blob: 4e9b68e8c95f062c5afb3c2c104f31cf90ca93aa [file] [log] [blame]
Adam Lesinski98aa3ad2015-04-06 11:46:52 -07001/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Adam Lesinski769de982015-04-10 19:43:55 -070017#include "BigBuffer.h"
Adam Lesinski98aa3ad2015-04-06 11:46:52 -070018#include "Logger.h"
19#include "Png.h"
20#include "Source.h"
21#include "Util.h"
22
23#include <androidfw/ResourceTypes.h>
24#include <iostream>
25#include <png.h>
26#include <sstream>
27#include <string>
28#include <vector>
29#include <zlib.h>
30
31namespace aapt {
32
33constexpr bool kDebug = false;
34constexpr size_t kPngSignatureSize = 8u;
35
36struct PngInfo {
37 ~PngInfo() {
38 for (png_bytep row : rows) {
39 if (row != nullptr) {
40 delete[] row;
41 }
42 }
43
44 delete[] xDivs;
45 delete[] yDivs;
46 }
47
48 void* serialize9Patch() {
49 void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs, yDivs,
50 colors.data());
51 reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile();
52 return serialized;
53 }
54
55 uint32_t width = 0;
56 uint32_t height = 0;
57 std::vector<png_bytep> rows;
58
59 bool is9Patch = false;
60 android::Res_png_9patch info9Patch;
61 int32_t* xDivs = nullptr;
62 int32_t* yDivs = nullptr;
63 std::vector<uint32_t> colors;
64
65 // Layout padding.
66 bool haveLayoutBounds = false;
67 int32_t layoutBoundsLeft;
68 int32_t layoutBoundsTop;
69 int32_t layoutBoundsRight;
70 int32_t layoutBoundsBottom;
71
72 // Round rect outline description.
73 int32_t outlineInsetsLeft;
74 int32_t outlineInsetsTop;
75 int32_t outlineInsetsRight;
76 int32_t outlineInsetsBottom;
77 float outlineRadius;
78 uint8_t outlineAlpha;
79};
80
81static void readDataFromStream(png_structp readPtr, png_bytep data, png_size_t length) {
82 std::istream* input = reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr));
83 if (!input->read(reinterpret_cast<char*>(data), length)) {
84 png_error(readPtr, strerror(errno));
85 }
86}
87
88static void writeDataToStream(png_structp writePtr, png_bytep data, png_size_t length) {
Adam Lesinski769de982015-04-10 19:43:55 -070089 BigBuffer* outBuffer = reinterpret_cast<BigBuffer*>(png_get_io_ptr(writePtr));
90 png_bytep buf = outBuffer->nextBlock<png_byte>(length);
91 memcpy(buf, data, length);
Adam Lesinski98aa3ad2015-04-06 11:46:52 -070092}
93
Adam Lesinski769de982015-04-10 19:43:55 -070094static void flushDataToStream(png_structp /*writePtr*/) {
Adam Lesinski98aa3ad2015-04-06 11:46:52 -070095}
96
97static void logWarning(png_structp readPtr, png_const_charp warningMessage) {
98 SourceLogger* logger = reinterpret_cast<SourceLogger*>(png_get_error_ptr(readPtr));
99 logger->warn() << warningMessage << "." << std::endl;
100}
101
102
103static bool readPng(png_structp readPtr, png_infop infoPtr, PngInfo* outInfo,
104 std::string* outError) {
105 if (setjmp(png_jmpbuf(readPtr))) {
106 *outError = "failed reading png";
107 return false;
108 }
109
110 png_set_sig_bytes(readPtr, kPngSignatureSize);
111 png_read_info(readPtr, infoPtr);
112
113 int colorType, bitDepth, interlaceType, compressionType;
114 png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth, &colorType,
115 &interlaceType, &compressionType, nullptr);
116
117 if (colorType == PNG_COLOR_TYPE_PALETTE) {
118 png_set_palette_to_rgb(readPtr);
119 }
120
121 if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) {
122 png_set_expand_gray_1_2_4_to_8(readPtr);
123 }
124
125 if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) {
126 png_set_tRNS_to_alpha(readPtr);
127 }
128
129 if (bitDepth == 16) {
130 png_set_strip_16(readPtr);
131 }
132
133 if (!(colorType & PNG_COLOR_MASK_ALPHA)) {
134 png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER);
135 }
136
137 if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
138 png_set_gray_to_rgb(readPtr);
139 }
140
141 png_set_interlace_handling(readPtr);
142 png_read_update_info(readPtr, infoPtr);
143
144 const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr);
145 outInfo->rows.resize(outInfo->height);
146 for (size_t i = 0; i < outInfo->height; i++) {
147 outInfo->rows[i] = new png_byte[rowBytes];
148 }
149
150 png_read_image(readPtr, outInfo->rows.data());
151 png_read_end(readPtr, infoPtr);
152 return true;
153}
154
155static void checkNinePatchSerialization(android::Res_png_9patch* inPatch, void* data) {
156 size_t patchSize = inPatch->serializedSize();
157 void* newData = malloc(patchSize);
158 memcpy(newData, data, patchSize);
159 android::Res_png_9patch* outPatch = inPatch->deserialize(newData);
160 outPatch->fileToDevice();
161 // deserialization is done in place, so outPatch == newData
162 assert(outPatch == newData);
163 assert(outPatch->numXDivs == inPatch->numXDivs);
164 assert(outPatch->numYDivs == inPatch->numYDivs);
165 assert(outPatch->paddingLeft == inPatch->paddingLeft);
166 assert(outPatch->paddingRight == inPatch->paddingRight);
