Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2015 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
Adam Lesinski | 769de98 | 2015-04-10 19:43:55 -0700 | [diff] [blame] | 17 | #include "BigBuffer.h" |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 18 | #include "Logger.h" |
| 19 | #include "Png.h" |
| 20 | #include "Source.h" |
| 21 | #include "Util.h" |
| 22 | |
| 23 | #include <androidfw/ResourceTypes.h> |
| 24 | #include <iostream> |
| 25 | #include <png.h> |
| 26 | #include <sstream> |
| 27 | #include <string> |
| 28 | #include <vector> |
| 29 | #include <zlib.h> |
| 30 | |
| 31 | namespace aapt { |
| 32 | |
| 33 | constexpr bool kDebug = false; |
| 34 | constexpr size_t kPngSignatureSize = 8u; |
| 35 | |
| 36 | struct PngInfo { |
| 37 | ~PngInfo() { |
| 38 | for (png_bytep row : rows) { |
| 39 | if (row != nullptr) { |
| 40 | delete[] row; |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | delete[] xDivs; |
| 45 | delete[] yDivs; |
| 46 | } |
| 47 | |
| 48 | void* serialize9Patch() { |
| 49 | void* serialized = android::Res_png_9patch::serialize(info9Patch, xDivs, yDivs, |
| 50 | colors.data()); |
| 51 | reinterpret_cast<android::Res_png_9patch*>(serialized)->deviceToFile(); |
| 52 | return serialized; |
| 53 | } |
| 54 | |
| 55 | uint32_t width = 0; |
| 56 | uint32_t height = 0; |
| 57 | std::vector<png_bytep> rows; |
| 58 | |
| 59 | bool is9Patch = false; |
| 60 | android::Res_png_9patch info9Patch; |
| 61 | int32_t* xDivs = nullptr; |
| 62 | int32_t* yDivs = nullptr; |
| 63 | std::vector<uint32_t> colors; |
| 64 | |
| 65 | // Layout padding. |
| 66 | bool haveLayoutBounds = false; |
| 67 | int32_t layoutBoundsLeft; |
| 68 | int32_t layoutBoundsTop; |
| 69 | int32_t layoutBoundsRight; |
| 70 | int32_t layoutBoundsBottom; |
| 71 | |
| 72 | // Round rect outline description. |
| 73 | int32_t outlineInsetsLeft; |
| 74 | int32_t outlineInsetsTop; |
| 75 | int32_t outlineInsetsRight; |
| 76 | int32_t outlineInsetsBottom; |
| 77 | float outlineRadius; |
| 78 | uint8_t outlineAlpha; |
| 79 | }; |
| 80 | |
| 81 | static void readDataFromStream(png_structp readPtr, png_bytep data, png_size_t length) { |
| 82 | std::istream* input = reinterpret_cast<std::istream*>(png_get_io_ptr(readPtr)); |
| 83 | if (!input->read(reinterpret_cast<char*>(data), length)) { |
| 84 | png_error(readPtr, strerror(errno)); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | static void writeDataToStream(png_structp writePtr, png_bytep data, png_size_t length) { |
Adam Lesinski | 769de98 | 2015-04-10 19:43:55 -0700 | [diff] [blame] | 89 | BigBuffer* outBuffer = reinterpret_cast<BigBuffer*>(png_get_io_ptr(writePtr)); |
| 90 | png_bytep buf = outBuffer->nextBlock<png_byte>(length); |
| 91 | memcpy(buf, data, length); |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 92 | } |
| 93 | |
Adam Lesinski | 769de98 | 2015-04-10 19:43:55 -0700 | [diff] [blame] | 94 | static void flushDataToStream(png_structp /*writePtr*/) { |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 95 | } |
| 96 | |
| 97 | static void logWarning(png_structp readPtr, png_const_charp warningMessage) { |
| 98 | SourceLogger* logger = reinterpret_cast<SourceLogger*>(png_get_error_ptr(readPtr)); |
| 99 | logger->warn() << warningMessage << "." << std::endl; |
| 100 | } |
| 101 | |
| 102 | |
| 103 | static bool readPng(png_structp readPtr, png_infop infoPtr, PngInfo* outInfo, |
| 104 | std::string* outError) { |
| 105 | if (setjmp(png_jmpbuf(readPtr))) { |
| 106 | *outError = "failed reading png"; |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | png_set_sig_bytes(readPtr, kPngSignatureSize); |
| 111 | png_read_info(readPtr, infoPtr); |
| 112 | |
| 113 | int colorType, bitDepth, interlaceType, compressionType; |
| 114 | png_get_IHDR(readPtr, infoPtr, &outInfo->width, &outInfo->height, &bitDepth, &colorType, |
| 115 | &interlaceType, &compressionType, nullptr); |
| 116 | |
| 117 | if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| 118 | png_set_palette_to_rgb(readPtr); |
| 119 | } |
| 120 | |
| 121 | if (colorType == PNG_COLOR_TYPE_GRAY && bitDepth < 8) { |
| 122 | png_set_expand_gray_1_2_4_to_8(readPtr); |
| 123 | } |
| 124 | |
| 125 | if (png_get_valid(readPtr, infoPtr, PNG_INFO_tRNS)) { |
| 126 | png_set_tRNS_to_alpha(readPtr); |
| 127 | } |
| 128 | |
| 129 | if (bitDepth == 16) { |
| 130 | png_set_strip_16(readPtr); |
| 131 | } |
| 132 | |
| 133 | if (!(colorType & PNG_COLOR_MASK_ALPHA)) { |
| 134 | png_set_add_alpha(readPtr, 0xFF, PNG_FILLER_AFTER); |
| 135 | } |
| 136 | |
| 137 | if (colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| 138 | png_set_gray_to_rgb(readPtr); |
| 139 | } |
| 140 | |
| 141 | png_set_interlace_handling(readPtr); |
| 142 | png_read_update_info(readPtr, infoPtr); |
| 143 | |
| 144 | const uint32_t rowBytes = png_get_rowbytes(readPtr, infoPtr); |
| 145 | outInfo->rows.resize(outInfo->height); |
| 146 | for (size_t i = 0; i < outInfo->height; i++) { |
| 147 | outInfo->rows[i] = new png_byte[rowBytes]; |
| 148 | } |
| 149 | |
| 150 | png_read_image(readPtr, outInfo->rows.data()); |
| 151 | png_read_end(readPtr, infoPtr); |
| 152 | return true; |
| 153 | } |
| 154 | |
| 155 | static void checkNinePatchSerialization(android::Res_png_9patch* inPatch, void* data) { |
| 156 | size_t patchSize = inPatch->serializedSize(); |
| 157 | void* newData = malloc(patchSize); |
| 158 | memcpy(newData, data, patchSize); |
| 159 | android::Res_png_9patch* outPatch = inPatch->deserialize(newData); |
| 160 | outPatch->fileToDevice(); |
| 161 | // deserialization is done in place, so outPatch == newData |
| 162 | assert(outPatch == newData); |
| 163 | assert(outPatch->numXDivs == inPatch->numXDivs); |
| 164 | assert(outPatch->numYDivs == inPatch->numYDivs); |
| 165 | assert(outPatch->paddingLeft == inPatch->paddingLeft); |
| 166 | assert(outPatch->paddingRight == inPatch->paddingRight); |
| 167 | assert(outPatch->paddingTop == inPatch->paddingTop); |
