Louis Huemiller | ec0da1a | 2011-01-05 18:53:47 -0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2010 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | * |
| 16 | */ |
| 17 | |
| 18 | /* |
| 19 | * Hardware Composer stress test |
| 20 | * |
| 21 | * Performs a pseudo-random (prandom) sequence of operations to the |
| 22 | * Hardware Composer (HWC), for a specified number of passes or for |
| 23 | * a specified period of time. By default the period of time is FLT_MAX, |
| 24 | * so that the number of passes will take precedence. |
| 25 | * |
| 26 | * The passes are grouped together, where (pass / passesPerGroup) specifies |
| 27 | * which group a particular pass is in. This causes every passesPerGroup |
| 28 | * worth of sequential passes to be within the same group. Computationally |
| 29 | * intensive operations are performed just once at the beginning of a group |
| 30 | * of passes and then used by all the passes in that group. This is done |
| 31 | * so as to increase both the average and peak rate of graphic operations, |
| 32 | * by moving computationally intensive operations to the beginning of a group. |
| 33 | * In particular, at the start of each group of passes a set of |
| 34 | * graphic buffers are created, then used by the first and remaining |
| 35 | * passes of that group of passes. |
| 36 | * |
| 37 | * The per-group initialization of the graphic buffers is performed |
| 38 | * by a function called initFrames. This function creates an array |
| 39 | * of smart pointers to the graphic buffers, in the form of a vector |
| 40 | * of vectors. The array is accessed in row major order, so each |
| 41 | * row is a vector of smart pointers. All the pointers of a single |
| 42 | * row point to graphic buffers which use the same pixel format and |
| 43 | * have the same dimension, although it is likely that each one is |
| 44 | * filled with a different color. This is done so that after doing |
| 45 | * the first HWC prepare then set call, subsequent set calls can |
| 46 | * be made with each of the layer handles changed to a different |
| 47 | * graphic buffer within the same row. Since the graphic buffers |
| 48 | * in a particular row have the same pixel format and dimension, |
| 49 | * additional HWC set calls can be made, without having to perform |
| 50 | * an HWC prepare call. |
| 51 | * |
| 52 | * This test supports the following command-line options: |
| 53 | * |
| 54 | * -v Verbose |
| 55 | * -s num Starting pass |
| 56 | * -e num Ending pass |
| 57 | * -p num Execute the single pass specified by num |
| 58 | * -n num Number of set operations to perform after each prepare operation |
| 59 | * -t float Maximum time in seconds to execute the test |
| 60 | * -d float Delay in seconds performed after each set operation |
| 61 | * -D float Delay in seconds performed after the last pass is executed |
| 62 | * |
| 63 | * Typically the test is executed for a large range of passes. By default |
| 64 | * passes 0 through 99999 (100,000 passes) are executed. Although this test |
| 65 | * does not validate the generated image, at times it is useful to reexecute |
| 66 | * a particular pass and leave the displayed image on the screen for an |
| 67 | * extended period of time. This can be done either by setting the -s |
| 68 | * and -e options to the desired pass, along with a large value for -D. |
| 69 | * This can also be done via the -p option, again with a large value for |
| 70 | * the -D options. |
| 71 | * |
| 72 | * So far this test only contains code to create graphic buffers with |
| 73 | * a continuous solid color. Although this test is unable to validate the |