167 assert(outPatch->paddingTop == inPatch->paddingTop);
168 assert(outPatch->paddingBottom == inPatch->paddingBottom);
169/* for (int i = 0; i < outPatch->numXDivs; i++) {
170 assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]);
171 }
172 for (int i = 0; i < outPatch->numYDivs; i++) {
173 assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]);
174 }
175 for (int i = 0; i < outPatch->numColors; i++) {
176 assert(outPatch->getColors()[i] == inPatch->getColors()[i]);
177 }*/
178 free(newData);
179}
180
181/*static void dump_image(int w, int h, const png_byte* const* rows, int color_type) {
182 int i, j, rr, gg, bb, aa;
183
184 int bpp;
185 if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) {
186 bpp = 1;
187 } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
188 bpp = 2;
189 } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
190 // We use a padding byte even when there is no alpha
191 bpp = 4;
192 } else {
193 printf("Unknown color type %d.\n", color_type);
194 }
195
196 for (j = 0; j < h; j++) {
197 const png_byte* row = rows[j];
198 for (i = 0; i < w; i++) {
199 rr = row[0];
200 gg = row[1];
201 bb = row[2];
202 aa = row[3];
203 row += bpp;
204
205 if (i == 0) {
206 printf("Row %d:", j);
207 }
208 switch (bpp) {
209 case 1:
210 printf(" (%d)", rr);
211 break;
212 case 2:
213 printf(" (%d %d", rr, gg);
214 break;
215 case 3:
216 printf(" (%d %d %d)", rr, gg, bb);
217 break;
218 case 4:
219 printf(" (%d %d %d %d)", rr, gg, bb, aa);
220 break;
221 }
222 if (i == (w - 1)) {
223 printf("\n");
224 }
225 }
226 }
227}*/
228
229#define MAX(a,b) ((a)>(b)?(a):(b))
230#define ABS(a) ((a)<0?-(a):(a))
231
232static void analyze_image(SourceLogger* logger, const PngInfo& imageInfo, int grayscaleTolerance,
233 png_colorp rgbPalette, png_bytep alphaPalette,
234 int *paletteEntries, bool *hasTransparency, int *colorType,
235 png_bytepp outRows) {
236 int w = imageInfo.width;
237 int h = imageInfo.height;
238 int i, j, rr, gg, bb, aa, idx;
239 uint32_t colors[256], col;
240 int num_colors = 0;
241 int maxGrayDeviation = 0;
242
243 bool isOpaque = true;
244 bool isPalette = true;
245 bool isGrayscale = true;
246
247 // Scan the entire image and determine if:
248 // 1. Every pixel has R == G == B (grayscale)
249 // 2. Every pixel has A == 255 (opaque)
250 // 3. There are no more than 256 distinct RGBA colors
251
252 if (kDebug) {
253 printf("Initial image data:\n");
254 //dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA);
255 }
256
257 for (j = 0; j < h; j++) {
258 const png_byte* row = imageInfo.rows[j];
259 png_bytep out = outRows[j];
260 for (i = 0; i < w; i++) {
261 rr = *row++;
262 gg = *row++;
263 bb = *row++;
264 aa = *row++;
265
266 int odev = maxGrayDeviation;
267 maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation);
268 maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation);
269 maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation);
270 if (maxGrayDeviation > odev) {
271 if (kDebug) {
272 printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n",
273 maxGrayDeviation, i, j, rr, gg, bb, aa);
274 }
275 }
276
277 // Check if image is really grayscale
278 if (isGrayscale) {
279 if (rr != gg || rr != bb) {
280 if (kDebug) {
281 printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n",
282 i, j, rr, gg, bb, aa);
283 }
284 isGrayscale = false;
285 }
286 }
287
288 // Check if image is really opaque
289 if (isOpaque) {
290 if (aa != 0xff) {
291 if (kDebug) {
292 printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n",
293 i, j, rr, gg, bb, aa);
294 }
295 isOpaque = false;
296 }
297 }
298
299 // Check if image is really <= 256 colors
300 if (isPalette) {
301 col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa);
302 bool match = false;
303 for (idx = 0; idx < num_colors; idx++) {
304 if (colors[idx] == col) {
305 match = true;
306 break;
307 }
308 }
309
310 // Write the palette index for the pixel to outRows optimistically
311 // We might overwrite it later if we decide to encode as gray or
312 // gray + alpha
313 *out++ = idx;
314 if (!match) {
315 if (num_colors == 256) {
316 if (kDebug) {
317 printf("Found 257th color at %d, %d\n", i, j);
318 }
319 isPalette = false;
320 } else {
321 colors[num_colors++] = col;
322 }
323 }
324 }
325 }
326 }
327
328 *paletteEntries = 0;
329 *hasTransparency = !isOpaque;
330 int bpp = isOpaque ? 3 : 4;
331 int paletteSize = w * h + bpp * num_colors;
332
333 if (kDebug) {
334 printf("isGrayscale = %s\n", isGrayscale ? "true" : "false");
335 printf("isOpaque = %s\n", isOpaque ? "true" : "false");
336 printf("isPalette = %s\n", isPalette ? "true" : "false");
337 printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n",
338 paletteSize, 2 * w * h, bpp * w * h);
339 printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance);
340 }
341
342 // Choose the best color type for the image.