| 168 | assert(outPatch->paddingBottom == inPatch->paddingBottom); |
| 169 | /* for (int i = 0; i < outPatch->numXDivs; i++) { |
| 170 | assert(outPatch->getXDivs()[i] == inPatch->getXDivs()[i]); |
| 171 | } |
| 172 | for (int i = 0; i < outPatch->numYDivs; i++) { |
| 173 | assert(outPatch->getYDivs()[i] == inPatch->getYDivs()[i]); |
| 174 | } |
| 175 | for (int i = 0; i < outPatch->numColors; i++) { |
| 176 | assert(outPatch->getColors()[i] == inPatch->getColors()[i]); |
| 177 | }*/ |
| 178 | free(newData); |
| 179 | } |
| 180 | |
| 181 | /*static void dump_image(int w, int h, const png_byte* const* rows, int color_type) { |
| 182 | int i, j, rr, gg, bb, aa; |
| 183 | |
| 184 | int bpp; |
| 185 | if (color_type == PNG_COLOR_TYPE_PALETTE || color_type == PNG_COLOR_TYPE_GRAY) { |
| 186 | bpp = 1; |
| 187 | } else if (color_type == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| 188 | bpp = 2; |
| 189 | } else if (color_type == PNG_COLOR_TYPE_RGB || color_type == PNG_COLOR_TYPE_RGB_ALPHA) { |
| 190 | // We use a padding byte even when there is no alpha |
| 191 | bpp = 4; |
| 192 | } else { |
| 193 | printf("Unknown color type %d.\n", color_type); |
| 194 | } |
| 195 | |
| 196 | for (j = 0; j < h; j++) { |
| 197 | const png_byte* row = rows[j]; |
| 198 | for (i = 0; i < w; i++) { |
| 199 | rr = row[0]; |
| 200 | gg = row[1]; |
| 201 | bb = row[2]; |
| 202 | aa = row[3]; |
| 203 | row += bpp; |
| 204 | |
| 205 | if (i == 0) { |
| 206 | printf("Row %d:", j); |
| 207 | } |
| 208 | switch (bpp) { |
| 209 | case 1: |
| 210 | printf(" (%d)", rr); |
| 211 | break; |
| 212 | case 2: |
| 213 | printf(" (%d %d", rr, gg); |
| 214 | break; |
| 215 | case 3: |
| 216 | printf(" (%d %d %d)", rr, gg, bb); |
| 217 | break; |
| 218 | case 4: |
| 219 | printf(" (%d %d %d %d)", rr, gg, bb, aa); |
| 220 | break; |
| 221 | } |
| 222 | if (i == (w - 1)) { |
| 223 | printf("\n"); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | }*/ |
| 228 | |
| 229 | #define MAX(a,b) ((a)>(b)?(a):(b)) |
| 230 | #define ABS(a) ((a)<0?-(a):(a)) |
| 231 | |
| 232 | static void analyze_image(SourceLogger* logger, const PngInfo& imageInfo, int grayscaleTolerance, |
| 233 | png_colorp rgbPalette, png_bytep alphaPalette, |
| 234 | int *paletteEntries, bool *hasTransparency, int *colorType, |
| 235 | png_bytepp outRows) { |
| 236 | int w = imageInfo.width; |
| 237 | int h = imageInfo.height; |
| 238 | int i, j, rr, gg, bb, aa, idx; |
| 239 | uint32_t colors[256], col; |
| 240 | int num_colors = 0; |
| 241 | int maxGrayDeviation = 0; |
| 242 | |
| 243 | bool isOpaque = true; |
| 244 | bool isPalette = true; |
| 245 | bool isGrayscale = true; |
| 246 | |
| 247 | // Scan the entire image and determine if: |
| 248 | // 1. Every pixel has R == G == B (grayscale) |
| 249 | // 2. Every pixel has A == 255 (opaque) |
| 250 | // 3. There are no more than 256 distinct RGBA colors |
| 251 | |
| 252 | if (kDebug) { |
| 253 | printf("Initial image data:\n"); |
| 254 | //dump_image(w, h, imageInfo.rows.data(), PNG_COLOR_TYPE_RGB_ALPHA); |
| 255 | } |
| 256 | |
| 257 | for (j = 0; j < h; j++) { |
| 258 | const png_byte* row = imageInfo.rows[j]; |
| 259 | png_bytep out = outRows[j]; |
| 260 | for (i = 0; i < w; i++) { |
| 261 | rr = *row++; |
| 262 | gg = *row++; |
| 263 | bb = *row++; |
| 264 | aa = *row++; |
| 265 | |
| 266 | int odev = maxGrayDeviation; |
| 267 | maxGrayDeviation = MAX(ABS(rr - gg), maxGrayDeviation); |
| 268 | maxGrayDeviation = MAX(ABS(gg - bb), maxGrayDeviation); |
| 269 | maxGrayDeviation = MAX(ABS(bb - rr), maxGrayDeviation); |
| 270 | if (maxGrayDeviation > odev) { |
| 271 | if (kDebug) { |
| 272 | printf("New max dev. = %d at pixel (%d, %d) = (%d %d %d %d)\n", |
| 273 | maxGrayDeviation, i, j, rr, gg, bb, aa); |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // Check if image is really grayscale |
| 278 | if (isGrayscale) { |
| 279 | if (rr != gg || rr != bb) { |
| 280 | if (kDebug) { |
| 281 | printf("Found a non-gray pixel at %d, %d = (%d %d %d %d)\n", |
| 282 | i, j, rr, gg, bb, aa); |
| 283 | } |
| 284 | isGrayscale = false; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | // Check if image is really opaque |
| 289 | if (isOpaque) { |
| 290 | if (aa != 0xff) { |
| 291 | if (kDebug) { |
| 292 | printf("Found a non-opaque pixel at %d, %d = (%d %d %d %d)\n", |
| 293 | i, j, rr, gg, bb, aa); |
| 294 | } |
| 295 | isOpaque = false; |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | // Check if image is really <= 256 colors |
| 300 | if (isPalette) { |
| 301 | col = (uint32_t) ((rr << 24) | (gg << 16) | (bb << 8) | aa); |
| 302 | bool match = false; |
| 303 | for (idx = 0; idx < num_colors; idx++) { |
| 304 | if (colors[idx] == col) { |
| 305 | match = true; |
| 306 | break; |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | // Write the palette index for the pixel to outRows optimistically |
| 311 | // We might overwrite it later if we decide to encode as gray or |
| 312 | // gray + alpha |
| 313 | *out++ = idx; |
| 314 | if (!match) { |
| 315 | if (num_colors == 256) { |
| 316 | if (kDebug) { |
| 317 | printf("Found 257th color at %d, %d\n", i, j); |
| 318 | } |
| 319 | isPalette = false; |
| 320 | } else { |
| 321 | colors[num_colors++] = col; |
| 322 | } |
| 323 | } |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | *paletteEntries = 0; |
| 329 | *hasTransparency = !isOpaque; |
| 330 | int bpp = isOpaque ? 3 : 4; |
| 331 | int paletteSize = w * h + bpp * num_colors; |
| 332 | |
| 333 | if (kDebug) { |
| 334 | printf("isGrayscale = %s\n", isGrayscale ? "true" : "false"); |
| 335 | printf("isOpaque = %s\n", isOpaque ? "true" : "false"); |
| 336 | printf("isPalette = %s\n", isPalette ? "true" : "false"); |
| 337 | printf("Size w/ palette = %d, gray+alpha = %d, rgb(a) = %d\n", |
| 338 | paletteSize, 2 * w * h, bpp * w * h); |
| 339 | printf("Max gray deviation = %d, tolerance = %d\n", maxGrayDeviation, grayscaleTolerance); |
| 340 | } |
| 341 | |
| 342 | // Choose the best color type for the image. |