| 74 | * image produced, any image that contains other than rectangles of a solid |
| 75 | * color are incorrect. Note that the rectangles may use a transparent |
| 76 | * color and have a blending operation that causes the color in overlapping |
| 77 | * rectangles to be mixed. In such cases the overlapping portions may have |
| 78 | * a different color from the rest of the rectangle. |
| 79 | */ |
| 80 | |
| 81 | #include <algorithm> |
| 82 | #include <assert.h> |
| 83 | #include <cerrno> |
| 84 | #include <cmath> |
| 85 | #include <cstdlib> |
| 86 | #include <ctime> |
| 87 | #include <libgen.h> |
| 88 | #include <sched.h> |
| 89 | #include <sstream> |
| 90 | #include <stdint.h> |
| 91 | #include <string.h> |
| 92 | #include <unistd.h> |
| 93 | #include <vector> |
| 94 | |
| 95 | #include <sys/syscall.h> |
| 96 | #include <sys/types.h> |
| 97 | #include <sys/wait.h> |
| 98 | |
| 99 | #include <EGL/egl.h> |
| 100 | #include <EGL/eglext.h> |
| 101 | #include <GLES2/gl2.h> |
| 102 | #include <GLES2/gl2ext.h> |
| 103 | |
| 104 | #include <ui/FramebufferNativeWindow.h> |
| 105 | #include <ui/GraphicBuffer.h> |
| 106 | #include <ui/EGLUtils.h> |
| 107 | |
| 108 | #define LOG_TAG "hwcStressTest" |
| 109 | #include <utils/Log.h> |
| 110 | #include <testUtil.h> |
| 111 | |
| 112 | #include <hardware/hwcomposer.h> |
| 113 | |
| 114 | #include <glTestLib.h> |
| 115 | #include <hwc/hwcTestLib.h> |
| 116 | |
| 117 | using namespace std; |
| 118 | using namespace android; |
| 119 | |
| 120 | const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch |
| 121 | // larger than the default screen size |
| 122 | const unsigned int passesPerGroup = 10; // A group of passes all use the same |
| 123 | // graphic buffers |
| 124 | |
| 125 | // Ratios at which rare and frequent conditions should be produced |
| 126 | const float rareRatio = 0.1; |
| 127 | const float freqRatio = 0.9; |
| 128 | |
| 129 | // Defaults for command-line options |
| 130 | const bool defaultVerbose = false; |
| 131 | const unsigned int defaultStartPass = 0; |
| 132 | const unsigned int defaultEndPass = 99999; |
| 133 | const unsigned int defaultPerPassNumSet = 10; |
| 134 | const float defaultPerSetDelay = 0.0; // Default delay after each set |
| 135 | // operation. Default delay of |
| 136 | // zero used so as to perform the |
| 137 | // the set operations as quickly |
| 138 | // as possible. |
| 139 | const float defaultEndDelay = 2.0; // Default delay between completion of |
| 140 | // final pass and restart of framework |
| 141 | const float defaultDuration = FLT_MAX; // A fairly long time, so that |
| 142 | // range of passes will have |
| 143 | // precedence |
| 144 | |
| 145 | // Command-line option settings |
| 146 | static bool verbose = defaultVerbose; |
| 147 | static unsigned int startPass = defaultStartPass; |
| 148 | static unsigned int endPass = defaultEndPass; |
| 149 | static unsigned int numSet = defaultPerPassNumSet; |
| 150 | static float perSetDelay = defaultPerSetDelay; |
| 151 | static float endDelay = defaultEndDelay; |
| 152 | static float duration = defaultDuration; |
| 153 | |
| 154 | // Command-line mutual exclusion detection flags. |
| 155 | // Corresponding flag set true once an option is used. |
| 156 | bool eFlag, sFlag, pFlag; |
| 157 | |
| 158 | #define MAXSTR 100 |
| 159 | #define MAXCMD 200 |
| 160 | #define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once |
| 161 | // it has been added |
| 162 | |
| 163 | #define CMD_STOP_FRAMEWORK "stop 2>&1" |
| 164 | #define CMD_START_FRAMEWORK "start 2>&1" |
| 165 | |
| 166 | #define NUMA(a) (sizeof(a) / sizeof(a [0])) |
| 167 | #define MEMCLR(addr, size) do { \ |