343 // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel
344 // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations
345 // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA
346 // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently
347 // small, otherwise use COLOR_TYPE_RGB{_ALPHA}
348 if (isGrayscale) {
349 if (isOpaque) {
350 *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel
351 } else {
352 // Use a simple heuristic to determine whether using a palette will
353 // save space versus using gray + alpha for each pixel.
354 // This doesn't take into account chunk overhead, filtering, LZ
355 // compression, etc.
356 if (isPalette && (paletteSize < 2 * w * h)) {
357 *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color
358 } else {
359 *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel
360 }
361 }
362 } else if (isPalette && (paletteSize < bpp * w * h)) {
363 *colorType = PNG_COLOR_TYPE_PALETTE;
364 } else {
365 if (maxGrayDeviation <= grayscaleTolerance) {
366 logger->note() << "forcing image to gray (max deviation = " << maxGrayDeviation
367 << ")."
368 << std::endl;
369 *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA;
370 } else {
371 *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA;
372 }
373 }
374
375 // Perform postprocessing of the image or palette data based on the final
376 // color type chosen
377
378 if (*colorType == PNG_COLOR_TYPE_PALETTE) {
379 // Create separate RGB and Alpha palettes and set the number of colors
380 *paletteEntries = num_colors;
381
382 // Create the RGB and alpha palettes
383 for (int idx = 0; idx < num_colors; idx++) {
384 col = colors[idx];
385 rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff);
386 rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff);
387 rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff);
388 alphaPalette[idx] = (png_byte) (col & 0xff);
389 }
390 } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) {
391 // If the image is gray or gray + alpha, compact the pixels into outRows
392 for (j = 0; j < h; j++) {
393 const png_byte* row = imageInfo.rows[j];
394 png_bytep out = outRows[j];
395 for (i = 0; i < w; i++) {
396 rr = *row++;
397 gg = *row++;
398 bb = *row++;
399 aa = *row++;
400
401 if (isGrayscale) {
402 *out++ = rr;
403 } else {
404 *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
405 }
406 if (!isOpaque) {
407 *out++ = aa;
408 }
409 }
410 }
411 }
412}
413
414static bool writePng(png_structp writePtr, png_infop infoPtr, PngInfo* info,
415 int grayScaleTolerance, SourceLogger* logger, std::string* outError) {
416 if (setjmp(png_jmpbuf(writePtr))) {
417 *outError = "failed to write png";
418 return false;
419 }
420
421 uint32_t width, height;
422 int colorType, bitDepth, interlaceType, compressionType;
423
424 png_unknown_chunk unknowns[3];
425 unknowns[0].data = nullptr;
426 unknowns[1].data = nullptr;
427 unknowns[2].data = nullptr;
428
429 png_bytepp outRows = (png_bytepp) malloc((int) info->height * sizeof(png_bytep));
430 if (outRows == (png_bytepp) 0) {
431 printf("Can't allocate output buffer!\n");
432 exit(1);
433 }
434 for (uint32_t i = 0; i < info->height; i++) {
435 outRows[i] = (png_bytep) malloc(2 * (int) info->width);
436 if (outRows[i] == (png_bytep) 0) {
437 printf("Can't allocate output buffer!\n");
438 exit(1);
439 }
440 }
441
442 png_set_compression_level(writePtr, Z_BEST_COMPRESSION);
443
444 if (kDebug) {
445 logger->note() << "writing image: w = " << info->width
446 << ", h = " << info->height
447 << std::endl;
448 }
449
450 png_color rgbPalette[256];
451 png_byte alphaPalette[256];
452 bool hasTransparency;
453 int paletteEntries;
454
455 analyze_image(logger, *info, grayScaleTolerance, rgbPalette, alphaPalette,
456 &paletteEntries, &hasTransparency, &colorType, outRows);
457
458 // If the image is a 9-patch, we need to preserve it as a ARGB file to make
459 // sure the pixels will not be pre-dithered/clamped until we decide they are
460 if (info->is9Patch && (colorType == PNG_COLOR_TYPE_RGB ||
461 colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_PALETTE)) {
462 colorType = PNG_COLOR_TYPE_RGB_ALPHA;
463 }
464
465 if (kDebug) {
466 switch (colorType) {
467 case PNG_COLOR_TYPE_PALETTE:
468 logger->note() << "has " << paletteEntries
469 << " colors" << (hasTransparency ? " (with alpha)" : "")
470 << ", using PNG_COLOR_TYPE_PALLETTE."
