_RECYCLE) {
1969 p.mStack = new RuntimeException();
1970 }
1971 p.init(obj);
1972 return p;
1973 }
1974 }
1975 }
1976 return new Parcel(obj);
1977 }
1978
1979 private Parcel(int obj) {
1980 if (DEBUG_RECYCLE) {
1981 mStack = new RuntimeException();
1982 }
1983 //Log.i("Parcel", "Initializing obj=0x" + Integer.toHexString(obj), mStack);
1984 init(obj);
1985 }
1986
1987 @Override
1988 protected void finalize() throws Throwable {
1989 if (DEBUG_RECYCLE) {
1990 if (mStack != null) {
1991 Log.w("Parcel", "Client did not call Parcel.recycle()", mStack);
1992 }
1993 }
1994 destroy();
1995 }
1996
1997 private native void freeBuffer();
1998 private native void init(int obj);
1999 private native void destroy();
2000
2001 private void readMapInternal(Map outVal, int N,
2002 ClassLoader loader) {
2003 while (N > 0) {
2004 Object key = readValue(loader);
2005 Object value = readValue(loader);
2006 outVal.put(key, value);
2007 N--;
2008 }
2009 }
2010
2011 private void readListInternal(List outVal, int N,
2012 ClassLoader loader) {
2013 while (N > 0) {
2014 Object value = readValue(loader);
2015 //Log.d("Parcel", "Unmarshalling value=" + value);
2016 outVal.add(value);
2017 N--;
2018 }
2019 }
2020
2021 private void readArrayInternal(Object[] outVal, int N,
2022 ClassLoader loader) {
2023 for (int i = 0; i < N; i++) {
2024 Object value = readValue(loader);
2025 //Log.d("Parcel", "Unmarshalling value=" + value);
2026 outVal[i] = value;
2027 }
2028 }
2029
2030 private void readSparseArrayInternal(SparseArray outVal, int N,
2031 ClassLoader loader) {
2032 while (N > 0) {
2033 int key = readInt();
2034 Object value = readValue(loader);
2035 //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2036 outVal.append(key, value);
2037 N--;
2038 }
2039 }
2040
2041
2042 private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2043 while (N > 0) {
2044 int key = readInt();
2045 boolean value = this.readByte() == 1;
2046 //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2047 outVal.append(key, value);
2048 N--;
2049 }
2050 }
2051}