| 168 | memset((addr), 0, (size)); \ |
| 169 | } while (0) |
| 170 | |
| 171 | // File scope constants |
| 172 | const unsigned int blendingOps[] = { |
| 173 | HWC_BLENDING_NONE, |
| 174 | HWC_BLENDING_PREMULT, |
| 175 | HWC_BLENDING_COVERAGE, |
| 176 | }; |
| 177 | const unsigned int layerFlags[] = { |
| 178 | HWC_SKIP_LAYER, |
| 179 | }; |
| 180 | const vector<unsigned int> vecLayerFlags(layerFlags, |
| 181 | layerFlags + NUMA(layerFlags)); |
| 182 | |
| 183 | const unsigned int transformFlags[] = { |
| 184 | HWC_TRANSFORM_FLIP_H, |
| 185 | HWC_TRANSFORM_FLIP_V, |
| 186 | HWC_TRANSFORM_ROT_90, |
| 187 | // ROT_180 & ROT_270 intentionally not listed, because they |
| 188 | // they are formed from combinations of the flags already listed. |
| 189 | }; |
| 190 | const vector<unsigned int> vecTransformFlags(transformFlags, |
| 191 | transformFlags + NUMA(transformFlags)); |
| 192 | |
| 193 | // File scope globals |
| 194 | static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE | |
| 195 | GraphicBuffer::USAGE_SW_WRITE_RARELY; |
| 196 | static hwc_composer_device_t *hwcDevice; |
| 197 | static EGLDisplay dpy; |
| 198 | static EGLSurface surface; |
| 199 | static EGLint width, height; |
| 200 | static vector <vector <sp<GraphicBuffer> > > frames; |
| 201 | |
| 202 | // File scope prototypes |
| 203 | void init(void); |
| 204 | void initFrames(unsigned int seed); |
| 205 | template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num); |
| 206 | template <class T> T vectorOr(const vector<T>& vec); |
| 207 | |
| 208 | /* |
| 209 | * Main |
| 210 | * |
| 211 | * Performs the following high-level sequence of operations: |
| 212 | * |
| 213 | * 1. Command-line parsing |
| 214 | * |
| 215 | * 2. Initialization |
| 216 | * |
| 217 | * 3. For each pass: |
| 218 | * |
| 219 | * a. If pass is first pass or in a different group from the |
| 220 | * previous pass, initialize the array of graphic buffers. |
| 221 | * |
| 222 | * b. Create a HWC list with room to specify a prandomly |
| 223 | * selected number of layers. |
| 224 | * |
| 225 | * c. Select a subset of the rows from the graphic buffer array, |
| 226 | * such that there is a unique row to be used for each |
| 227 | * of the layers in the HWC list. |
| 228 | * |
| 229 | * d. Prandomly fill in the HWC list with handles |
| 230 | * selected from any of the columns of the selected row. |
| 231 | * |
| 232 | * e. Pass the populated list to the HWC prepare call. |
| 233 | * |
| 234 | * f. Pass the populated list to the HWC set call. |
| 235 | * |
| 236 | * g. If additional set calls are to be made, then for each |
| 237 | * additional set call, select a new set of handles and |
| 238 | * perform the set call. |
| 239 | */ |
| 240 | int |
| 241 | main(int argc, char *argv[]) |
| 242 | { |
| 243 | int rv, opt; |
| 244 | char *chptr; |
| 245 | unsigned int pass; |
| 246 | char cmd[MAXCMD]; |
| 247 | struct timeval startTime, currentTime, delta; |
| 248 | |
| 249 | testSetLogCatTag(LOG_TAG); |
| 250 | |
| 251 | // Parse command line arguments |
| 252 | while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) { |
| 253 | switch (opt) { |
| 254 | case 'd': // Delay after each set operation |
| 255 | perSetDelay = strtod(optarg, &chptr); |
| 256 | if ((*chptr != '\0') || (perSetDelay < 0.0)) { |
| 257 | testPrintE("Invalid command-line specified per pass delay of: " |
| 258 | "%s", optarg); |
| 259 | exit(1); |
| 260 | } |
| 261 | break; |
| 262 | |
| 263 | case 'D': // End of test delay |
| 264 | // Delay between completion of final pass and restart |
| 265 | // of framework |
| 266 | endDelay = strtod(optarg, &chptr); |
| 267 | if ((*chptr != '\0') || (endDelay < 0.0)) { |