471 << std::endl;
472 break;
473 case PNG_COLOR_TYPE_GRAY:
474 logger->note() << "is opaque gray, using PNG_COLOR_TYPE_GRAY." << std::endl;
475 break;
476 case PNG_COLOR_TYPE_GRAY_ALPHA:
477 logger->note() << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA." << std::endl;
478 break;
479 case PNG_COLOR_TYPE_RGB:
480 logger->note() << "is opaque RGB, using PNG_COLOR_TYPE_RGB." << std::endl;
481 break;
482 case PNG_COLOR_TYPE_RGB_ALPHA:
483 logger->note() << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA." << std::endl;
484 break;
485 }
486 }
487
488 png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType,
489 PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
490
491 if (colorType == PNG_COLOR_TYPE_PALETTE) {
492 png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries);
493 if (hasTransparency) {
494 png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries, (png_color_16p) 0);
495 }
496 png_set_filter(writePtr, 0, PNG_NO_FILTERS);
497 } else {
498 png_set_filter(writePtr, 0, PNG_ALL_FILTERS);
499 }
500
501 if (info->is9Patch) {
502 int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0);
503 int pIndex = info->haveLayoutBounds ? 2 : 1;
504 int bIndex = 1;
505 int oIndex = 0;
506
507 // Chunks ordered thusly because older platforms depend on the base 9 patch data being last
508 png_bytep chunkNames = info->haveLayoutBounds
509 ? (png_bytep)"npOl\0npLb\0npTc\0"
510 : (png_bytep)"npOl\0npTc";
511
512 // base 9 patch data
513 if (kDebug) {
514 logger->note() << "adding 9-patch info..." << std::endl;
515 }
516 strcpy((char*)unknowns[pIndex].name, "npTc");
517 unknowns[pIndex].data = (png_byte*) info->serialize9Patch();
518 unknowns[pIndex].size = info->info9Patch.serializedSize();
519 // TODO: remove the check below when everything works
520 checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data);
521
522 // automatically generated 9 patch outline data
523 int chunkSize = sizeof(png_uint_32) * 6;
524 strcpy((char*)unknowns[oIndex].name, "npOl");
525 unknowns[oIndex].data = (png_byte*) calloc(chunkSize, 1);
526 png_byte outputData[chunkSize];
527 memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32));
528 ((float*) outputData)[4] = info->outlineRadius;
529 ((png_uint_32*) outputData)[5] = info->outlineAlpha;
530 memcpy(unknowns[oIndex].data, &outputData, chunkSize);
531 unknowns[oIndex].size = chunkSize;
532
533 // optional optical inset / layout bounds data
534 if (info->haveLayoutBounds) {
535 int chunkSize = sizeof(png_uint_32) * 4;
536 strcpy((char*)unknowns[bIndex].name, "npLb");
537 unknowns[bIndex].data = (png_byte*) calloc(chunkSize, 1);
538 memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize);
539 unknowns[bIndex].size = chunkSize;
540 }
541
542 for (int i = 0; i < chunkCount; i++) {
543 unknowns[i].location = PNG_HAVE_PLTE;
544 }
545 png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS,
546 chunkNames, chunkCount);
547 png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount);
548
549#if PNG_LIBPNG_VER < 10600
550 // Deal with unknown chunk location bug in 1.5.x and earlier.
551 png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE);
552 if (info->haveLayoutBounds) {
553 png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE);
554 }
555#endif
556 }
557
558 png_write_info(writePtr, infoPtr);
559
560 png_bytepp rows;
561 if (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) {
562 if (colorType == PNG_COLOR_TYPE_RGB) {
563 png_set_filler(writePtr, 0, PNG_FILLER_AFTER);
564 }
565 rows = info->rows.data();
566 } else {
567 rows = outRows;
568 }
569 png_write_image(writePtr, rows);
570
571 if (kDebug) {
572 printf("Final image data:\n");
573 //dump_image(info->width, info->height, rows, colorType);
574 }
575
576 png_write_end(writePtr, infoPtr);
577
578 for (uint32_t i = 0; i < info->height; i++) {
579 free(outRows[i]);
580 }
581 free(outRows);
582 free(unknowns[0].data);
583 free(unknowns[1].data);
584 free(unknowns[2].data);
585
586 png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType, &interlaceType,
587 &compressionType, nullptr);
588
589 if (kDebug) {
590 logger->note() << "image written: w = " << width << ", h = " << height
591 << ", d = " << bitDepth << ", colors = " << colorType
592 << ", inter = " << interlaceType << ", comp = " << compressionType
593 << std::endl;
594 }
595 return true;
596}
597
598constexpr uint32_t kColorWhite = 0xffffffffu;
599constexpr uint32_t kColorTick = 0xff000000u;
600constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu;
601
602enum class TickType {
603 kNone,
604 kTick,
605 kLayoutBounds,
606 kBoth
607};
608
609static TickType tickType(png_bytep p, bool transparent, const char** outError) {
610 png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
611
612 if (transparent) {
613 if (p[3] == 0) {
614 return TickType::kNone;
615 }
616 if (color == kColorLayoutBoundsTick) {
617 return TickType::kLayoutBounds;
618 }
619 if (color == kColorTick) {
620 return TickType::kTick;
621 }
622
623 // Error cases
624 if (p[3] != 0xff) {
625 *outError = "Frame pixels must be either solid or transparent "
626 "(not intermediate alphas)";
627 return TickType::kNone;
628 }
629
630 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
631 *outError = "Ticks in transparent frame must be black or red";
632 }
633 return TickType::kTick;
634 }
635
636 if (p[3] != 0xFF) {
637 *outError = "White frame must be a solid color (no alpha)";
638 }
639 if (color == kColorWhite) {
640 return TickType::kNone;
641 }
642 if (color == kColorTick) {
643 return TickType::kTick;
644 }
645 if (color == kColorLayoutBoundsTick) {
646 return TickType::kLayoutBounds;
647 }
648
649 if (p[0] != 0 || p[1] != 0 || p[2] != 0) {
650 *outError = "Ticks in white frame must be black or red";
651 return TickType::kNone;
652 }
653 return TickType::kTick;
654}
655
656enum class TickState {
657 kStart,
658 kInside1,
659 kOutside1
660};
661
662static bool getHorizontalTicks(png_bytep row, int width, bool transparent, bool required,
663 int32_t* outLeft, int32_t* outRight, const char** outError,
664 uint8_t* outDivs, bool multipleAllowed) {
665 *outLeft = *outRight = -1;
666 TickState state = TickState::kStart;
667 bool found = false;
668
669 for (int i = 1; i < width - 1; i++) {
670 if (tickType(row+i*4, transparent, outError) == TickType::kTick) {
671 if (state == TickState::kStart ||
672 (state == TickState::kOutside1 && multipleAllowed)) {
673 *outLeft = i-1;
674 *outRight = width-2;
675 found = true;
676 if (outDivs != NULL) {
677 *outDivs += 2;
678 }
679 state = TickState::kInside1;
680 } else if (state == TickState::kOutside1) {
681 *outError = "Can't have more than one marked region along edge";
682 *outLeft = i;
683 return false;
684 }
685 } else if (!*outError) {
686 if (state == TickState::kInside1) {
687 // We're done with this div. Move on to the next.