| 343 | // 1. Opaque gray - use COLOR_TYPE_GRAY at 1 byte/pixel |
| 344 | // 2. Gray + alpha - use COLOR_TYPE_PALETTE if the number of distinct combinations |
| 345 | // is sufficiently small, otherwise use COLOR_TYPE_GRAY_ALPHA |
| 346 | // 3. RGB(A) - use COLOR_TYPE_PALETTE if the number of distinct colors is sufficiently |
| 347 | // small, otherwise use COLOR_TYPE_RGB{_ALPHA} |
| 348 | if (isGrayscale) { |
| 349 | if (isOpaque) { |
| 350 | *colorType = PNG_COLOR_TYPE_GRAY; // 1 byte/pixel |
| 351 | } else { |
| 352 | // Use a simple heuristic to determine whether using a palette will |
| 353 | // save space versus using gray + alpha for each pixel. |
| 354 | // This doesn't take into account chunk overhead, filtering, LZ |
| 355 | // compression, etc. |
| 356 | if (isPalette && (paletteSize < 2 * w * h)) { |
| 357 | *colorType = PNG_COLOR_TYPE_PALETTE; // 1 byte/pixel + 4 bytes/color |
| 358 | } else { |
| 359 | *colorType = PNG_COLOR_TYPE_GRAY_ALPHA; // 2 bytes per pixel |
| 360 | } |
| 361 | } |
| 362 | } else if (isPalette && (paletteSize < bpp * w * h)) { |
| 363 | *colorType = PNG_COLOR_TYPE_PALETTE; |
| 364 | } else { |
| 365 | if (maxGrayDeviation <= grayscaleTolerance) { |
| 366 | logger->note() << "forcing image to gray (max deviation = " << maxGrayDeviation |
| 367 | << ")." |
| 368 | << std::endl; |
| 369 | *colorType = isOpaque ? PNG_COLOR_TYPE_GRAY : PNG_COLOR_TYPE_GRAY_ALPHA; |
| 370 | } else { |
| 371 | *colorType = isOpaque ? PNG_COLOR_TYPE_RGB : PNG_COLOR_TYPE_RGB_ALPHA; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | // Perform postprocessing of the image or palette data based on the final |
| 376 | // color type chosen |
| 377 | |
| 378 | if (*colorType == PNG_COLOR_TYPE_PALETTE) { |
| 379 | // Create separate RGB and Alpha palettes and set the number of colors |
| 380 | *paletteEntries = num_colors; |
| 381 | |
| 382 | // Create the RGB and alpha palettes |
| 383 | for (int idx = 0; idx < num_colors; idx++) { |
| 384 | col = colors[idx]; |
| 385 | rgbPalette[idx].red = (png_byte) ((col >> 24) & 0xff); |
| 386 | rgbPalette[idx].green = (png_byte) ((col >> 16) & 0xff); |
| 387 | rgbPalette[idx].blue = (png_byte) ((col >> 8) & 0xff); |
| 388 | alphaPalette[idx] = (png_byte) (col & 0xff); |
| 389 | } |
| 390 | } else if (*colorType == PNG_COLOR_TYPE_GRAY || *colorType == PNG_COLOR_TYPE_GRAY_ALPHA) { |
| 391 | // If the image is gray or gray + alpha, compact the pixels into outRows |
| 392 | for (j = 0; j < h; j++) { |
| 393 | const png_byte* row = imageInfo.rows[j]; |
| 394 | png_bytep out = outRows[j]; |
| 395 | for (i = 0; i < w; i++) { |
| 396 | rr = *row++; |
| 397 | gg = *row++; |
| 398 | bb = *row++; |
| 399 | aa = *row++; |
| 400 | |
| 401 | if (isGrayscale) { |
| 402 | *out++ = rr; |
| 403 | } else { |
| 404 | *out++ = (png_byte) (rr * 0.2126f + gg * 0.7152f + bb * 0.0722f); |
| 405 | } |
| 406 | if (!isOpaque) { |
| 407 | *out++ = aa; |
| 408 | } |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | static bool writePng(png_structp writePtr, png_infop infoPtr, PngInfo* info, |
| 415 | int grayScaleTolerance, SourceLogger* logger, std::string* outError) { |
| 416 | if (setjmp(png_jmpbuf(writePtr))) { |
| 417 | *outError = "failed to write png"; |
| 418 | return false; |
| 419 | } |
| 420 | |
| 421 | uint32_t width, height; |
| 422 | int colorType, bitDepth, interlaceType, compressionType; |
| 423 | |
| 424 | png_unknown_chunk unknowns[3]; |
| 425 | unknowns[0].data = nullptr; |
| 426 | unknowns[1].data = nullptr; |
| 427 | unknowns[2].data = nullptr; |
| 428 | |
| 429 | png_bytepp outRows = (png_bytepp) malloc((int) info->height * sizeof(png_bytep)); |
| 430 | if (outRows == (png_bytepp) 0) { |
| 431 | printf("Can't allocate output buffer!\n"); |
| 432 | exit(1); |
| 433 | } |
| 434 | for (uint32_t i = 0; i < info->height; i++) { |
| 435 | outRows[i] = (png_bytep) malloc(2 * (int) info->width); |
| 436 | if (outRows[i] == (png_bytep) 0) { |
| 437 | printf("Can't allocate output buffer!\n"); |
| 438 | exit(1); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | png_set_compression_level(writePtr, Z_BEST_COMPRESSION); |
| 443 | |
| 444 | if (kDebug) { |
| 445 | logger->note() << "writing image: w = " << info->width |
| 446 | << ", h = " << info->height |
| 447 | << std::endl; |
| 448 | } |
| 449 | |
| 450 | png_color rgbPalette[256]; |
| 451 | png_byte alphaPalette[256]; |
| 452 | bool hasTransparency; |
| 453 | int paletteEntries; |
| 454 | |
| 455 | analyze_image(logger, *info, grayScaleTolerance, rgbPalette, alphaPalette, |
| 456 | &paletteEntries, &hasTransparency, &colorType, outRows); |
| 457 | |
| 458 | // If the image is a 9-patch, we need to preserve it as a ARGB file to make |
| 459 | // sure the pixels will not be pre-dithered/clamped until we decide they are |
| 460 | if (info->is9Patch && (colorType == PNG_COLOR_TYPE_RGB || |
| 461 | colorType == PNG_COLOR_TYPE_GRAY || colorType == PNG_COLOR_TYPE_PALETTE)) { |
| 462 | colorType = PNG_COLOR_TYPE_RGB_ALPHA; |
| 463 | } |
| 464 | |
| 465 | if (kDebug) { |
| 466 | switch (colorType) { |
| 467 | case PNG_COLOR_TYPE_PALETTE: |
| 468 | logger->note() << "has " << paletteEntries |
| 469 | << " colors" << (hasTransparency ? " (with alpha)" : "") |
| 470 | << ", using PNG_COLOR_TYPE_PALLETTE." |
| 471 | << std::endl; |
| 472 | break; |
| 473 | case PNG_COLOR_TYPE_GRAY: |
| 474 | logger->note() << "is opaque gray, using PNG_COLOR_TYPE_GRAY." << std::endl; |
| 475 | break; |
| 476 | case PNG_COLOR_TYPE_GRAY_ALPHA: |
| 477 | logger->note() << "is gray + alpha, using PNG_COLOR_TYPE_GRAY_ALPHA." << std::endl; |
| 478 | break; |
| 479 | case PNG_COLOR_TYPE_RGB: |
| 480 | logger->note() << "is opaque RGB, using PNG_COLOR_TYPE_RGB." << std::endl; |
| 481 | break; |
| 482 | case PNG_COLOR_TYPE_RGB_ALPHA: |
| 483 | logger->note() << "is RGB + alpha, using PNG_COLOR_TYPE_RGB_ALPHA." << std::endl; |
| 484 | break; |
| 485 | } |
| 486 | } |
| 487 | |
