blob: 1cefb4b8ff84201a0b311e50a6d17faf026681e3 [file] [log] [blame]
Louis Huemillerec0da1a2011-01-05 18:53:47 -08001/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18/*
19 * Hardware Composer stress test
20 *
21 * Performs a pseudo-random (prandom) sequence of operations to the
22 * Hardware Composer (HWC), for a specified number of passes or for
23 * a specified period of time. By default the period of time is FLT_MAX,
24 * so that the number of passes will take precedence.
25 *
26 * The passes are grouped together, where (pass / passesPerGroup) specifies
27 * which group a particular pass is in. This causes every passesPerGroup
28 * worth of sequential passes to be within the same group. Computationally
29 * intensive operations are performed just once at the beginning of a group
30 * of passes and then used by all the passes in that group. This is done
31 * so as to increase both the average and peak rate of graphic operations,
32 * by moving computationally intensive operations to the beginning of a group.
33 * In particular, at the start of each group of passes a set of
34 * graphic buffers are created, then used by the first and remaining
35 * passes of that group of passes.
36 *
37 * The per-group initialization of the graphic buffers is performed
38 * by a function called initFrames. This function creates an array
39 * of smart pointers to the graphic buffers, in the form of a vector
40 * of vectors. The array is accessed in row major order, so each
41 * row is a vector of smart pointers. All the pointers of a single
42 * row point to graphic buffers which use the same pixel format and
43 * have the same dimension, although it is likely that each one is
44 * filled with a different color. This is done so that after doing
45 * the first HWC prepare then set call, subsequent set calls can
46 * be made with each of the layer handles changed to a different
47 * graphic buffer within the same row. Since the graphic buffers
48 * in a particular row have the same pixel format and dimension,
49 * additional HWC set calls can be made, without having to perform
50 * an HWC prepare call.
51 *
52 * This test supports the following command-line options:
53 *
54 * -v Verbose
55 * -s num Starting pass
56 * -e num Ending pass
57 * -p num Execute the single pass specified by num
58 * -n num Number of set operations to perform after each prepare operation
59 * -t float Maximum time in seconds to execute the test
60 * -d float Delay in seconds performed after each set operation
61 * -D float Delay in seconds performed after the last pass is executed
62 *
63 * Typically the test is executed for a large range of passes. By default
64 * passes 0 through 99999 (100,000 passes) are executed. Although this test
65 * does not validate the generated image, at times it is useful to reexecute
66 * a particular pass and leave the displayed image on the screen for an
67 * extended period of time. This can be done either by setting the -s
68 * and -e options to the desired pass, along with a large value for -D.
69 * This can also be done via the -p option, again with a large value for
70 * the -D options.
71 *
72 * So far this test only contains code to create graphic buffers with
73 * a continuous solid color. Although this test is unable to validate the
74 * image produced, any image that contains other than rectangles of a solid
75 * color are incorrect. Note that the rectangles may use a transparent
76 * color and have a blending operation that causes the color in overlapping
77 * rectangles to be mixed. In such cases the overlapping portions may have
78 * a different color from the rest of the rectangle.