| 268 | testPrintE("Invalid command-line specified end of test delay " |
| 269 | "of: %s", optarg); |
| 270 | exit(2); |
| 271 | } |
| 272 | break; |
| 273 | |
| 274 | case 't': // Duration |
| 275 | duration = strtod(optarg, &chptr); |
| 276 | if ((*chptr != '\0') || (duration < 0.0)) { |
| 277 | testPrintE("Invalid command-line specified duration of: %s", |
| 278 | optarg); |
| 279 | exit(3); |
| 280 | } |
| 281 | break; |
| 282 | |
| 283 | case 'n': // Num set operations per pass |
| 284 | numSet = strtoul(optarg, &chptr, 10); |
| 285 | if (*chptr != '\0') { |
| 286 | testPrintE("Invalid command-line specified num set per pass " |
| 287 | "of: %s", optarg); |
| 288 | exit(4); |
| 289 | } |
| 290 | break; |
| 291 | |
| 292 | case 's': // Starting Pass |
| 293 | sFlag = true; |
| 294 | if (pFlag) { |
| 295 | testPrintE("Invalid combination of command-line options."); |
| 296 | testPrintE(" The -p option is mutually exclusive from the"); |
| 297 | testPrintE(" -s and -e options."); |
| 298 | exit(5); |
| 299 | } |
| 300 | startPass = strtoul(optarg, &chptr, 10); |
| 301 | if (*chptr != '\0') { |
| 302 | testPrintE("Invalid command-line specified starting pass " |
| 303 | "of: %s", optarg); |
| 304 | exit(6); |
| 305 | } |
| 306 | break; |
| 307 | |
| 308 | case 'e': // Ending Pass |
| 309 | eFlag = true; |
| 310 | if (pFlag) { |
| 311 | testPrintE("Invalid combination of command-line options."); |
| 312 | testPrintE(" The -p option is mutually exclusive from the"); |
| 313 | testPrintE(" -s and -e options."); |
| 314 | exit(7); |
| 315 | } |
| 316 | endPass = strtoul(optarg, &chptr, 10); |
| 317 | if (*chptr != '\0') { |
| 318 | testPrintE("Invalid command-line specified ending pass " |
| 319 | "of: %s", optarg); |
| 320 | exit(8); |
| 321 | } |
| 322 | break; |
| 323 | |
| 324 | case 'p': // Run a single specified pass |
| 325 | pFlag = true; |
| 326 | if (sFlag || eFlag) { |
| 327 | testPrintE("Invalid combination of command-line options."); |
| 328 | testPrintE(" The -p option is mutually exclusive from the"); |
| 329 | testPrintE(" -s and -e options."); |
| 330 | exit(9); |
| 331 | } |
| 332 | startPass = endPass = strtoul(optarg, &chptr, 10); |
| 333 | if (*chptr != '\0') { |
| 334 | testPrintE("Invalid command-line specified pass of: %s", |
| 335 | optarg); |
| 336 | exit(10); |
| 337 | } |
| 338 | break; |
| 339 | |
| 340 | case 'v': // Verbose |
| 341 | verbose = true; |
| 342 | break; |
| 343 | |
| 344 | case 'h': // Help |
| 345 | case '?': |
| 346 | default: |
| 347 | testPrintE(" %s [options]", basename(argv[0])); |
| 348 | testPrintE(" options:"); |
| 349 | testPrintE(" -p Execute specified pass"); |
| 350 | testPrintE(" -s Starting pass"); |
| 351 | testPrintE(" -e Ending pass"); |
| 352 | testPrintE(" -t Duration"); |
| 353 | testPrintE(" -d Delay after each set operation"); |
| 354 | testPrintE(" -D End of test delay"); |
| 355 | testPrintE(" -n Num set operations per pass"); |
| 356 | testPrintE(" -v Verbose"); |
| 357 | exit(((optopt == 0) || (optopt == '?')) ? 0 : 11); |
| 358 | } |
| 359 | } |
| 360 | if (endPass < startPass) { |
| 361 | testPrintE("Unexpected ending pass before starting pass"); |
| 362 | testPrintE(" startPass: %u endPass: %u", startPass, endPass); |
| 363 | exit(12); |
| 364 | } |
| 365 | if (argc != optind) { |
| 366 | testPrintE("Unexpected command-line postional argument"); |
| 367 | testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]", |
| 368 | basename(argv[0])); |
| 369 | exit(13); |
| 370 | } |
| 371 | testPrintI("duration: %g", duration); |
| 372 | testPrintI("startPass: %u", startPass); |
| 373 | testPrintI("endPass: %u", endPass); |