| 488 | png_set_IHDR(writePtr, infoPtr, info->width, info->height, 8, colorType, |
| 489 | PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT); |
| 490 | |
| 491 | if (colorType == PNG_COLOR_TYPE_PALETTE) { |
| 492 | png_set_PLTE(writePtr, infoPtr, rgbPalette, paletteEntries); |
| 493 | if (hasTransparency) { |
| 494 | png_set_tRNS(writePtr, infoPtr, alphaPalette, paletteEntries, (png_color_16p) 0); |
| 495 | } |
| 496 | png_set_filter(writePtr, 0, PNG_NO_FILTERS); |
| 497 | } else { |
| 498 | png_set_filter(writePtr, 0, PNG_ALL_FILTERS); |
| 499 | } |
| 500 | |
| 501 | if (info->is9Patch) { |
| 502 | int chunkCount = 2 + (info->haveLayoutBounds ? 1 : 0); |
| 503 | int pIndex = info->haveLayoutBounds ? 2 : 1; |
| 504 | int bIndex = 1; |
| 505 | int oIndex = 0; |
| 506 | |
| 507 | // Chunks ordered thusly because older platforms depend on the base 9 patch data being last |
| 508 | png_bytep chunkNames = info->haveLayoutBounds |
| 509 | ? (png_bytep)"npOl\0npLb\0npTc\0" |
| 510 | : (png_bytep)"npOl\0npTc"; |
| 511 | |
| 512 | // base 9 patch data |
| 513 | if (kDebug) { |
| 514 | logger->note() << "adding 9-patch info..." << std::endl; |
| 515 | } |
| 516 | strcpy((char*)unknowns[pIndex].name, "npTc"); |
| 517 | unknowns[pIndex].data = (png_byte*) info->serialize9Patch(); |
| 518 | unknowns[pIndex].size = info->info9Patch.serializedSize(); |
| 519 | // TODO: remove the check below when everything works |
| 520 | checkNinePatchSerialization(&info->info9Patch, unknowns[pIndex].data); |
| 521 | |
| 522 | // automatically generated 9 patch outline data |
| 523 | int chunkSize = sizeof(png_uint_32) * 6; |
| 524 | strcpy((char*)unknowns[oIndex].name, "npOl"); |
| 525 | unknowns[oIndex].data = (png_byte*) calloc(chunkSize, 1); |
| 526 | png_byte outputData[chunkSize]; |
| 527 | memcpy(&outputData, &info->outlineInsetsLeft, 4 * sizeof(png_uint_32)); |
| 528 | ((float*) outputData)[4] = info->outlineRadius; |
| 529 | ((png_uint_32*) outputData)[5] = info->outlineAlpha; |
| 530 | memcpy(unknowns[oIndex].data, &outputData, chunkSize); |
| 531 | unknowns[oIndex].size = chunkSize; |
| 532 | |
| 533 | // optional optical inset / layout bounds data |
| 534 | if (info->haveLayoutBounds) { |
| 535 | int chunkSize = sizeof(png_uint_32) * 4; |
| 536 | strcpy((char*)unknowns[bIndex].name, "npLb"); |
| 537 | unknowns[bIndex].data = (png_byte*) calloc(chunkSize, 1); |
| 538 | memcpy(unknowns[bIndex].data, &info->layoutBoundsLeft, chunkSize); |
| 539 | unknowns[bIndex].size = chunkSize; |
| 540 | } |
| 541 | |
| 542 | for (int i = 0; i < chunkCount; i++) { |
| 543 | unknowns[i].location = PNG_HAVE_PLTE; |
| 544 | } |
| 545 | png_set_keep_unknown_chunks(writePtr, PNG_HANDLE_CHUNK_ALWAYS, |
| 546 | chunkNames, chunkCount); |
| 547 | png_set_unknown_chunks(writePtr, infoPtr, unknowns, chunkCount); |
| 548 | |
| 549 | #if PNG_LIBPNG_VER < 10600 |
| 550 | // Deal with unknown chunk location bug in 1.5.x and earlier. |
| 551 | png_set_unknown_chunk_location(writePtr, infoPtr, 0, PNG_HAVE_PLTE); |
| 552 | if (info->haveLayoutBounds) { |
| 553 | png_set_unknown_chunk_location(writePtr, infoPtr, 1, PNG_HAVE_PLTE); |
| 554 | } |
| 555 | #endif |
| 556 | } |
| 557 | |
| 558 | png_write_info(writePtr, infoPtr); |
| 559 | |
| 560 | png_bytepp rows; |
| 561 | if (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) { |
| 562 | if (colorType == PNG_COLOR_TYPE_RGB) { |
| 563 | png_set_filler(writePtr, 0, PNG_FILLER_AFTER); |
| 564 | } |
| 565 | rows = info->rows.data(); |
| 566 | } else { |
| 567 | rows = outRows; |
| 568 | } |
| 569 | png_write_image(writePtr, rows); |
| 570 | |
| 571 | if (kDebug) { |
| 572 | printf("Final image data:\n"); |
| 573 | //dump_image(info->width, info->height, rows, colorType); |
| 574 | } |
| 575 | |
| 576 | png_write_end(writePtr, infoPtr); |
| 577 | |
| 578 | for (uint32_t i = 0; i < info->height; i++) { |
| 579 | free(outRows[i]); |
| 580 | } |
| 581 | free(outRows); |
| 582 | free(unknowns[0].data); |
| 583 | free(unknowns[1].data); |
| 584 | free(unknowns[2].data); |
| 585 | |
| 586 | png_get_IHDR(writePtr, infoPtr, &width, &height, &bitDepth, &colorType, &interlaceType, |
| 587 | &compressionType, nullptr); |
| 588 | |
| 589 | if (kDebug) { |
| 590 | logger->note() << "image written: w = " << width << ", h = " << height |
| 591 | << ", d = " << bitDepth << ", colors = " << colorType |
| 592 | << ", inter = " << interlaceType << ", comp = " << compressionType |
| 593 | << std::endl; |
| 594 | } |
| 595 | return true; |
| 596 | } |
| 597 | |
| 598 | constexpr uint32_t kColorWhite = 0xffffffffu; |
| 599 | constexpr uint32_t kColorTick = 0xff000000u; |
| 600 | constexpr uint32_t kColorLayoutBoundsTick = 0xff0000ffu; |
| 601 | |
| 602 | enum class TickType { |
| 603 | kNone, |
| 604 | kTick, |
| 605 | kLayoutBounds, |
| 606 | kBoth |
| 607 | }; |
| 608 | |
| 609 | static TickType tickType(png_bytep p, bool transparent, const char** outError) { |
| 610 | png_uint_32 color = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); |
| 611 | |
| 612 | if (transparent) { |
| 613 | if (p[3] == 0) { |
| 614 | return TickType::kNone; |
| 615 | } |
| 616 | if (color == kColorLayoutBoundsTick) { |
| 617 | return TickType::kLayoutBounds; |
| 618 | } |
| 619 | if (color == kColorTick) { |
| 620 | return TickType::kTick; |
| 621 | } |
| 622 | |
| 623 | // Error cases |
| 624 | if (p[3] != 0xff) { |
| 625 | *outError = "Frame pixels must be either solid or transparent " |
| 626 | "(not intermediate alphas)"; |
| 627 | return TickType::kNone; |
| 628 | } |
| 629 | |
| 630 | if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| 631 | *outError = "Ticks in transparent frame must be black or red"; |
| 632 | } |
| 633 | return TickType::kTick; |
| 634 | } |
| 635 | |
| 636 | if (p[3] != 0xFF) { |
| 637 | *outError = "White frame must be a solid color (no alpha)"; |
| 638 | } |
| 639 | if (color == kColorWhite) { |
| 640 | return TickType::kNone; |
| 641 | } |
| 642 | if (color == kColorTick) { |