688 *outRight = i-1;
689 outRight += 2;
690 outLeft += 2;
691 state = TickState::kOutside1;
692 }
693 } else {
694 *outLeft = i;
695 return false;
696 }
697 }
698
699 if (required && !found) {
700 *outError = "No marked region found along edge";
701 *outLeft = -1;
702 return false;
703 }
704 return true;
705}
706
707static bool getVerticalTicks(png_bytepp rows, int offset, int height, bool transparent,
708 bool required, int32_t* outTop, int32_t* outBottom,
709 const char** outError, uint8_t* outDivs, bool multipleAllowed) {
710 *outTop = *outBottom = -1;
711 TickState state = TickState::kStart;
712 bool found = false;
713
714 for (int i = 1; i < height - 1; i++) {
715 if (tickType(rows[i]+offset, transparent, outError) == TickType::kTick) {
716 if (state == TickState::kStart ||
717 (state == TickState::kOutside1 && multipleAllowed)) {
718 *outTop = i-1;
719 *outBottom = height-2;
720 found = true;
721 if (outDivs != NULL) {
722 *outDivs += 2;
723 }
724 state = TickState::kInside1;
725 } else if (state == TickState::kOutside1) {
726 *outError = "Can't have more than one marked region along edge";
727 *outTop = i;
728 return false;
729 }
730 } else if (!*outError) {
731 if (state == TickState::kInside1) {
732 // We're done with this div. Move on to the next.
733 *outBottom = i-1;
734 outTop += 2;
735 outBottom += 2;
736 state = TickState::kOutside1;
737 }
738 } else {
739 *outTop = i;
740 return false;
741 }
742 }
743
744 if (required && !found) {
745 *outError = "No marked region found along edge";
746 *outTop = -1;
747 return false;
748 }
749 return true;
750}
751
752static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width, bool transparent,
753 bool /* required */, int32_t* outLeft,
754 int32_t* outRight, const char** outError) {
755 *outLeft = *outRight = 0;
756
757 // Look for left tick
758 if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) {
759 // Starting with a layout padding tick
760 int i = 1;
761 while (i < width - 1) {
762 (*outLeft)++;
763 i++;
764 if (tickType(row + i * 4, transparent, outError) != TickType::kLayoutBounds) {
765 break;
766 }
767 }
768 }
769
770 // Look for right tick
771 if (tickType(row + (width - 2) * 4, transparent, outError) == TickType::kLayoutBounds) {
772 // Ending with a layout padding tick
773 int i = width - 2;
774 while (i > 1) {
775 (*outRight)++;
776 i--;
777 if (tickType(row+i*4, transparent, outError) != TickType::kLayoutBounds) {
778 break;
779 }
780 }
781 }
782 return true;
783}
784
785static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset, int height, bool transparent,
786 bool /* required */, int32_t* outTop, int32_t* outBottom,
787 const char** outError) {
788 *outTop = *outBottom = 0;
789
790 // Look for top tick
791 if (tickType(rows[1] + offset, transparent, outError) == TickType::kLayoutBounds) {
792 // Starting with a layout padding tick
793 int i = 1;
794 while (i < height - 1) {
795 (*outTop)++;
796 i++;
797 if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) {
798 break;
799 }
800 }
801 }
802
803 // Look for bottom tick
804 if (tickType(rows[height - 2] + offset, transparent, outError) == TickType::kLayoutBounds) {
805 // Ending with a layout padding tick
806 int i = height - 2;
807 while (i > 1) {
808 (*outBottom)++;
809 i--;
810 if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) {
811 break;
812 }
813 }
814 }
815 return true;
816}
817
818static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX, int endY,
819 int dX, int dY, int* outInset) {
820 uint8_t maxOpacity = 0;
821 int inset = 0;
822 *outInset = 0;
823 for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) {
824 png_byte* color = rows[y] + x * 4;
825 uint8_t opacity = color[3];
826 if (opacity > maxOpacity) {
827 maxOpacity = opacity;
828 *outInset = inset;
829 }
830 if (opacity == 0xff) return;
831 }
832}
833
834static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) {
835 uint8_t maxAlpha = 0;
836 for (int x = startX; x < endX; x++) {
837 uint8_t alpha = (row + x * 4)[3];
838 if (alpha > maxAlpha) maxAlpha = alpha;
839 }
840 return maxAlpha;
841}
842
843static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY, int endY) {
844 uint8_t maxAlpha = 0;
845 for (int y = startY; y < endY; y++) {
846 uint8_t alpha = (rows[y] + offsetX * 4)[3];
847 if (alpha > maxAlpha) maxAlpha = alpha;
