ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2014 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "OpenGLRenderer" |
| 18 | |
| 19 | #define SHADOW_SHRINK_SCALE 0.1f |
| 20 | |
| 21 | #include <math.h> |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 22 | #include <stdlib.h> |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 23 | #include <utils/Log.h> |
| 24 | |
| 25 | #include "SpotShadow.h" |
| 26 | #include "Vertex.h" |
| 27 | |
| 28 | namespace android { |
| 29 | namespace uirenderer { |
| 30 | |
| 31 | /** |
| 32 | * Calculate the intersection of a ray with a polygon. |
| 33 | * It assumes the ray originates inside the polygon. |
| 34 | * |
| 35 | * @param poly The polygon, which is represented in a Vector2 array. |
| 36 | * @param polyLength The length of caster's polygon in terms of number of |
| 37 | * vertices. |
| 38 | * @param point the start of the ray |
| 39 | * @param dx the x vector of the ray |
| 40 | * @param dy the y vector of the ray |
| 41 | * @return the distance along the ray if it intersects with the polygon FP_NAN if otherwise |
| 42 | */ |
| 43 | float SpotShadow::rayIntersectPoly(const Vector2* poly, int polyLength, |
| 44 | const Vector2& point, float dx, float dy) { |
| 45 | double px = point.x; |
| 46 | double py = point.y; |
| 47 | int p1 = polyLength - 1; |
| 48 | for (int p2 = 0; p2 < polyLength; p2++) { |
| 49 | double p1x = poly[p1].x; |
| 50 | double p1y = poly[p1].y; |
| 51 | double p2x = poly[p2].x; |
| 52 | double p2y = poly[p2].y; |
| 53 | // The math below is derived from solving this formula, basically the |
| 54 | // intersection point should stay on both the ray and the edge of (p1, p2). |
| 55 | // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); |
| 56 | double div = (dx * (p1y - p2y) + dy * p2x - dy * p1x); |
| 57 | if (div != 0) { |
| 58 | double t = (dx * (p1y - py) + dy * px - dy * p1x) / (div); |
| 59 | if (t >= 0 && t <= 1) { |
| 60 | double t2 = (p1x * (py - p2y) + p2x * (p1y - py) + |
| 61 | px * (p2y - p1y)) / div; |
| 62 | if (t2 > 0) { |
| 63 | return (float)t2; |
| 64 | } |
| 65 | } |
| 66 | } |
| 67 | p1 = p2; |
| 68 | } |
| 69 | return FP_NAN; |
| 70 | } |
| 71 | |
| 72 | /** |
| 73 | * Calculate the centroid of a 2d polygon. |
| 74 | * |
| 75 | * @param poly The polygon, which is represented in a Vector2 array. |
| 76 | * @param polyLength The length of the polygon in terms of number of vertices. |
| 77 | * @return the centroid of the polygon. |
| 78 | */ |
| 79 | Vector2 SpotShadow::centroid2d(const Vector2* poly, int polyLength) { |
| 80 | double sumx = 0; |
| 81 | double sumy = 0; |
| 82 | int p1 = polyLength - 1; |
| 83 | double area = 0; |
| 84 | for (int p2 = 0; p2 < polyLength; p2++) { |
| 85 | double x1 = poly[p1].x; |
| 86 | double y1 = poly[p1].y; |
| 87 | double x2 = poly[p2].x; |
| 88 | double y2 = poly[p2].y; |
| 89 | double a = (x1 * y2 - x2 * y1); |
| 90 | sumx += (x1 + x2) * a; |
| 91 | sumy += (y1 + y2) * a; |
| 92 | area += a; |
| 93 | p1 = p2; |
| 94 | } |
| 95 | |
| 96 | double centroidx = sumx / (3 * area); |
| 97 | double centroidy = sumy / (3 * area); |
| 98 | return Vector2((float)centroidx, (float)centroidy); |
| 99 | } |
| 100 | |
| 101 | /** |
| 102 | * Sort points by their X coordinates |
| 103 | * |
| 104 | * @param points the points as a Vector2 array. |
| 105 | * @param pointsLength the number of vertices of the polygon. |
| 106 | */ |
| 107 | void SpotShadow::xsort(Vector2* points, int pointsLength) { |
| 108 | quicksortX(points, 0, pointsLength - 1); |
| 109 | } |
| 110 | |
| 111 | /** |
| 112 | * compute the convex hull of a collection of Points |
| 113 | * |
| 114 | * @param points the points as a Vector2 array. |
| 115 | * @param pointsLength the number of vertices of the polygon. |
| 116 | * @param retPoly pre allocated array of floats to put the vertices |
| 117 | * @return the number of points in the polygon 0 if no intersection |
| 118 | */ |
| 119 | int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { |
| 120 | xsort(points, pointsLength); |
| 121 | int n = pointsLength; |
| 122 | Vector2 lUpper[n]; |
| 123 | lUpper[0] = points[0]; |
| 124 | lUpper[1] = points[1]; |
| 125 | |
| 126 | int lUpperSize = 2; |
| 127 | |
| 128 | for (int i = 2; i < n; i++) { |
| 129 | lUpper[lUpperSize] = points[i]; |
| 130 | lUpperSize++; |
| 131 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 132 | while (lUpperSize > 2 && !ccw( |
| 133 | lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, |
| 134 | lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, |
| 135 | lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 136 | // Remove the middle point of the three last |
| 137 | lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; |
| 138 | lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; |
| 139 | lUpperSize--; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | Vector2 lLower[n]; |