| 643 | return TickType::kTick; |
| 644 | } |
| 645 | if (color == kColorLayoutBoundsTick) { |
| 646 | return TickType::kLayoutBounds; |
| 647 | } |
| 648 | |
| 649 | if (p[0] != 0 || p[1] != 0 || p[2] != 0) { |
| 650 | *outError = "Ticks in white frame must be black or red"; |
| 651 | return TickType::kNone; |
| 652 | } |
| 653 | return TickType::kTick; |
| 654 | } |
| 655 | |
| 656 | enum class TickState { |
| 657 | kStart, |
| 658 | kInside1, |
| 659 | kOutside1 |
| 660 | }; |
| 661 | |
| 662 | static bool getHorizontalTicks(png_bytep row, int width, bool transparent, bool required, |
| 663 | int32_t* outLeft, int32_t* outRight, const char** outError, |
| 664 | uint8_t* outDivs, bool multipleAllowed) { |
| 665 | *outLeft = *outRight = -1; |
| 666 | TickState state = TickState::kStart; |
| 667 | bool found = false; |
| 668 | |
| 669 | for (int i = 1; i < width - 1; i++) { |
| 670 | if (tickType(row+i*4, transparent, outError) == TickType::kTick) { |
| 671 | if (state == TickState::kStart || |
| 672 | (state == TickState::kOutside1 && multipleAllowed)) { |
| 673 | *outLeft = i-1; |
| 674 | *outRight = width-2; |
| 675 | found = true; |
| 676 | if (outDivs != NULL) { |
| 677 | *outDivs += 2; |
| 678 | } |
| 679 | state = TickState::kInside1; |
| 680 | } else if (state == TickState::kOutside1) { |
| 681 | *outError = "Can't have more than one marked region along edge"; |
| 682 | *outLeft = i; |
| 683 | return false; |
| 684 | } |
| 685 | } else if (!*outError) { |
| 686 | if (state == TickState::kInside1) { |
| 687 | // We're done with this div. Move on to the next. |
| 688 | *outRight = i-1; |
| 689 | outRight += 2; |
| 690 | outLeft += 2; |
| 691 | state = TickState::kOutside1; |
| 692 | } |
| 693 | } else { |
| 694 | *outLeft = i; |
| 695 | return false; |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | if (required && !found) { |
| 700 | *outError = "No marked region found along edge"; |
| 701 | *outLeft = -1; |
| 702 | return false; |
| 703 | } |
| 704 | return true; |
| 705 | } |
| 706 | |
| 707 | static bool getVerticalTicks(png_bytepp rows, int offset, int height, bool transparent, |
| 708 | bool required, int32_t* outTop, int32_t* outBottom, |
| 709 | const char** outError, uint8_t* outDivs, bool multipleAllowed) { |
| 710 | *outTop = *outBottom = -1; |
| 711 | TickState state = TickState::kStart; |
| 712 | bool found = false; |
| 713 | |
| 714 | for (int i = 1; i < height - 1; i++) { |
| 715 | if (tickType(rows[i]+offset, transparent, outError) == TickType::kTick) { |
| 716 | if (state == TickState::kStart || |
| 717 | (state == TickState::kOutside1 && multipleAllowed)) { |
| 718 | *outTop = i-1; |
| 719 | *outBottom = height-2; |
| 720 | found = true; |
| 721 | if (outDivs != NULL) { |
| 722 | *outDivs += 2; |
| 723 | } |
| 724 | state = TickState::kInside1; |
| 725 | } else if (state == TickState::kOutside1) { |
| 726 | *outError = "Can't have more than one marked region along edge"; |
| 727 | *outTop = i; |
| 728 | return false; |
| 729 | } |
| 730 | } else if (!*outError) { |
| 731 | if (state == TickState::kInside1) { |
| 732 | // We're done with this div. Move on to the next. |
| 733 | *outBottom = i-1; |
| 734 | outTop += 2; |
| 735 | outBottom += 2; |
| 736 | state = TickState::kOutside1; |
| 737 | } |
| 738 | } else { |
| 739 | *outTop = i; |
| 740 | return false; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | if (required && !found) { |
| 745 | *outError = "No marked region found along edge"; |
| 746 | *outTop = -1; |
| 747 | return false; |
| 748 | } |
| 749 | return true; |
| 750 | } |
| 751 | |
| 752 | static bool getHorizontalLayoutBoundsTicks(png_bytep row, int width, bool transparent, |
| 753 | bool /* required */, int32_t* outLeft, |
| 754 | int32_t* outRight, const char** outError) { |
| 755 | *outLeft = *outRight = 0; |
| 756 | |
| 757 | // Look for left tick |
| 758 | if (tickType(row + 4, transparent, outError) == TickType::kLayoutBounds) { |
| 759 | // Starting with a layout padding tick |
| 760 | int i = 1; |
| 761 | while (i < width - 1) { |
| 762 | (*outLeft)++; |
| 763 | i++; |
| 764 | if (tickType(row + i * 4, transparent, outError) != TickType::kLayoutBounds) { |
| 765 | break; |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | // Look for right tick |
| 771 | if (tickType(row + (width - 2) * 4, transparent, outError) == TickType::kLayoutBounds) { |
| 772 | // Ending with a layout padding tick |
| 773 | int i = width - 2; |
| 774 | while (i > 1) { |
| 775 | (*outRight)++; |
| 776 | i--; |
| 777 | if (tickType(row+i*4, transparent, outError) != TickType::kLayoutBounds) { |
| 778 | break; |
| 779 | } |
| 780 | } |
| 781 | } |
| 782 | return true; |
| 783 | } |
| 784 | |
| 785 | static bool getVerticalLayoutBoundsTicks(png_bytepp rows, int offset, int height, bool transparent, |
| 786 | bool /* required */, int32_t* outTop, int32_t* outBottom, |
| 787 | const char** outError) { |
| 788 | *outTop = *outBottom = 0; |
| 789 | |
| 790 | // Look for top tick |
| 791 | if (tickType(rows[1] + offset, transparent, outError) == TickType::kLayoutBounds) { |
| 792 | // Starting with a layout padding tick |
| 793 | int i = 1; |
| 794 | while (i < height - 1) { |
| 795 | (*outTop)++; |
| 796 | i++; |
| 797 | if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) { |
| 798 | break; |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | // Look for bottom tick |
| 804 | if (tickType(rows[height - 2] + offset, transparent, outError) == TickType::kLayoutBounds) { |
| 805 | // Ending with a layout padding tick |
| 806 | int i = height - 2; |
| 807 | while (i > 1) { |
| 808 | (*outBottom)++; |
| 809 | i--; |
| 810 | if (tickType(rows[i] + offset, transparent, outError) != TickType::kLayoutBounds) { |
| 811 | break; |
| 812 | } |
| 813 | } |
| 814 | } |
| 815 | return true; |
| 816 | } |
| 817 | |
| 818 | static void findMaxOpacity(png_bytepp rows, int startX, int startY, int endX, int endY, |