848 }
849 return maxAlpha;
850}
851
852static void getOutline(PngInfo* image) {
853 int midX = image->width / 2;
854 int midY = image->height / 2;
855 int endX = image->width - 2;
856 int endY = image->height - 2;
857
858 // find left and right extent of nine patch content on center row
859 if (image->width > 4) {
860 findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft);
861 findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0,
862 &image->outlineInsetsRight);
863 } else {
864 image->outlineInsetsLeft = 0;
865 image->outlineInsetsRight = 0;
866 }
867
868 // find top and bottom extent of nine patch content on center column
869 if (image->height > 4) {
870 findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop);
871 findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1,
872 &image->outlineInsetsBottom);
873 } else {
874 image->outlineInsetsTop = 0;
875 image->outlineInsetsBottom = 0;
876 }
877
878 int innerStartX = 1 + image->outlineInsetsLeft;
879 int innerStartY = 1 + image->outlineInsetsTop;
880 int innerEndX = endX - image->outlineInsetsRight;
881 int innerEndY = endY - image->outlineInsetsBottom;
882 int innerMidX = (innerEndX + innerStartX) / 2;
883 int innerMidY = (innerEndY + innerStartY) / 2;
884
885 // assuming the image is a round rect, compute the radius by marching
886 // diagonally from the top left corner towards the center
887 image->outlineAlpha = std::max(
888 maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX),
889 maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY));
890
891 int diagonalInset = 0;
892 findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX, innerMidY, 1, 1,
893 &diagonalInset);
894
895 /* Determine source radius based upon inset:
896 * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r
897 * sqrt(2) * r = sqrt(2) * i + r
898 * (sqrt(2) - 1) * r = sqrt(2) * i
899 * r = sqrt(2) / (sqrt(2) - 1) * i
900 */
901 image->outlineRadius = 3.4142f * diagonalInset;
902
903 if (kDebug) {
904 printf("outline insets %d %d %d %d, rad %f, alpha %x\n",
905 image->outlineInsetsLeft,
906 image->outlineInsetsTop,
907 image->outlineInsetsRight,
908 image->outlineInsetsBottom,
909 image->outlineRadius,
910 image->outlineAlpha);
911 }
912}
913
914static uint32_t getColor(png_bytepp rows, int left, int top, int right, int bottom) {
915 png_bytep color = rows[top] + left*4;
916
917 if (left > right || top > bottom) {
918 return android::Res_png_9patch::TRANSPARENT_COLOR;
919 }
920
921 while (top <= bottom) {
922 for (int i = left; i <= right; i++) {
923 png_bytep p = rows[top]+i*4;
924 if (color[3] == 0) {
925 if (p[3] != 0) {
926 return android::Res_png_9patch::NO_COLOR;
927 }
928 } else if (p[0] != color[0] || p[1] != color[1] ||
929 p[2] != color[2] || p[3] != color[3]) {
930 return android::Res_png_9patch::NO_COLOR;
931 }
932 }
933 top++;
934 }
935
936 if (color[3] == 0) {
937 return android::Res_png_9patch::TRANSPARENT_COLOR;
938 }
939 return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2];
940}
941
942static bool do9Patch(PngInfo* image, std::string* outError) {
943 image->is9Patch = true;
944
945 int W = image->width;
946 int H = image->height;
947 int i, j;
948
949 const int maxSizeXDivs = W * sizeof(int32_t);
950 const int maxSizeYDivs = H * sizeof(int32_t);
951 int32_t* xDivs = image->xDivs = new int32_t[W];
952 int32_t* yDivs = image->yDivs = new int32_t[H];
953 uint8_t numXDivs = 0;
954 uint8_t numYDivs = 0;
955
956 int8_t numColors;
957 int numRows;
958 int numCols;
959 int top;
960 int left;
961 int right;
962 int bottom;
963 memset(xDivs, -1, maxSizeXDivs);
964 memset(yDivs, -1, maxSizeYDivs);
965 image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1;
966 image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1;
967 image->layoutBoundsLeft = image->layoutBoundsRight = 0;
968 image->layoutBoundsTop = image->layoutBoundsBottom = 0;
969
970 png_bytep p = image->rows[0];
971 bool transparent = p[3] == 0;
972 bool hasColor = false;
973
974 const char* errorMsg = nullptr;
975 int errorPixel = -1;
976 const char* errorEdge = nullptr;
977
978 int colorIndex = 0;
979 std::vector<png_bytep> newRows;
980
981 // Validate size...
982 if (W < 3 || H < 3) {
983 errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels";
984 goto getout;
985 }
986
987 // Validate frame...