| 144 | lLower[0] = points[n - 1]; |
| 145 | lLower[1] = points[n - 2]; |
| 146 | |
| 147 | int lLowerSize = 2; |
| 148 | |
| 149 | for (int i = n - 3; i >= 0; i--) { |
| 150 | lLower[lLowerSize] = points[i]; |
| 151 | lLowerSize++; |
| 152 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 153 | while (lLowerSize > 2 && !ccw( |
| 154 | lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, |
| 155 | lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, |
| 156 | lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 157 | // Remove the middle point of the three last |
| 158 | lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; |
| 159 | lLowerSize--; |
| 160 | } |
| 161 | } |
| 162 | int count = 0; |
| 163 | |
| 164 | for (int i = 0; i < lUpperSize; i++) { |
| 165 | retPoly[count] = lUpper[i]; |
| 166 | count++; |
| 167 | } |
| 168 | |
| 169 | for (int i = 1; i < lLowerSize - 1; i++) { |
| 170 | retPoly[count] = lLower[i]; |
| 171 | count++; |
| 172 | } |
| 173 | // TODO: Add test harness which verify that all the points are inside the hull. |
| 174 | return count; |
| 175 | } |
| 176 | |
| 177 | /** |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 178 | * Test whether the 3 points form a counter clockwise turn. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 179 | * |
| 180 | * @param ax the x coordinate of point a |
| 181 | * @param ay the y coordinate of point a |
| 182 | * @param bx the x coordinate of point b |
| 183 | * @param by the y coordinate of point b |
| 184 | * @param cx the x coordinate of point c |
| 185 | * @param cy the y coordinate of point c |
| 186 | * @return true if a right hand turn |
| 187 | */ |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 188 | bool SpotShadow::ccw(double ax, double ay, double bx, double by, |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 189 | double cx, double cy) { |
| 190 | return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; |
| 191 | } |
| 192 | |
| 193 | /** |
| 194 | * Calculates the intersection of poly1 with poly2 and put in poly2. |
| 195 | * |
| 196 | * |
| 197 | * @param poly1 The 1st polygon, as a Vector2 array. |
| 198 | * @param poly1Length The number of vertices of 1st polygon. |
| 199 | * @param poly2 The 2nd and output polygon, as a Vector2 array. |
| 200 | * @param poly2Length The number of vertices of 2nd polygon. |
| 201 | * @return number of vertices in output polygon as poly2. |
| 202 | */ |
| 203 | int SpotShadow::intersection(Vector2* poly1, int poly1Length, |
| 204 | Vector2* poly2, int poly2Length) { |
| 205 | makeClockwise(poly1, poly1Length); |
| 206 | makeClockwise(poly2, poly2Length); |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 207 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 208 | Vector2 poly[poly1Length * poly2Length + 2]; |
| 209 | int count = 0; |
| 210 | int pcount = 0; |
| 211 | |
| 212 | // If one vertex from one polygon sits inside another polygon, add it and |
| 213 | // count them. |
| 214 | for (int i = 0; i < poly1Length; i++) { |
| 215 | if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { |
| 216 | poly[count] = poly1[i]; |
| 217 | count++; |
| 218 | pcount++; |
| 219 | |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | int insidePoly2 = pcount; |
| 224 | for (int i = 0; i < poly2Length; i++) { |
| 225 | if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { |
| 226 | poly[count] = poly2[i]; |
| 227 | count++; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | int insidePoly1 = count - insidePoly2; |
| 232 | // If all vertices from poly1 are inside poly2, then just return poly1. |
| 233 | if (insidePoly2 == poly1Length) { |
| 234 | memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); |
| 235 | return poly1Length; |
| 236 | } |
| 237 | |
| 238 | // If all vertices from poly2 are inside poly1, then just return poly2. |
| 239 | if (insidePoly1 == poly2Length) { |
| 240 | return poly2Length; |
| 241 | } |
| 242 | |
| 243 | // Since neither polygon fully contain the other one, we need to add all the |
| 244 | // intersection points. |
| 245 | Vector2 intersection; |
| 246 | for (int i = 0; i < poly2Length; i++) { |
| 247 | for (int j = 0; j < poly1Length; j++) { |
| 248 | int poly2LineStart = i; |
| 249 | int poly2LineEnd = ((i + 1) % poly2Length); |
| 250 | int poly1LineStart = j; |
| 251 | int poly1LineEnd = ((j + 1) % poly1Length); |
| 252 | bool found = lineIntersection( |
| 253 | poly2[poly2LineStart].x, poly2[poly2LineStart].y, |
| 254 | poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, |
| 255 | poly1[poly1LineStart].x, poly1[poly1LineStart].y, |
| 256 | poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, |
| 257 | intersection); |
| 258 | if (found) { |
| 259 | poly[count].x = intersection.x; |
| 260 | poly[count].y = intersection.y; |
| 261 | count++; |