| 374 | testPrintI("numSet: %u", numSet); |
| 375 | |
| 376 | // Stop framework |
| 377 | rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK); |
| 378 | if (rv >= (signed) sizeof(cmd) - 1) { |
| 379 | testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK); |
| 380 | exit(14); |
| 381 | } |
| 382 | testExecCmd(cmd); |
| 383 | testDelay(1.0); // TODO - need means to query whether asyncronous stop |
| 384 | // framework operation has completed. For now, just wait |
| 385 | // a long time. |
| 386 | |
| 387 | init(); |
| 388 | |
| 389 | // For each pass |
| 390 | gettimeofday(&startTime, NULL); |
| 391 | for (pass = startPass; pass <= endPass; pass++) { |
| 392 | // Stop if duration of work has already been performed |
| 393 | gettimeofday(¤tTime, NULL); |
| 394 | delta = tvDelta(&startTime, ¤tTime); |
| 395 | if (tv2double(&delta) > duration) { break; } |
| 396 | |
| 397 | // Regenerate a new set of test frames when this pass is |
| 398 | // either the first pass or is in a different group then |
| 399 | // the previous pass. A group of passes are passes that |
| 400 | // all have the same quotient when their pass number is |
| 401 | // divided by passesPerGroup. |
| 402 | if ((pass == startPass) |
| 403 | || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) { |
| 404 | initFrames(pass / passesPerGroup); |
| 405 | } |
| 406 | |
| 407 | testPrintI("==== Starting pass: %u", pass); |
| 408 | |
| 409 | // Cause deterministic sequence of prandom numbers to be |
| 410 | // generated for this pass. |
| 411 | srand48(pass); |
| 412 | |
| 413 | hwc_layer_list_t *list; |
| 414 | list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1); |
| 415 | if (list == NULL) { |
| 416 | testPrintE("hwcTestCreateLayerList failed"); |
| 417 | exit(20); |
| 418 | } |
| 419 | |
| 420 | // Prandomly select a subset of frames to be used by this pass. |
| 421 | vector <vector <sp<GraphicBuffer> > > selectedFrames; |
| 422 | selectedFrames = vectorRandSelect(frames, list->numHwLayers); |
| 423 | |
| 424 | // Any transform tends to create a layer that the hardware |
| 425 | // composer is unable to support and thus has to leave for |
| 426 | // SurfaceFlinger. Place heavy bias on specifying no transforms. |
| 427 | bool noTransform = testRandFract() > rareRatio; |
| 428 | |
| 429 | for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { |
| 430 | unsigned int idx = testRandMod(selectedFrames[n1].size()); |
| 431 | sp<GraphicBuffer> gBuf = selectedFrames[n1][idx]; |
| 432 | hwc_layer_t *layer = &list->hwLayers[n1]; |
| 433 | layer->handle = gBuf->handle; |
| 434 | |
| 435 | layer->blending = blendingOps[testRandMod(NUMA(blendingOps))]; |
| 436 | layer->flags = (testRandFract() > rareRatio) ? 0 |
| 437 | : vectorOr(vectorRandSelect(vecLayerFlags, |
| 438 | testRandMod(vecLayerFlags.size() + 1))); |
| 439 | layer->transform = (noTransform || testRandFract() > rareRatio) ? 0 |
| 440 | : vectorOr(vectorRandSelect(vecTransformFlags, |
| 441 | testRandMod(vecTransformFlags.size() + 1))); |
| 442 | layer->sourceCrop.left = testRandMod(gBuf->getWidth()); |
| 443 | layer->sourceCrop.top = testRandMod(gBuf->getHeight()); |
| 444 | layer->sourceCrop.right = layer->sourceCrop.left |
| 445 | + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1; |
| 446 | layer->sourceCrop.bottom = layer->sourceCrop.top |
| 447 | + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1; |
| 448 | layer->displayFrame.left = testRandMod(width); |
| 449 | layer->displayFrame.top = testRandMod(height); |
| 450 | layer->displayFrame.right = layer->displayFrame.left |
| 451 | + testRandMod(width - layer->displayFrame.left) + 1; |
| 452 | layer->displayFrame.bottom = layer->displayFrame.top |