988 if (!transparent &&
989 (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) {
990 errorMsg = "Must have one-pixel frame that is either transparent or white";
991 goto getout;
992 }
993
994 // Find left and right of sizing areas...
995 if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1], &errorMsg, &numXDivs,
996 true)) {
997 errorPixel = xDivs[0];
998 errorEdge = "top";
999 goto getout;
1000 }
1001
1002 // Find top and bottom of sizing areas...
1003 if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0], &yDivs[1],
1004 &errorMsg, &numYDivs, true)) {
1005 errorPixel = yDivs[0];
1006 errorEdge = "left";
1007 goto getout;
1008 }
1009
1010 // Copy patch size data into image...
1011 image->info9Patch.numXDivs = numXDivs;
1012 image->info9Patch.numYDivs = numYDivs;
1013
1014 // Find left and right of padding area...
1015 if (!getHorizontalTicks(image->rows[H-1], W, transparent, false,
1016 &image->info9Patch.paddingLeft, &image->info9Patch.paddingRight,
1017 &errorMsg, nullptr, false)) {
1018 errorPixel = image->info9Patch.paddingLeft;
1019 errorEdge = "bottom";
1020 goto getout;
1021 }
1022
1023 // Find top and bottom of padding area...
1024 if (!getVerticalTicks(image->rows.data(), (W-1)*4, H, transparent, false,
1025 &image->info9Patch.paddingTop, &image->info9Patch.paddingBottom,
1026 &errorMsg, nullptr, false)) {
1027 errorPixel = image->info9Patch.paddingTop;
1028 errorEdge = "right";
1029 goto getout;
1030 }
1031
1032 // Find left and right of layout padding...
1033 getHorizontalLayoutBoundsTicks(image->rows[H-1], W, transparent, false,
1034 &image->layoutBoundsLeft, &image->layoutBoundsRight, &errorMsg);
1035
1036 getVerticalLayoutBoundsTicks(image->rows.data(), (W-1)*4, H, transparent, false,
1037 &image->layoutBoundsTop, &image->layoutBoundsBottom, &errorMsg);
1038
1039 image->haveLayoutBounds = image->layoutBoundsLeft != 0
1040 || image->layoutBoundsRight != 0
1041 || image->layoutBoundsTop != 0
1042 || image->layoutBoundsBottom != 0;
1043
1044 if (image->haveLayoutBounds) {
1045 if (kDebug) {
1046 printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop,
1047 image->layoutBoundsRight, image->layoutBoundsBottom);
1048 }
1049 }
1050
1051 // use opacity of pixels to estimate the round rect outline
1052 getOutline(image);
1053
1054 // If padding is not yet specified, take values from size.
1055 if (image->info9Patch.paddingLeft < 0) {
1056 image->info9Patch.paddingLeft = xDivs[0];
1057 image->info9Patch.paddingRight = W - 2 - xDivs[1];
1058 } else {
1059 // Adjust value to be correct!
1060 image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight;
1061 }
1062 if (image->info9Patch.paddingTop < 0) {
1063 image->info9Patch.paddingTop = yDivs[0];
1064 image->info9Patch.paddingBottom = H - 2 - yDivs[1];
1065 } else {
1066 // Adjust value to be correct!
1067 image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom;
1068 }
1069
1070/* if (kDebug) {
1071 printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName,
1072 xDivs[0], xDivs[1],
1073 yDivs[0], yDivs[1]);
1074 printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName,
1075 image->info9Patch.paddingLeft, image->info9Patch.paddingRight,
1076 image->info9Patch.paddingTop, image->info9Patch.paddingBottom);
1077 }*/
1078
1079 // Remove frame from image.
1080 newRows.resize(H - 2);
1081 for (i = 0; i < H - 2; i++) {
1082 newRows[i] = image->rows[i + 1];
1083 memmove(newRows[i], newRows[i] + 4, (W - 2) * 4);
1084 }
1085 image->rows.swap(newRows);
1086
1087 image->width -= 2;
1088 W = image->width;
1089 image->height -= 2;
1090 H = image->height;
1091
1092 // Figure out the number of rows and columns in the N-patch
1093 numCols = numXDivs + 1;
1094 if (xDivs[0] == 0) { // Column 1 is strechable
1095 numCols--;
1096 }
1097 if (xDivs[numXDivs - 1] == W) {
1098 numCols--;
1099 }
1100 numRows = numYDivs + 1;
1101 if (yDivs[0] == 0) { // Row 1 is strechable
1102 numRows--;
1103 }
1104 if (yDivs[numYDivs - 1] == H) {
1105 numRows--;
1106 }
1107
1108 // Make sure the amount of rows and columns will fit in the number of
1109 // colors we can use in the 9-patch format.
1110 if (numRows * numCols > 0x7F) {
1111 errorMsg = "Too many rows and columns in 9-patch perimeter";
1112 goto getout;
1113 }
1114
1115 numColors = numRows * numCols;
1116 image->info9Patch.numColors = numColors;
1117 image->colors.resize(numColors);
1118
1119 // Fill in color information for each patch.
1120
1121 uint32_t c;
1122 top = 0;
1123
1124 // The first row always starts with the top being at y=0 and the bottom
1125 // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case
1126 // the first row is stretchable along the Y axis, otherwise it is fixed.