| 262 | } else { |
| 263 | Vector2 delta = poly2[i] - poly1[j]; |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 264 | if (delta.lengthSquared() < EPSILON) { |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 265 | poly[count] = poly2[i]; |
| 266 | count++; |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | if (count == 0) { |
| 273 | return 0; |
| 274 | } |
| 275 | |
| 276 | // Sort the result polygon around the center. |
| 277 | Vector2 center(0.0f, 0.0f); |
| 278 | for (int i = 0; i < count; i++) { |
| 279 | center += poly[i]; |
| 280 | } |
| 281 | center /= count; |
| 282 | sort(poly, count, center); |
| 283 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 284 | #if DEBUG_SHADOW |
| 285 | // Since poly2 is overwritten as the result, we need to save a copy to do |
| 286 | // our verification. |
| 287 | Vector2 oldPoly2[poly2Length]; |
| 288 | int oldPoly2Length = poly2Length; |
| 289 | memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length); |
| 290 | #endif |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 291 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 292 | // Filter the result out from poly and put it into poly2. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 293 | poly2[0] = poly[0]; |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 294 | int lastOutputIndex = 0; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 295 | for (int i = 1; i < count; i++) { |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 296 | Vector2 delta = poly[i] - poly2[lastOutputIndex]; |
| 297 | if (delta.lengthSquared() >= EPSILON) { |
| 298 | poly2[++lastOutputIndex] = poly[i]; |
| 299 | } else { |
| 300 | // If the vertices are too close, pick the inner one, because the |
| 301 | // inner one is more likely to be an intersection point. |
| 302 | Vector2 delta1 = poly[i] - center; |
| 303 | Vector2 delta2 = poly2[lastOutputIndex] - center; |
| 304 | if (delta1.lengthSquared() < delta2.lengthSquared()) { |
| 305 | poly2[lastOutputIndex] = poly[i]; |
| 306 | } |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 307 | } |
| 308 | } |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 309 | int resultLength = lastOutputIndex + 1; |
| 310 | |
| 311 | #if DEBUG_SHADOW |
| 312 | testConvex(poly2, resultLength, "intersection"); |
| 313 | testConvex(poly1, poly1Length, "input poly1"); |
| 314 | testConvex(oldPoly2, oldPoly2Length, "input poly2"); |
| 315 | |
| 316 | testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength); |
| 317 | #endif |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 318 | |
| 319 | return resultLength; |
| 320 | } |
| 321 | |
| 322 | /** |
| 323 | * Sort points about a center point |
| 324 | * |
| 325 | * @param poly The in and out polyogon as a Vector2 array. |
| 326 | * @param polyLength The number of vertices of the polygon. |
| 327 | * @param center the center ctr[0] = x , ctr[1] = y to sort around. |
| 328 | */ |
| 329 | void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { |
| 330 | quicksortCirc(poly, 0, polyLength - 1, center); |
| 331 | } |
| 332 | |
| 333 | /** |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 334 | * Calculate the angle between and x and a y coordinate. |
| 335 | * The atan2 range from -PI to PI, if we want to sort the vertices as clockwise, |
| 336 | * we just negate the return angle. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 337 | */ |
| 338 | float SpotShadow::angle(const Vector2& point, const Vector2& center) { |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 339 | return -(float)atan2(point.y - center.y, point.x - center.x); |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 340 | } |
| 341 | |
| 342 | /** |
| 343 | * Swap points pointed to by i and j |
| 344 | */ |
| 345 | void SpotShadow::swap(Vector2* points, int i, int j) { |
| 346 | Vector2 temp = points[i]; |
| 347 | points[i] = points[j]; |
| 348 | points[j] = temp; |
| 349 | } |
| 350 | |
| 351 | /** |
| 352 | * quick sort implementation about the center. |
| 353 | */ |
| 354 | void SpotShadow::quicksortCirc(Vector2* points, int low, int high, |
| 355 | const Vector2& center) { |
| 356 | int i = low, j = high; |
| 357 | int p = low + (high - low) / 2; |
| 358 | float pivot = angle(points[p], center); |
| 359 | while (i <= j) { |
| 360 | while (angle(points[i], center) < pivot) { |
| 361 | i++; |
| 362 | } |
| 363 | while (angle(points[j], center) > pivot) { |
| 364 | j--; |
| 365 | } |
| 366 | |
| 367 | if (i <= j) { |
| 368 | swap(points, i, j); |
| 369 | i++; |
| 370 | j--; |
| 371 | } |
| 372 | } |
| 373 | if (low < j) quicksortCirc(points, low, j, center); |
| 374 | if (i < high) quicksortCirc(points, i, high, center); |
| 375 | } |
| 376 | |
| 377 | /** |
| 378 | * Sort points by x axis |
| 379 | * |
| 380 | * @param points points to sort |
| 381 | * @param low start index |
| 382 | * @param high end index |