| 453 | + testRandMod(height - layer->displayFrame.top) + 1; |
| 454 | |
| 455 | // Increase the frequency that a scale factor of 1.0 from |
| 456 | // the sourceCrop to displayFrame occurs. This is the |
| 457 | // most common scale factor used by applications and would |
| 458 | // be rarely produced by this stress test without this |
| 459 | // logic. |
| 460 | if (testRandFract() <= freqRatio) { |
| 461 | // Only change to scale factor to 1.0 if both the |
| 462 | // width and height will fit. |
| 463 | int sourceWidth = layer->sourceCrop.right |
| 464 | - layer->sourceCrop.left; |
| 465 | int sourceHeight = layer->sourceCrop.bottom |
| 466 | - layer->sourceCrop.top; |
| 467 | if (((layer->displayFrame.left + sourceWidth) <= width) |
| 468 | && ((layer->displayFrame.top + sourceHeight) <= height)) { |
| 469 | layer->displayFrame.right = layer->displayFrame.left |
| 470 | + sourceWidth; |
| 471 | layer->displayFrame.bottom = layer->displayFrame.top |
| 472 | + sourceHeight; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | layer->visibleRegionScreen.numRects = 1; |
| 477 | layer->visibleRegionScreen.rects = &layer->displayFrame; |
| 478 | } |
| 479 | |
| 480 | // Perform prepare operation |
| 481 | if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); } |
| 482 | hwcDevice->prepare(hwcDevice, list); |
| 483 | if (verbose) { |
| 484 | testPrintI("Post Prepare:"); |
| 485 | hwcTestDisplayListPrepareModifiable(list); |
| 486 | } |
| 487 | |
| 488 | // Turn off the geometry changed flag |
| 489 | list->flags &= ~HWC_GEOMETRY_CHANGED; |
| 490 | |
| 491 | // Perform the set operation(s) |
| 492 | if (verbose) {testPrintI("Set:"); } |
| 493 | for (unsigned int n1 = 0; n1 < numSet; n1++) { |
| 494 | if (verbose) { hwcTestDisplayListHandles(list); } |
| 495 | hwcDevice->set(hwcDevice, dpy, surface, list); |
| 496 | |
| 497 | // Prandomly select a new set of handles |
| 498 | for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) { |
| 499 | unsigned int idx = testRandMod(selectedFrames[n1].size()); |
| 500 | sp<GraphicBuffer> gBuf = selectedFrames[n1][idx]; |
| 501 | hwc_layer_t *layer = &list->hwLayers[n1]; |
| 502 | layer->handle = (native_handle_t *) gBuf->handle; |
| 503 | } |
| 504 | |
| 505 | testDelay(perSetDelay); |
| 506 | } |
| 507 | |
| 508 | hwcTestFreeLayerList(list); |
| 509 | testPrintI("==== Completed pass: %u", pass); |
| 510 | } |
| 511 | |
| 512 | testDelay(endDelay); |
| 513 | |
| 514 | // Start framework |
| 515 | rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK); |
| 516 | if (rv >= (signed) sizeof(cmd) - 1) { |
| 517 | testPrintE("Command too long for: %s", CMD_START_FRAMEWORK); |
| 518 | exit(21); |
| 519 | } |
| 520 | testExecCmd(cmd); |
| 521 | |
| 522 | testPrintI("Successfully completed %u passes", pass - startPass); |
| 523 | |
| 524 | return 0; |
| 525 | } |
| 526 | |
| 527 | void init(void) |
| 528 | { |
| 529 | srand48(0); // Defensively set pseudo random number generator. |
| 530 | // Should not need to set this, because a stress test |
| 531 | // sets the seed on each pass. Defensively set it here |
| 532 | // so that future code that uses pseudo random numbers |
| 533 | // before the first pass will be deterministic. |
| 534 | |
| 535 | hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height); |
| 536 | |
| 537 | hwcTestOpenHwc(&hwcDevice); |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * Initialize Frames |
| 542 | * |
| 543 | * Creates an array of graphic buffers, within the global variable |
| 544 | * named frames. The graphic buffers are contained within a vector of |
| 545 | * vectors. All the graphic buffers in a particular row are of the same |