1127 // The last row always ends with the bottom being bitmap.height and the top
1128 // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or
1129 // yDivs[numYDivs-1]. In the former case the last row is stretchable along
1130 // the Y axis, otherwise it is fixed.
1131 //
1132 // The first and last columns are similarly treated with respect to the X
1133 // axis.
1134 //
1135 // The above is to help explain some of the special casing that goes on the
1136 // code below.
1137
1138 // The initial yDiv and whether the first row is considered stretchable or
1139 // not depends on whether yDiv[0] was zero or not.
1140 for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) {
1141 if (j == numYDivs) {
1142 bottom = H;
1143 } else {
1144 bottom = yDivs[j];
1145 }
1146 left = 0;
1147 // The initial xDiv and whether the first column is considered
1148 // stretchable or not depends on whether xDiv[0] was zero or not.
1149 for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) {
1150 if (i == numXDivs) {
1151 right = W;
1152 } else {
1153 right = xDivs[i];
1154 }
1155 c = getColor(image->rows.data(), left, top, right - 1, bottom - 1);
1156 image->colors[colorIndex++] = c;
1157 if (kDebug) {
1158 if (c != android::Res_png_9patch::NO_COLOR) {
1159 hasColor = true;
1160 }
1161 }
1162 left = right;
1163 }
1164 top = bottom;
1165 }
1166
1167 assert(colorIndex == numColors);
1168
1169 if (kDebug && hasColor) {
1170 for (i = 0; i < numColors; i++) {
1171 if (i == 0) printf("Colors:\n");
1172 printf(" #%08x", image->colors[i]);
1173 if (i == numColors - 1) printf("\n");
1174 }
1175 }
1176getout:
1177 if (errorMsg) {
1178 std::stringstream err;
1179 err << "9-patch malformed: " << errorMsg;
1180 if (!errorEdge) {
1181 err << "." << std::endl;
1182 if (errorPixel >= 0) {
1183 err << "Found at pixel #" << errorPixel << " along " << errorEdge << " edge";
1184 } else {
1185 err << "Found along " << errorEdge << " edge";
1186 }
1187 }
1188 *outError = err.str();
1189 return false;
1190 }
1191 return true;
1192}
1193
1194
Adam Lesinski769de982015-04-10 19:43:55 -07001195bool Png::process(const Source& source, std::istream& input, BigBuffer* outBuffer,
Adam Lesinski98aa3ad2015-04-06 11:46:52 -07001196 const Options& options, std::string* outError) {
1197 png_byte signature[kPngSignatureSize];
1198
1199 // Read the PNG signature first.
1200 if (!input.read(reinterpret_cast<char*>(signature), kPngSignatureSize)) {
1201 *outError = strerror(errno);
1202 return false;
1203 }
1204
1205 // If the PNG signature doesn't match, bail early.
1206 if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
1207 *outError = "not a valid png file";
1208 return false;
1209 }
1210
1211 SourceLogger logger(source);
1212 bool result = false;
1213 png_structp readPtr = nullptr;
1214 png_infop infoPtr = nullptr;
1215 png_structp writePtr = nullptr;
1216 png_infop writeInfoPtr = nullptr;
1217 PngInfo pngInfo = {};
1218
1219 readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1220 if (!readPtr) {
1221 *outError = "failed to allocate read ptr";
1222 goto bail;
1223 }
1224
1225 infoPtr = png_create_info_struct(readPtr);
1226 if (!infoPtr) {
1227 *outError = "failed to allocate info ptr";
1228 goto bail;
1229 }
1230
1231 png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(&logger), nullptr, logWarning);
1232
1233 // Set the read function to read from std::istream.
1234 png_set_read_fn(readPtr, (png_voidp)&input, readDataFromStream);
1235
1236 if (!readPng(readPtr, infoPtr, &pngInfo, outError)) {
1237 goto bail;
1238 }
1239
Adam Lesinski4d3a9872015-04-09 19:53:22 -07001240 if (util::stringEndsWith<char>(source.path, ".9.png")) {
Adam Lesinski98aa3ad2015-04-06 11:46:52 -07001241 if (!do9Patch(&pngInfo, outError)) {
1242 goto bail;
1243 }
1244 }
1245
1246 writePtr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr);
1247 if (!writePtr) {
1248 *outError = "failed to allocate write ptr";
1249 goto bail;
1250 }
1251
1252 writeInfoPtr = png_create_info_struct(writePtr);
1253 if (!writeInfoPtr) {
1254 *outError = "failed to allocate write info ptr";
1255 goto bail;
1256 }
1257
1258 png_set_error_fn(writePtr, nullptr, nullptr, logWarning);
1259
1260 // Set the write function to write to std::ostream.
Adam Lesinski769de982015-04-10 19:43:55 -07001261 png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream, flushDataToStream);
Adam Lesinski98aa3ad2015-04-06 11:46:52 -07001262
1263 if (!writePng(writePtr, writeInfoPtr, &pngInfo, options.grayScaleTolerance, &logger,
1264 outError)) {
1265 goto bail;
1266 }
1267
1268 result = true;
1269bail:
1270 if (readPtr) {
1271 png_destroy_read_struct(&readPtr, &infoPtr, nullptr);
1272 }
1273
1274 if (writePtr) {
1275 png_destroy_write_struct(&writePtr, &writeInfoPtr);
1276 }
1277 return result;
1278}
1279
1280} // namespace aapt