| 383 | */ |
| 384 | void SpotShadow::quicksortX(Vector2* points, int low, int high) { |
| 385 | int i = low, j = high; |
| 386 | int p = low + (high - low) / 2; |
| 387 | float pivot = points[p].x; |
| 388 | while (i <= j) { |
| 389 | while (points[i].x < pivot) { |
| 390 | i++; |
| 391 | } |
| 392 | while (points[j].x > pivot) { |
| 393 | j--; |
| 394 | } |
| 395 | |
| 396 | if (i <= j) { |
| 397 | swap(points, i, j); |
| 398 | i++; |
| 399 | j--; |
| 400 | } |
| 401 | } |
| 402 | if (low < j) quicksortX(points, low, j); |
| 403 | if (i < high) quicksortX(points, i, high); |
| 404 | } |
| 405 | |
| 406 | /** |
| 407 | * Test whether a point is inside the polygon. |
| 408 | * |
| 409 | * @param testPoint the point to test |
| 410 | * @param poly the polygon |
| 411 | * @return true if the testPoint is inside the poly. |
| 412 | */ |
| 413 | bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, |
| 414 | const Vector2* poly, int len) { |
| 415 | bool c = false; |
| 416 | double testx = testPoint.x; |
| 417 | double testy = testPoint.y; |
| 418 | for (int i = 0, j = len - 1; i < len; j = i++) { |
| 419 | double startX = poly[j].x; |
| 420 | double startY = poly[j].y; |
| 421 | double endX = poly[i].x; |
| 422 | double endY = poly[i].y; |
| 423 | |
| 424 | if (((endY > testy) != (startY > testy)) && |
| 425 | (testx < (startX - endX) * (testy - endY) |
| 426 | / (startY - endY) + endX)) { |
| 427 | c = !c; |
| 428 | } |
| 429 | } |
| 430 | return c; |
| 431 | } |
| 432 | |
| 433 | /** |
| 434 | * Make the polygon turn clockwise. |
| 435 | * |
| 436 | * @param polygon the polygon as a Vector2 array. |
| 437 | * @param len the number of points of the polygon |
| 438 | */ |
| 439 | void SpotShadow::makeClockwise(Vector2* polygon, int len) { |
| 440 | if (polygon == 0 || len == 0) { |
| 441 | return; |
| 442 | } |
| 443 | if (!isClockwise(polygon, len)) { |
| 444 | reverse(polygon, len); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | /** |
| 449 | * Test whether the polygon is order in clockwise. |
| 450 | * |
| 451 | * @param polygon the polygon as a Vector2 array |
| 452 | * @param len the number of points of the polygon |
| 453 | */ |
| 454 | bool SpotShadow::isClockwise(Vector2* polygon, int len) { |
| 455 | double sum = 0; |
| 456 | double p1x = polygon[len - 1].x; |
| 457 | double p1y = polygon[len - 1].y; |
| 458 | for (int i = 0; i < len; i++) { |
| 459 | |
| 460 | double p2x = polygon[i].x; |
| 461 | double p2y = polygon[i].y; |
| 462 | sum += p1x * p2y - p2x * p1y; |
| 463 | p1x = p2x; |
| 464 | p1y = p2y; |
| 465 | } |
| 466 | return sum < 0; |
| 467 | } |
| 468 | |
| 469 | /** |
| 470 | * Reverse the polygon |
| 471 | * |
| 472 | * @param polygon the polygon as a Vector2 array |
| 473 | * @param len the number of points of the polygon |
| 474 | */ |
| 475 | void SpotShadow::reverse(Vector2* polygon, int len) { |
| 476 | int n = len / 2; |
| 477 | for (int i = 0; i < n; i++) { |
| 478 | Vector2 tmp = polygon[i]; |
| 479 | int k = len - 1 - i; |
| 480 | polygon[i] = polygon[k]; |
| 481 | polygon[k] = tmp; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * Intersects two lines in parametric form. This function is called in a tight |
| 487 | * loop, and we need double precision to get things right. |
| 488 | * |
| 489 | * @param x1 the x coordinate point 1 of line 1 |
| 490 | * @param y1 the y coordinate point 1 of line 1 |
| 491 | * @param x2 the x coordinate point 2 of line 1 |
| 492 | * @param y2 the y coordinate point 2 of line 1 |
| 493 | * @param x3 the x coordinate point 1 of line 2 |
| 494 | * @param y3 the y coordinate point 1 of line 2 |
| 495 | * @param x4 the x coordinate point 2 of line 2 |
| 496 | * @param y4 the y coordinate point 2 of line 2 |
| 497 | * @param ret the x,y location of the intersection |
| 498 | * @return true if it found an intersection |
| 499 | */ |
| 500 | inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, |
| 501 | double x3, double y3, double x4, double y4, Vector2& ret) { |
| 502 | double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); |
| 503 | if (d == 0.0) return false; |
| 504 | |
| 505 | double dx = (x1 * y2 - y1 * x2); |
| 506 | double dy = (x3 * y4 - y3 * x4); |
| 507 | double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; |
| 508 | double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; |
| 509 | |
| 510 | // The intersection should be in the middle of the point 1 and point 2, |
| 511 | // likewise point 3 and point 4. |
| 512 | if (((x - x1) * (x - x2) > EPSILON) |
| 513 | || ((x - x3) * (x - x4) > EPSILON) |
| 514 | || ((y - y1) * (y - y2) > EPSILON) |
| 515 | || ((y - y3) * (y - y4) > EPSILON)) { |
| 516 | // Not interesected |
| 517 | return false; |
| 518 | } |
| 519 | ret.x = x; |
| 520 | ret.y = y; |
| 521 | return true; |
| 522 | |
| 523 | } |
| 524 | |
| 525 | /** |