| 819 | int dX, int dY, int* outInset) { |
| 820 | uint8_t maxOpacity = 0; |
| 821 | int inset = 0; |
| 822 | *outInset = 0; |
| 823 | for (int x = startX, y = startY; x != endX && y != endY; x += dX, y += dY, inset++) { |
| 824 | png_byte* color = rows[y] + x * 4; |
| 825 | uint8_t opacity = color[3]; |
| 826 | if (opacity > maxOpacity) { |
| 827 | maxOpacity = opacity; |
| 828 | *outInset = inset; |
| 829 | } |
| 830 | if (opacity == 0xff) return; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | static uint8_t maxAlphaOverRow(png_bytep row, int startX, int endX) { |
| 835 | uint8_t maxAlpha = 0; |
| 836 | for (int x = startX; x < endX; x++) { |
| 837 | uint8_t alpha = (row + x * 4)[3]; |
| 838 | if (alpha > maxAlpha) maxAlpha = alpha; |
| 839 | } |
| 840 | return maxAlpha; |
| 841 | } |
| 842 | |
| 843 | static uint8_t maxAlphaOverCol(png_bytepp rows, int offsetX, int startY, int endY) { |
| 844 | uint8_t maxAlpha = 0; |
| 845 | for (int y = startY; y < endY; y++) { |
| 846 | uint8_t alpha = (rows[y] + offsetX * 4)[3]; |
| 847 | if (alpha > maxAlpha) maxAlpha = alpha; |
| 848 | } |
| 849 | return maxAlpha; |
| 850 | } |
| 851 | |
| 852 | static void getOutline(PngInfo* image) { |
| 853 | int midX = image->width / 2; |
| 854 | int midY = image->height / 2; |
| 855 | int endX = image->width - 2; |
| 856 | int endY = image->height - 2; |
| 857 | |
| 858 | // find left and right extent of nine patch content on center row |
| 859 | if (image->width > 4) { |
| 860 | findMaxOpacity(image->rows.data(), 1, midY, midX, -1, 1, 0, &image->outlineInsetsLeft); |
| 861 | findMaxOpacity(image->rows.data(), endX, midY, midX, -1, -1, 0, |
| 862 | &image->outlineInsetsRight); |
| 863 | } else { |
| 864 | image->outlineInsetsLeft = 0; |
| 865 | image->outlineInsetsRight = 0; |
| 866 | } |
| 867 | |
| 868 | // find top and bottom extent of nine patch content on center column |
| 869 | if (image->height > 4) { |
| 870 | findMaxOpacity(image->rows.data(), midX, 1, -1, midY, 0, 1, &image->outlineInsetsTop); |
| 871 | findMaxOpacity(image->rows.data(), midX, endY, -1, midY, 0, -1, |
| 872 | &image->outlineInsetsBottom); |
| 873 | } else { |
| 874 | image->outlineInsetsTop = 0; |
| 875 | image->outlineInsetsBottom = 0; |
| 876 | } |
| 877 | |
| 878 | int innerStartX = 1 + image->outlineInsetsLeft; |
| 879 | int innerStartY = 1 + image->outlineInsetsTop; |
| 880 | int innerEndX = endX - image->outlineInsetsRight; |
| 881 | int innerEndY = endY - image->outlineInsetsBottom; |
| 882 | int innerMidX = (innerEndX + innerStartX) / 2; |
| 883 | int innerMidY = (innerEndY + innerStartY) / 2; |
| 884 | |
| 885 | // assuming the image is a round rect, compute the radius by marching |
| 886 | // diagonally from the top left corner towards the center |
| 887 | image->outlineAlpha = std::max( |
| 888 | maxAlphaOverRow(image->rows[innerMidY], innerStartX, innerEndX), |
| 889 | maxAlphaOverCol(image->rows.data(), innerMidX, innerStartY, innerStartY)); |
| 890 | |
| 891 | int diagonalInset = 0; |
| 892 | findMaxOpacity(image->rows.data(), innerStartX, innerStartY, innerMidX, innerMidY, 1, 1, |
| 893 | &diagonalInset); |
| 894 | |
| 895 | /* Determine source radius based upon inset: |
| 896 | * sqrt(r^2 + r^2) = sqrt(i^2 + i^2) + r |
| 897 | * sqrt(2) * r = sqrt(2) * i + r |
| 898 | * (sqrt(2) - 1) * r = sqrt(2) * i |
| 899 | * r = sqrt(2) / (sqrt(2) - 1) * i |
| 900 | */ |
| 901 | image->outlineRadius = 3.4142f * diagonalInset; |
| 902 | |
| 903 | if (kDebug) { |
| 904 | printf("outline insets %d %d %d %d, rad %f, alpha %x\n", |
| 905 | image->outlineInsetsLeft, |
| 906 | image->outlineInsetsTop, |
| 907 | image->outlineInsetsRight, |
| 908 | image->outlineInsetsBottom, |
| 909 | image->outlineRadius, |
| 910 | image->outlineAlpha); |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | static uint32_t getColor(png_bytepp rows, int left, int top, int right, int bottom) { |
| 915 | png_bytep color = rows[top] + left*4; |
| 916 | |
| 917 | if (left > right || top > bottom) { |
| 918 | return android::Res_png_9patch::TRANSPARENT_COLOR; |
| 919 | } |
| 920 | |
| 921 | while (top <= bottom) { |
| 922 | for (int i = left; i <= right; i++) { |
| 923 | png_bytep p = rows[top]+i*4; |
| 924 | if (color[3] == 0) { |
| 925 | if (p[3] != 0) { |
| 926 | return android::Res_png_9patch::NO_COLOR; |
| 927 | } |
| 928 | } else if (p[0] != color[0] || p[1] != color[1] || |
| 929 | p[2] != color[2] || p[3] != color[3]) { |
| 930 | return android::Res_png_9patch::NO_COLOR; |
| 931 | } |
| 932 | } |
| 933 | top++; |
| 934 | } |
| 935 | |
| 936 | if (color[3] == 0) { |
| 937 | return android::Res_png_9patch::TRANSPARENT_COLOR; |
| 938 | } |
| 939 | return (color[3]<<24) | (color[0]<<16) | (color[1]<<8) | color[2]; |
| 940 | } |
| 941 | |
| 942 | static bool do9Patch(PngInfo* image, std::string* outError) { |
| 943 | image->is9Patch = true; |
| 944 | |
| 945 | int W = image->width; |
| 946 | int H = image->height; |
| 947 | int i, j; |
| 948 | |
| 949 | const int maxSizeXDivs = W * sizeof(int32_t); |
| 950 | const int maxSizeYDivs = H * sizeof(int32_t); |
| 951 | int32_t* xDivs = image->xDivs = new int32_t[W]; |
| 952 | int32_t* yDivs = image->yDivs = new int32_t[H]; |
| 953 | uint8_t numXDivs = 0; |
| 954 | uint8_t numYDivs = 0; |
| 955 | |
| 956 | int8_t numColors; |
| 957 | int numRows; |
| 958 | int numCols; |
| 959 | int top; |
| 960 | int left; |
| 961 | int right; |
| 962 | int bottom; |
| 963 | memset(xDivs, -1, maxSizeXDivs); |
| 964 | memset(yDivs, -1, maxSizeYDivs); |
| 965 | image->info9Patch.paddingLeft = image->info9Patch.paddingRight = -1; |
| 966 | image->info9Patch.paddingTop = image->info9Patch.paddingBottom = -1; |
| 967 | image->layoutBoundsLeft = image->layoutBoundsRight = 0; |
| 968 | image->layoutBoundsTop = image->layoutBoundsBottom = 0; |
| 969 | |
| 970 | png_bytep p = image->rows[0]; |
| 971 | bool transparent = p[3] == 0; |
| 972 | bool hasColor = false; |
| 973 | |
| 974 | const char* errorMsg = nullptr; |