| 546 | * format and dimension. Each graphic buffer is uniformly filled with a |
| 547 | * prandomly selected color. It is likely that each buffer, even |
| 548 | * in the same row, will be filled with a unique color. |
| 549 | */ |
| 550 | void initFrames(unsigned int seed) |
| 551 | { |
| 552 | int rv; |
| 553 | const size_t maxRows = 5; |
| 554 | const size_t minCols = 2; // Need at least double buffering |
| 555 | const size_t maxCols = 4; // One more than triple buffering |
| 556 | |
| 557 | if (verbose) { testPrintI("initFrames seed: %u", seed); } |
| 558 | srand48(seed); |
| 559 | size_t rows = testRandMod(maxRows) + 1; |
| 560 | |
| 561 | frames.clear(); |
| 562 | frames.resize(rows); |
| 563 | |
| 564 | for (unsigned int row = 0; row < rows; row++) { |
| 565 | // All frames within a row have to have the same format and |
| 566 | // dimensions. Width and height need to be >= 1. |
| 567 | unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat)); |
| 568 | const struct hwcTestGraphicFormat *formatPtr |
| 569 | = &hwcTestGraphicFormat[formatIdx]; |
| 570 | int format = formatPtr->format; |
| 571 | |
| 572 | // Pick width and height, which must be >= 1 and the size |
| 573 | // mod the wMod/hMod value must be equal to 0. |
| 574 | size_t w = (width * maxSizeRatio) * testRandFract(); |
| 575 | size_t h = (height * maxSizeRatio) * testRandFract(); |
| 576 | w = max(1u, w); |
| 577 | h = max(1u, h); |
| 578 | if ((w % formatPtr->wMod) != 0) { |
| 579 | w += formatPtr->wMod - (w % formatPtr->wMod); |
| 580 | } |
| 581 | if ((h % formatPtr->hMod) != 0) { |
| 582 | h += formatPtr->hMod - (h % formatPtr->hMod); |
| 583 | } |
| 584 | if (verbose) { |
| 585 | testPrintI(" frame %u width: %u height: %u format: %u %s", |
| 586 | row, w, h, format, hwcTestGraphicFormat2str(format)); |
| 587 | } |
| 588 | |
| 589 | size_t cols = testRandMod((maxCols + 1) - minCols) + minCols; |
| 590 | frames[row].resize(cols); |
| 591 | for (unsigned int col = 0; col < cols; col++) { |
| 592 | ColorFract color(testRandFract(), testRandFract(), testRandFract()); |
| 593 | float alpha = testRandFract(); |
| 594 | |
| 595 | frames[row][col] = new GraphicBuffer(w, h, format, texUsage); |
| 596 | if ((rv = frames[row][col]->initCheck()) != NO_ERROR) { |
| 597 | testPrintE("GraphicBuffer initCheck failed, rv: %i", rv); |
| 598 | testPrintE(" frame %u width: %u height: %u format: %u %s", |
| 599 | row, w, h, format, hwcTestGraphicFormat2str(format)); |
| 600 | exit(80); |
| 601 | } |
| 602 | |
| 603 | hwcTestFillColor(frames[row][col].get(), color, alpha); |
| 604 | if (verbose) { |
| 605 | testPrintI(" buf: %p handle: %p color: %s alpha: %f", |
| 606 | frames[row][col].get(), frames[row][col]->handle, |
| 607 | string(color).c_str(), alpha); |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Vector Random Select |
| 615 | * |
| 616 | * Prandomly selects and returns num elements from vec. |
| 617 | */ |
| 618 | template <class T> |
| 619 | vector<T> vectorRandSelect(const vector<T>& vec, size_t num) |
| 620 | { |
| 621 | vector<T> rv = vec; |
| 622 | |
| 623 | while (rv.size() > num) { |
| 624 | rv.erase(rv.begin() + testRandMod(rv.size())); |
| 625 | } |
| 626 | |
| 627 | return rv; |
| 628 | } |
| 629 | |
| 630 | /* |
| 631 | * Vector Or |
| 632 | * |
| 633 | * Or's togethen the values of each element of vec and returns the result. |
| 634 | */ |
| 635 | template <class T> |
| 636 | T vectorOr(const vector<T>& vec) |
| 637 | { |
| 638 | T rv = 0; |
| 639 | |
| 640 | for (size_t n1 = 0; n1 < vec.size(); n1++) { |
| 641 | rv |= vec[n1]; |
| 642 | } |
| 643 | |
| 644 | return rv; |
| 645 | } |