| 526 | * Compute a horizontal circular polygon about point (x , y , height) of radius |
| 527 | * (size) |
| 528 | * |
| 529 | * @param points number of the points of the output polygon. |
| 530 | * @param lightCenter the center of the light. |
| 531 | * @param size the light size. |
| 532 | * @param ret result polygon. |
| 533 | */ |
| 534 | void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, |
| 535 | float size, Vector3* ret) { |
| 536 | // TODO: Caching all the sin / cos values and store them in a look up table. |
| 537 | for (int i = 0; i < points; i++) { |
| 538 | double angle = 2 * i * M_PI / points; |
| 539 | ret[i].x = sinf(angle) * size + lightCenter.x; |
| 540 | ret[i].y = cosf(angle) * size + lightCenter.y; |
| 541 | ret[i].z = lightCenter.z; |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | /** |
| 546 | * Generate the shadow from a spot light. |
| 547 | * |
| 548 | * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| 549 | * @param polyLength number of vertexes of the occluding polygon |
| 550 | * @param lightCenter the center of the light |
| 551 | * @param lightSize the radius of the light source |
| 552 | * @param lightVertexCount the vertex counter for the light polygon |
| 553 | * @param rays the number of vertexes to create along the edges of the shadow |
| 554 | * @param layers the number of layers of triangles strips to create |
| 555 | * @param strength the "darkness" of the shadow |
| 556 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 557 | * empty strip if error. |
| 558 | * |
| 559 | */ |
| 560 | void SpotShadow::createSpotShadow(const Vector3* poly, int polyLength, |
| 561 | const Vector3& lightCenter, float lightSize, int lightVertexCount, |
| 562 | int rays, int layers, float strength, VertexBuffer& retStrips) { |
| 563 | Vector3 light[lightVertexCount * 3]; |
| 564 | computeLightPolygon(lightVertexCount, lightCenter, lightSize, light); |
| 565 | computeSpotShadow(light, lightVertexCount, lightCenter, |
| 566 | poly, polyLength, rays, layers, strength, retStrips); |
| 567 | } |
| 568 | |
| 569 | /** |
| 570 | * Generate the shadow spot light of shape lightPoly and a object poly |
| 571 | * |
| 572 | * @param lightPoly x,y,z vertex of a convex polygon that is the light source |
| 573 | * @param lightPolyLength number of vertexes of the light source polygon |
| 574 | * @param poly x,y,z vertexes of a convex polygon that occludes the light source |
| 575 | * @param polyLength number of vertexes of the occluding polygon |
| 576 | * @param rays the number of vertexes to create along the edges of the shadow |
| 577 | * @param layers the number of layers of triangles strips to create |
| 578 | * @param strength the "darkness" of the shadow |
| 579 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 580 | * empty strip if error. |
| 581 | */ |
| 582 | void SpotShadow::computeSpotShadow(const Vector3* lightPoly, int lightPolyLength, |
| 583 | const Vector3& lightCenter, const Vector3* poly, int polyLength, |
| 584 | int rays, int layers, float strength, VertexBuffer& shadowTriangleStrip) { |
| 585 | // Point clouds for all the shadowed vertices |
| 586 | Vector2 shadowRegion[lightPolyLength * polyLength]; |
| 587 | // Shadow polygon from one point light. |
| 588 | Vector2 outline[polyLength]; |
| 589 | Vector2 umbraMem[polyLength * lightPolyLength]; |
| 590 | Vector2* umbra = umbraMem; |
| 591 | |
| 592 | int umbraLength = 0; |
| 593 | |
| 594 | // Validate input, receiver is always at z = 0 plane. |
| 595 | bool inputPolyPositionValid = true; |
| 596 | for (int i = 0; i < polyLength; i++) { |
| 597 | if (poly[i].z <= 0.00001) { |
| 598 | inputPolyPositionValid = false; |
| 599 | ALOGE("polygon below the surface"); |
| 600 | break; |
| 601 | } |
| 602 | if (poly[i].z >= lightPoly[0].z) { |
| 603 | inputPolyPositionValid = false; |
| 604 | ALOGE("polygon above the light"); |
| 605 | break; |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | // If the caster's position is invalid, don't draw anything. |
| 610 | if (!inputPolyPositionValid) { |
| 611 | return; |
| 612 | } |
| 613 | |
| 614 | // Calculate the umbra polygon based on intersections of all outlines |
| 615 | int k = 0; |
| 616 | for (int j = 0; j < lightPolyLength; j++) { |
| 617 | int m = 0; |
| 618 | for (int i = 0; i < polyLength; i++) { |
| 619 | float t = lightPoly[j].z - poly[i].z; |
| 620 | if (t == 0) { |
| 621 | return; |
| 622 | } |
| 623 | t = lightPoly[j].z / t; |
| 624 | float x = lightPoly[j].x - t * (lightPoly[j].x - poly[i].x); |
| 625 | float y = lightPoly[j].y - t * (lightPoly[j].y - poly[i].y); |
| 626 | |
| 627 | Vector2 newPoint = Vector2(x, y); |
| 628 | shadowRegion[k] = newPoint; |
| 629 | outline[m] = newPoint; |
| 630 | |
| 631 | k++; |
| 632 | m++; |
| 633 | } |
| 634 | |
| 635 | // For the first light polygon's vertex, use the outline as the umbra. |