| 975 | int errorPixel = -1; |
| 976 | const char* errorEdge = nullptr; |
| 977 | |
| 978 | int colorIndex = 0; |
| 979 | std::vector<png_bytep> newRows; |
| 980 | |
| 981 | // Validate size... |
| 982 | if (W < 3 || H < 3) { |
| 983 | errorMsg = "Image must be at least 3x3 (1x1 without frame) pixels"; |
| 984 | goto getout; |
| 985 | } |
| 986 | |
| 987 | // Validate frame... |
| 988 | if (!transparent && |
| 989 | (p[0] != 0xFF || p[1] != 0xFF || p[2] != 0xFF || p[3] != 0xFF)) { |
| 990 | errorMsg = "Must have one-pixel frame that is either transparent or white"; |
| 991 | goto getout; |
| 992 | } |
| 993 | |
| 994 | // Find left and right of sizing areas... |
| 995 | if (!getHorizontalTicks(p, W, transparent, true, &xDivs[0], &xDivs[1], &errorMsg, &numXDivs, |
| 996 | true)) { |
| 997 | errorPixel = xDivs[0]; |
| 998 | errorEdge = "top"; |
| 999 | goto getout; |
| 1000 | } |
| 1001 | |
| 1002 | // Find top and bottom of sizing areas... |
| 1003 | if (!getVerticalTicks(image->rows.data(), 0, H, transparent, true, &yDivs[0], &yDivs[1], |
| 1004 | &errorMsg, &numYDivs, true)) { |
| 1005 | errorPixel = yDivs[0]; |
| 1006 | errorEdge = "left"; |
| 1007 | goto getout; |
| 1008 | } |
| 1009 | |
| 1010 | // Copy patch size data into image... |
| 1011 | image->info9Patch.numXDivs = numXDivs; |
| 1012 | image->info9Patch.numYDivs = numYDivs; |
| 1013 | |
| 1014 | // Find left and right of padding area... |
| 1015 | if (!getHorizontalTicks(image->rows[H-1], W, transparent, false, |
| 1016 | &image->info9Patch.paddingLeft, &image->info9Patch.paddingRight, |
| 1017 | &errorMsg, nullptr, false)) { |
| 1018 | errorPixel = image->info9Patch.paddingLeft; |
| 1019 | errorEdge = "bottom"; |
| 1020 | goto getout; |
| 1021 | } |
| 1022 | |
| 1023 | // Find top and bottom of padding area... |
| 1024 | if (!getVerticalTicks(image->rows.data(), (W-1)*4, H, transparent, false, |
| 1025 | &image->info9Patch.paddingTop, &image->info9Patch.paddingBottom, |
| 1026 | &errorMsg, nullptr, false)) { |
| 1027 | errorPixel = image->info9Patch.paddingTop; |
| 1028 | errorEdge = "right"; |
| 1029 | goto getout; |
| 1030 | } |
| 1031 | |
| 1032 | // Find left and right of layout padding... |
| 1033 | getHorizontalLayoutBoundsTicks(image->rows[H-1], W, transparent, false, |
| 1034 | &image->layoutBoundsLeft, &image->layoutBoundsRight, &errorMsg); |
| 1035 | |
| 1036 | getVerticalLayoutBoundsTicks(image->rows.data(), (W-1)*4, H, transparent, false, |
| 1037 | &image->layoutBoundsTop, &image->layoutBoundsBottom, &errorMsg); |
| 1038 | |
| 1039 | image->haveLayoutBounds = image->layoutBoundsLeft != 0 |
| 1040 | || image->layoutBoundsRight != 0 |
| 1041 | || image->layoutBoundsTop != 0 |
| 1042 | || image->layoutBoundsBottom != 0; |
| 1043 | |
| 1044 | if (image->haveLayoutBounds) { |
| 1045 | if (kDebug) { |
| 1046 | printf("layoutBounds=%d %d %d %d\n", image->layoutBoundsLeft, image->layoutBoundsTop, |
| 1047 | image->layoutBoundsRight, image->layoutBoundsBottom); |
| 1048 | } |
| 1049 | } |
| 1050 | |
| 1051 | // use opacity of pixels to estimate the round rect outline |
| 1052 | getOutline(image); |
| 1053 | |
| 1054 | // If padding is not yet specified, take values from size. |
| 1055 | if (image->info9Patch.paddingLeft < 0) { |
| 1056 | image->info9Patch.paddingLeft = xDivs[0]; |
| 1057 | image->info9Patch.paddingRight = W - 2 - xDivs[1]; |
| 1058 | } else { |
| 1059 | // Adjust value to be correct! |
| 1060 | image->info9Patch.paddingRight = W - 2 - image->info9Patch.paddingRight; |
| 1061 | } |
| 1062 | if (image->info9Patch.paddingTop < 0) { |
| 1063 | image->info9Patch.paddingTop = yDivs[0]; |
| 1064 | image->info9Patch.paddingBottom = H - 2 - yDivs[1]; |
| 1065 | } else { |
| 1066 | // Adjust value to be correct! |
| 1067 | image->info9Patch.paddingBottom = H - 2 - image->info9Patch.paddingBottom; |
| 1068 | } |
| 1069 | |
| 1070 | /* if (kDebug) { |
| 1071 | printf("Size ticks for %s: x0=%d, x1=%d, y0=%d, y1=%d\n", imageName, |
| 1072 | xDivs[0], xDivs[1], |
| 1073 | yDivs[0], yDivs[1]); |
| 1074 | printf("padding ticks for %s: l=%d, r=%d, t=%d, b=%d\n", imageName, |
| 1075 | image->info9Patch.paddingLeft, image->info9Patch.paddingRight, |
| 1076 | image->info9Patch.paddingTop, image->info9Patch.paddingBottom); |
| 1077 | }*/ |
| 1078 | |
| 1079 | // Remove frame from image. |
| 1080 | newRows.resize(H - 2); |
| 1081 | for (i = 0; i < H - 2; i++) { |
| 1082 | newRows[i] = image->rows[i + 1]; |
| 1083 | memmove(newRows[i], newRows[i] + 4, (W - 2) * 4); |
| 1084 | } |
| 1085 | image->rows.swap(newRows); |
| 1086 | |
| 1087 | image->width -= 2; |
| 1088 | W = image->width; |
| 1089 | image->height -= 2; |
| 1090 | H = image->height; |
| 1091 | |
| 1092 | // Figure out the number of rows and columns in the N-patch |
| 1093 | numCols = numXDivs + 1; |
| 1094 | if (xDivs[0] == 0) { // Column 1 is strechable |
| 1095 | numCols--; |
| 1096 | } |
| 1097 | if (xDivs[numXDivs - 1] == W) { |
| 1098 | numCols--; |
| 1099 | } |
| 1100 | numRows = numYDivs + 1; |
| 1101 | if (yDivs[0] == 0) { // Row 1 is strechable |
| 1102 | numRows--; |
| 1103 | } |
| 1104 | if (yDivs[numYDivs - 1] == H) { |
| 1105 | numRows--; |
| 1106 | } |
| 1107 | |
| 1108 | // Make sure the amount of rows and columns will fit in the number of |
| 1109 | // colors we can use in the 9-patch format. |
| 1110 | if (numRows * numCols > 0x7F) { |
| 1111 | errorMsg = "Too many rows and columns in 9-patch perimeter"; |
| 1112 | goto getout; |
| 1113 | } |
| 1114 | |
| 1115 | numColors = numRows * numCols; |
| 1116 | image->info9Patch.numColors = numColors; |
| 1117 | image->colors.resize(numColors); |
| 1118 | |
| 1119 | // Fill in color information for each patch. |
| 1120 | |
| 1121 | uint32_t c; |
| 1122 | top = 0; |
| 1123 | |
| 1124 | // The first row always starts with the top being at y=0 and the bottom |
| 1125 | // being either yDivs[1] (if yDivs[0]=0) of yDivs[0]. In the former case |