| 636 | // Later on, use the intersection of the outline and existing umbra. |
| 637 | if (umbraLength == 0) { |
| 638 | for (int i = 0; i < polyLength; i++) { |
| 639 | umbra[i] = outline[i]; |
| 640 | } |
| 641 | umbraLength = polyLength; |
| 642 | } else { |
| 643 | int col = ((j * 255) / lightPolyLength); |
| 644 | umbraLength = intersection(outline, polyLength, umbra, umbraLength); |
| 645 | if (umbraLength == 0) { |
| 646 | break; |
| 647 | } |
| 648 | } |
| 649 | } |
| 650 | |
| 651 | // Generate the penumbra area using the hull of all shadow regions. |
| 652 | int shadowRegionLength = k; |
| 653 | Vector2 penumbra[k]; |
| 654 | int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra); |
| 655 | |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 656 | Vector2 fakeUmbra[polyLength]; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 657 | if (umbraLength < 3) { |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 658 | // If there is no real umbra, make a fake one. |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 659 | for (int i = 0; i < polyLength; i++) { |
| 660 | float t = lightCenter.z - poly[i].z; |
| 661 | if (t == 0) { |
| 662 | return; |
| 663 | } |
| 664 | t = lightCenter.z / t; |
| 665 | float x = lightCenter.x - t * (lightCenter.x - poly[i].x); |
| 666 | float y = lightCenter.y - t * (lightCenter.y - poly[i].y); |
| 667 | |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 668 | fakeUmbra[i].x = x; |
| 669 | fakeUmbra[i].y = y; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 670 | } |
| 671 | |
| 672 | // Shrink the centroid's shadow by 10%. |
| 673 | // TODO: Study the magic number of 10%. |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 674 | Vector2 shadowCentroid = centroid2d(fakeUmbra, polyLength); |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 675 | for (int i = 0; i < polyLength; i++) { |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 676 | fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) + |
| 677 | fakeUmbra[i] * SHADOW_SHRINK_SCALE; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 678 | } |
| 679 | #if DEBUG_SHADOW |
| 680 | ALOGD("No real umbra make a fake one, centroid2d = %f , %f", |
| 681 | shadowCentroid.x, shadowCentroid.y); |
| 682 | #endif |
| 683 | // Set the fake umbra, whose size is the same as the original polygon. |
ztenghui | 5176c97 | 2014-01-31 17:17:55 -0800 | [diff] [blame] | 684 | umbra = fakeUmbra; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 685 | umbraLength = polyLength; |
| 686 | } |
| 687 | |
| 688 | generateTriangleStrip(penumbra, penumbraLength, umbra, umbraLength, |
| 689 | rays, layers, strength, shadowTriangleStrip); |
| 690 | } |
| 691 | |
| 692 | /** |
| 693 | * Generate a triangle strip given two convex polygons |
| 694 | * |
| 695 | * @param penumbra The outer polygon x,y vertexes |
| 696 | * @param penumbraLength The number of vertexes in the outer polygon |
| 697 | * @param umbra The inner outer polygon x,y vertexes |
| 698 | * @param umbraLength The number of vertexes in the inner polygon |
| 699 | * @param rays The number of points along the polygons to create |
| 700 | * @param layers The number of layers of triangle strips between the umbra and penumbra |
| 701 | * @param strength The max alpha of the umbra |
| 702 | * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return |
| 703 | * empty strip if error. |
| 704 | **/ |
| 705 | void SpotShadow::generateTriangleStrip(const Vector2* penumbra, int penumbraLength, |
| 706 | const Vector2* umbra, int umbraLength, int rays, int layers, |
| 707 | float strength, VertexBuffer& shadowTriangleStrip) { |
| 708 | |
| 709 | int rings = layers + 1; |
| 710 | int size = rays * rings; |
| 711 | |
| 712 | float step = M_PI * 2 / rays; |
| 713 | // Centroid of the umbra. |
| 714 | Vector2 centroid = centroid2d(umbra, umbraLength); |
| 715 | #if DEBUG_SHADOW |
| 716 | ALOGD("centroid2d = %f , %f", centroid.x, centroid.y); |
| 717 | #endif |
| 718 | // Intersection to the penumbra. |
| 719 | float penumbraDistPerRay[rays]; |
| 720 | // Intersection to the umbra. |
| 721 | float umbraDistPerRay[rays]; |
| 722 | |
| 723 | for (int i = 0; i < rays; i++) { |
| 724 | // TODO: Setup a lookup table for all the sin/cos. |
| 725 | float dx = sinf(step * i); |
| 726 | float dy = cosf(step * i); |
| 727 | umbraDistPerRay[i] = rayIntersectPoly(umbra, umbraLength, centroid, |
| 728 | dx, dy); |
| 729 | if (isnan(umbraDistPerRay[i])) { |
| 730 | ALOGE("rayIntersectPoly returns NAN"); |
| 731 | return; |
| 732 | } |
| 733 | penumbraDistPerRay[i] = rayIntersectPoly(penumbra, penumbraLength, |
| 734 | centroid, dx, dy); |
| 735 | if (isnan(umbraDistPerRay[i])) { |
| 736 | ALOGE("rayIntersectPoly returns NAN"); |
| 737 | return; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | int stripSize = getStripSize(rays, layers); |