| 1126 | // the first row is stretchable along the Y axis, otherwise it is fixed. |
| 1127 | // The last row always ends with the bottom being bitmap.height and the top |
| 1128 | // being either yDivs[numYDivs-2] (if yDivs[numYDivs-1]=bitmap.height) or |
| 1129 | // yDivs[numYDivs-1]. In the former case the last row is stretchable along |
| 1130 | // the Y axis, otherwise it is fixed. |
| 1131 | // |
| 1132 | // The first and last columns are similarly treated with respect to the X |
| 1133 | // axis. |
| 1134 | // |
| 1135 | // The above is to help explain some of the special casing that goes on the |
| 1136 | // code below. |
| 1137 | |
| 1138 | // The initial yDiv and whether the first row is considered stretchable or |
| 1139 | // not depends on whether yDiv[0] was zero or not. |
| 1140 | for (j = (yDivs[0] == 0 ? 1 : 0); j <= numYDivs && top < H; j++) { |
| 1141 | if (j == numYDivs) { |
| 1142 | bottom = H; |
| 1143 | } else { |
| 1144 | bottom = yDivs[j]; |
| 1145 | } |
| 1146 | left = 0; |
| 1147 | // The initial xDiv and whether the first column is considered |
| 1148 | // stretchable or not depends on whether xDiv[0] was zero or not. |
| 1149 | for (i = xDivs[0] == 0 ? 1 : 0; i <= numXDivs && left < W; i++) { |
| 1150 | if (i == numXDivs) { |
| 1151 | right = W; |
| 1152 | } else { |
| 1153 | right = xDivs[i]; |
| 1154 | } |
| 1155 | c = getColor(image->rows.data(), left, top, right - 1, bottom - 1); |
| 1156 | image->colors[colorIndex++] = c; |
| 1157 | if (kDebug) { |
| 1158 | if (c != android::Res_png_9patch::NO_COLOR) { |
| 1159 | hasColor = true; |
| 1160 | } |
| 1161 | } |
| 1162 | left = right; |
| 1163 | } |
| 1164 | top = bottom; |
| 1165 | } |
| 1166 | |
| 1167 | assert(colorIndex == numColors); |
| 1168 | |
| 1169 | if (kDebug && hasColor) { |
| 1170 | for (i = 0; i < numColors; i++) { |
| 1171 | if (i == 0) printf("Colors:\n"); |
| 1172 | printf(" #%08x", image->colors[i]); |
| 1173 | if (i == numColors - 1) printf("\n"); |
| 1174 | } |
| 1175 | } |
| 1176 | getout: |
| 1177 | if (errorMsg) { |
| 1178 | std::stringstream err; |
| 1179 | err << "9-patch malformed: " << errorMsg; |
| 1180 | if (!errorEdge) { |
| 1181 | err << "." << std::endl; |
| 1182 | if (errorPixel >= 0) { |
| 1183 | err << "Found at pixel #" << errorPixel << " along " << errorEdge << " edge"; |
| 1184 | } else { |
| 1185 | err << "Found along " << errorEdge << " edge"; |
| 1186 | } |
| 1187 | } |
| 1188 | *outError = err.str(); |
| 1189 | return false; |
| 1190 | } |
| 1191 | return true; |
| 1192 | } |
| 1193 | |
| 1194 | |
Adam Lesinski | 769de98 | 2015-04-10 19:43:55 -0700 | [diff] [blame] | 1195 | bool Png::process(const Source& source, std::istream& input, BigBuffer* outBuffer, |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 1196 | const Options& options, std::string* outError) { |
| 1197 | png_byte signature[kPngSignatureSize]; |
| 1198 | |
| 1199 | // Read the PNG signature first. |
| 1200 | if (!input.read(reinterpret_cast<char*>(signature), kPngSignatureSize)) { |
| 1201 | *outError = strerror(errno); |
| 1202 | return false; |
| 1203 | } |
| 1204 | |
| 1205 | // If the PNG signature doesn't match, bail early. |
| 1206 | if (png_sig_cmp(signature, 0, kPngSignatureSize) != 0) { |
| 1207 | *outError = "not a valid png file"; |
| 1208 | return false; |
| 1209 | } |
| 1210 | |
| 1211 | SourceLogger logger(source); |
| 1212 | bool result = false; |
| 1213 | png_structp readPtr = nullptr; |
| 1214 | png_infop infoPtr = nullptr; |
| 1215 | png_structp writePtr = nullptr; |
| 1216 | png_infop writeInfoPtr = nullptr; |
| 1217 | PngInfo pngInfo = {}; |
| 1218 | |
| 1219 | readPtr = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); |
| 1220 | if (!readPtr) { |
| 1221 | *outError = "failed to allocate read ptr"; |
| 1222 | goto bail; |
| 1223 | } |
| 1224 | |
| 1225 | infoPtr = png_create_info_struct(readPtr); |
| 1226 | if (!infoPtr) { |
| 1227 | *outError = "failed to allocate info ptr"; |
| 1228 | goto bail; |
| 1229 | } |
| 1230 | |
| 1231 | png_set_error_fn(readPtr, reinterpret_cast<png_voidp>(&logger), nullptr, logWarning); |
| 1232 | |
| 1233 | // Set the read function to read from std::istream. |
| 1234 | png_set_read_fn(readPtr, (png_voidp)&input, readDataFromStream); |
| 1235 | |
| 1236 | if (!readPng(readPtr, infoPtr, &pngInfo, outError)) { |
| 1237 | goto bail; |
| 1238 | } |
| 1239 | |
Adam Lesinski | 4d3a987 | 2015-04-09 19:53:22 -0700 | [diff] [blame] | 1240 | if (util::stringEndsWith<char>(source.path, ".9.png")) { |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 1241 | if (!do9Patch(&pngInfo, outError)) { |
| 1242 | goto bail; |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | writePtr = png_create_write_struct(PNG_LIBPNG_VER_STRING, 0, nullptr, nullptr); |
| 1247 | if (!writePtr) { |
| 1248 | *outError = "failed to allocate write ptr"; |
| 1249 | goto bail; |
| 1250 | } |
| 1251 | |
| 1252 | writeInfoPtr = png_create_info_struct(writePtr); |
| 1253 | if (!writeInfoPtr) { |
| 1254 | *outError = "failed to allocate write info ptr"; |
| 1255 | goto bail; |
| 1256 | } |
| 1257 | |
| 1258 | png_set_error_fn(writePtr, nullptr, nullptr, logWarning); |
| 1259 | |
| 1260 | // Set the write function to write to std::ostream. |
Adam Lesinski | 769de98 | 2015-04-10 19:43:55 -0700 | [diff] [blame] | 1261 | png_set_write_fn(writePtr, (png_voidp)outBuffer, writeDataToStream, flushDataToStream); |
Adam Lesinski | 98aa3ad | 2015-04-06 11:46:52 -0700 | [diff] [blame] | 1262 | |
| 1263 | if (!writePng(writePtr, writeInfoPtr, &pngInfo, options.grayScaleTolerance, &logger, |
| 1264 | outError)) { |
| 1265 | goto bail; |
| 1266 | } |
| 1267 | |
| 1268 | result = true; |
| 1269 | bail: |
| 1270 | if (readPtr) { |
| 1271 | png_destroy_read_struct(&readPtr, &infoPtr, nullptr); |
| 1272 | } |
| 1273 | |
| 1274 | if (writePtr) { |
| 1275 | png_destroy_write_struct(&writePtr, &writeInfoPtr); |
| 1276 | } |
| 1277 | return result; |
| 1278 | } |
| 1279 | |
| 1280 | } // namespace aapt |