| 742 | AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(stripSize); |
| 743 | int currentIndex = 0; |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 744 | int firstInLayer = 0; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 745 | // Calculate the vertex values in the penumbra area. |
| 746 | for (int r = 0; r < layers; r++) { |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 747 | firstInLayer = currentIndex; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 748 | for (int i = 0; i < rays; i++) { |
| 749 | float dx = sinf(step * i); |
| 750 | float dy = cosf(step * i); |
| 751 | |
| 752 | for (int j = r; j < (r + 2); j++) { |
| 753 | float layerRatio = j / (float)(rings - 1); |
| 754 | float deltaDist = layerRatio * (umbraDistPerRay[i] - penumbraDistPerRay[i]); |
| 755 | float currentDist = penumbraDistPerRay[i] + deltaDist; |
| 756 | float op = calculateOpacity(layerRatio, deltaDist); |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 757 | AlphaVertex::set(&shadowVertices[currentIndex++], |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 758 | dx * currentDist + centroid.x, |
| 759 | dy * currentDist + centroid.y, |
| 760 | layerRatio * op * strength); |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 761 | } |
| 762 | } |
| 763 | |
| 764 | // Duplicate the vertices from one layer to another one to make triangle |
| 765 | // strip. |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 766 | shadowVertices[currentIndex++] = shadowVertices[firstInLayer + 0]; |
| 767 | shadowVertices[currentIndex++] = shadowVertices[firstInLayer + 1]; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 768 | } |
| 769 | |
| 770 | int lastInPenumbra = currentIndex - 1; |
| 771 | shadowVertices[currentIndex++] = shadowVertices[lastInPenumbra]; |
| 772 | |
| 773 | // Preallocate the vertices (index as [firstInUmbra - 1]) for jumping from |
| 774 | // the penumbra to umbra. |
| 775 | currentIndex++; |
| 776 | int firstInUmbra = currentIndex; |
| 777 | |
| 778 | // traverse the umbra area in a zig zag pattern for strips. |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 779 | const int innerRingStartIndex = firstInLayer + 1; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 780 | for (int k = 0; k < rays; k++) { |
| 781 | int i = k / 2; |
| 782 | if ((k & 1) == 1) { |
| 783 | i = rays - i - 1; |
| 784 | } |
Chris Craik | 12d9526d | 2014-01-30 15:43:56 -0800 | [diff] [blame] | 785 | // copy already computed values for umbra vertices |
| 786 | shadowVertices[currentIndex++] = shadowVertices[innerRingStartIndex + i * 2]; |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 787 | } |
| 788 | |
| 789 | // Back fill the one vertex for jumping from penumbra to umbra. |
| 790 | shadowVertices[firstInUmbra - 1] = shadowVertices[firstInUmbra]; |
| 791 | |
| 792 | #if DEBUG_SHADOW |
| 793 | for (int i = 0; i < currentIndex; i++) { |
| 794 | ALOGD("shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, |
| 795 | shadowVertices[i].y, shadowVertices[i].alpha); |
| 796 | } |
| 797 | #endif |
| 798 | } |
| 799 | |
| 800 | /** |
| 801 | * This is only for experimental purpose. |
| 802 | * After intersections are calculated, we could smooth the polygon if needed. |
| 803 | * So far, we don't think it is more appealing yet. |
| 804 | * |
| 805 | * @param level The level of smoothness. |
| 806 | * @param rays The total number of rays. |
| 807 | * @param rayDist (In and Out) The distance for each ray. |
| 808 | * |
| 809 | */ |
| 810 | void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { |
| 811 | for (int k = 0; k < level; k++) { |
| 812 | for (int i = 0; i < rays; i++) { |
| 813 | float p1 = rayDist[(rays - 1 + i) % rays]; |
| 814 | float p2 = rayDist[i]; |
| 815 | float p3 = rayDist[(i + 1) % rays]; |
| 816 | rayDist[i] = (p1 + p2 * 2 + p3) / 4; |
| 817 | } |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /** |
| 822 | * Calculate the opacity according to the distance and falloff ratio. |
| 823 | * |
| 824 | * @param distRatio The distance ratio of current sample between umbra and |
| 825 | * penumbra area. |
| 826 | * @param deltaDist The distance between current sample to the penumbra area. |
| 827 | * @return The opacity according to the distance between umbra and penumbra. |
| 828 | */ |
| 829 | float SpotShadow::calculateOpacity(float distRatio, float deltaDist) { |
| 830 | // TODO: Experiment on the opacity calculation. |
| 831 | float falloffRatio = 1 + deltaDist * deltaDist; |
| 832 | return (distRatio + 1 - 1 / falloffRatio) / 2; |
| 833 | } |
| 834 | |
| 835 | /** |
| 836 | * Calculate the number of vertex we will create given a number of rays and layers |
| 837 | * |
| 838 | * @param rays number of points around the polygons you want |
| 839 | * @param layers number of layers of triangle strips you need |
| 840 | * @return number of vertex (multiply by 3 for number of floats) |
| 841 | */ |
| 842 | int SpotShadow::getStripSize(int rays, int layers) { |
| 843 | return (2 + rays + ((layers) * 2 * (rays + 1))); |
| 844 | } |
| 845 | |
ztenghui | f5ca8b4 | 2014-01-27 15:53:28 -0800 | [diff] [blame] | 846 | #if DEBUG_SHADOW |
| 847 | |
| 848 | #define TEST_POINT_NUMBER 128 |
| 849 | |
| 850 | /** |
| 851 | * Calculate the bounds for generating random test points. |
| 852 | */ |
| 853 | void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, |
| 854 | Vector2& upperBound ) { |
| 855 | if (inVector.x < lowerBound.x) { |
| 856 | lowerBound.x = inVector.x; |
| 857 | } |
| 858 | |
| 859 | if (inVector.y < lowerBound.y) { |
| 860 | lowerBound.y = inVector.y; |
| 861 | } |
| 862 | |
| 863 | if (inVector.x > upperBound.x) { |
| 864 | upperBound.x = inVector.x; |
| 865 | } |
| 866 | |
| 867 | if (inVector.y > upperBound.y) { |
| 868 | upperBound.y = inVector.y; |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | /** |
| 873 | * For debug purpose, when things go wrong, dump the whole polygon data. |
| 874 | */ |
| 875 | static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { |
| 876 | for (int i = 0; i < polyLength; i++) { |
| 877 | ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | /** |
| 882 | * Test whether the polygon is convex. |
| 883 | */ |
| 884 | bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, |
| 885 | const char* name) { |
| 886 | bool isConvex = true; |
| 887 | for (int i = 0; i < polygonLength; i++) { |
| 888 | Vector2 start = polygon[i]; |
| 889 | Vector2 middle = polygon[(i + 1) % polygonLength]; |
| 890 | Vector2 end = polygon[(i + 2) % polygonLength]; |
| 891 | |
| 892 | double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) - |
| 893 | (double(middle.y) - start.y) * (double(end.x) - start.x); |
| 894 | bool isCCWOrCoLinear = (delta >= EPSILON); |
| 895 | |
| 896 | if (isCCWOrCoLinear) { |
| 897 | ALOGE("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," |
| 898 | "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", |
| 899 | name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); |
| 900 | isConvex = false; |
| 901 | break; |
| 902 | } |
| 903 | } |
| 904 | return isConvex; |
| 905 | } |
| 906 | |
| 907 | /** |
| 908 | * Test whether or not the polygon (intersection) is within the 2 input polygons. |
| 909 | * Using Marte Carlo method, we generate a random point, and if it is inside the |
| 910 | * intersection, then it must be inside both source polygons. |
| 911 | */ |
| 912 | void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, |
| 913 | const Vector2* poly2, int poly2Length, |
| 914 | const Vector2* intersection, int intersectionLength) { |
| 915 | // Find the min and max of x and y. |
| 916 | Vector2 lowerBound(FLT_MAX, FLT_MAX); |
| 917 | Vector2 upperBound(-FLT_MAX, -FLT_MAX); |
| 918 | for (int i = 0; i < poly1Length; i++) { |
| 919 | updateBound(poly1[i], lowerBound, upperBound); |
| 920 | } |
| 921 | for (int i = 0; i < poly2Length; i++) { |
| 922 | updateBound(poly2[i], lowerBound, upperBound); |
| 923 | } |
| 924 | |
| 925 | bool dumpPoly = false; |
| 926 | for (int k = 0; k < TEST_POINT_NUMBER; k++) { |
| 927 | // Generate a random point between minX, minY and maxX, maxY. |
| 928 | double randomX = rand() / double(RAND_MAX); |
| 929 | double randomY = rand() / double(RAND_MAX); |
| 930 | |
| 931 | Vector2 testPoint; |
| 932 | testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); |
| 933 | testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); |
| 934 | |
| 935 | // If the random point is in both poly 1 and 2, then it must be intersection. |
| 936 | if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { |
| 937 | if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { |
| 938 | dumpPoly = true; |
| 939 | ALOGE("(Error Type 1): one point (%f, %f) in the intersection is" |
| 940 | " not in the poly1", |
| 941 | testPoint.x, testPoint.y); |
| 942 | } |
| 943 | |
| 944 | if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { |
| 945 | dumpPoly = true; |
| 946 | ALOGE("(Error Type 1): one point (%f, %f) in the intersection is" |
| 947 | " not in the poly2", |
| 948 | testPoint.x, testPoint.y); |
| 949 | } |
| 950 | } |
| 951 | } |
| 952 | |
| 953 | if (dumpPoly) { |
| 954 | dumpPolygon(intersection, intersectionLength, "intersection"); |
| 955 | for (int i = 1; i < intersectionLength; i++) { |
| 956 | Vector2 delta = intersection[i] - intersection[i - 1]; |
| 957 | ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); |
| 958 | } |
| 959 | |
| 960 | dumpPolygon(poly1, poly1Length, "poly 1"); |
| 961 | dumpPolygon(poly2, poly2Length, "poly 2"); |
| 962 | } |
| 963 | } |
| 964 | #endif |
| 965 | |
ztenghui | 7b4516e | 2014-01-07 10:42:55 -0800 | [diff] [blame] | 966 | }; // namespace uirenderer |
| 967 | }; // namespace android |
| 968 | |
| 969 | |
| 970 | |
| 971 | |