79 */
80
81#include <algorithm>
82#include <assert.h>
83#include <cerrno>
84#include <cmath>
85#include <cstdlib>
86#include <ctime>
87#include <libgen.h>
88#include <sched.h>
89#include <sstream>
90#include <stdint.h>
91#include <string.h>
92#include <unistd.h>
93#include <vector>
94
95#include <sys/syscall.h>
96#include <sys/types.h>
97#include <sys/wait.h>
98
99#include <EGL/egl.h>
100#include <EGL/eglext.h>
101#include <GLES2/gl2.h>
102#include <GLES2/gl2ext.h>
103
104#include <ui/FramebufferNativeWindow.h>
105#include <ui/GraphicBuffer.h>
106#include <ui/EGLUtils.h>
107
108#define LOG_TAG "hwcStressTest"
109#include <utils/Log.h>
110#include <testUtil.h>
111
112#include <hardware/hwcomposer.h>
113
114#include <glTestLib.h>
115#include <hwc/hwcTestLib.h>
116
117using namespace std;
118using namespace android;
119
120const float maxSizeRatio = 1.3; // Graphic buffers can be upto this munch
121 // larger than the default screen size
122const unsigned int passesPerGroup = 10; // A group of passes all use the same
123 // graphic buffers
124
125// Ratios at which rare and frequent conditions should be produced
126const float rareRatio = 0.1;
127const float freqRatio = 0.9;
128
129// Defaults for command-line options
130const bool defaultVerbose = false;
131const unsigned int defaultStartPass = 0;
132const unsigned int defaultEndPass = 99999;
133const unsigned int defaultPerPassNumSet = 10;
134const float defaultPerSetDelay = 0.0; // Default delay after each set
135 // operation. Default delay of
136 // zero used so as to perform the
137 // the set operations as quickly
138 // as possible.
139const float defaultEndDelay = 2.0; // Default delay between completion of
140 // final pass and restart of framework
141const float defaultDuration = FLT_MAX; // A fairly long time, so that
142 // range of passes will have
143 // precedence
144
145// Command-line option settings
146static bool verbose = defaultVerbose;
147static unsigned int startPass = defaultStartPass;
148static unsigned int endPass = defaultEndPass;
149static unsigned int numSet = defaultPerPassNumSet;
150static float perSetDelay = defaultPerSetDelay;
151static float endDelay = defaultEndDelay;
152static float duration = defaultDuration;
153
154// Command-line mutual exclusion detection flags.
155// Corresponding flag set true once an option is used.
156bool eFlag, sFlag, pFlag;
157
158#define MAXSTR 100
159#define MAXCMD 200
160#define BITSPERBYTE 8 // TODO: Obtain from <values.h>, once
161 // it has been added
162
163#define CMD_STOP_FRAMEWORK "stop 2>&1"
164#define CMD_START_FRAMEWORK "start 2>&1"
165
166#define NUMA(a) (sizeof(a) / sizeof(a [0]))
167#define MEMCLR(addr, size) do { \
168 memset((addr), 0, (size)); \
169 } while (0)
170
171// File scope constants
172const unsigned int blendingOps[] = {
173 HWC_BLENDING_NONE,
174 HWC_BLENDING_PREMULT,
175 HWC_BLENDING_COVERAGE,
176};
177const unsigned int layerFlags[] = {
178 HWC_SKIP_LAYER,
179};
180const vector<unsigned int> vecLayerFlags(layerFlags,
181 layerFlags + NUMA(layerFlags));
182
183const unsigned int transformFlags[] = {
184 HWC_TRANSFORM_FLIP_H,
185 HWC_TRANSFORM_FLIP_V,
186 HWC_TRANSFORM_ROT_90,
187 // ROT_180 & ROT_270 intentionally not listed, because they
188 // they are formed from combinations of the flags already listed.
189};
190const vector<unsigned int> vecTransformFlags(transformFlags,
191 transformFlags + NUMA(transformFlags));
192
193// File scope globals
194static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
195 GraphicBuffer::USAGE_SW_WRITE_RARELY;
196static hwc_composer_device_t *hwcDevice;
197static EGLDisplay dpy;
198static EGLSurface surface;
199static EGLint width, height;
200static vector <vector <sp<GraphicBuffer> > > frames;
201
202// File scope prototypes
203void init(void);
204void initFrames(unsigned int seed);
205template <class T> vector<T> vectorRandSelect(const vector<T>& vec, size_t num);
206template <class T> T vectorOr(const vector<T>& vec);
207
208/*
209 * Main
210 *
211 * Performs the following high-level sequence of operations:
212 *
213 * 1. Command-line parsing
214 *
215 * 2. Initialization
216 *
217 * 3. For each pass:
218 *
219 * a. If pass is first pass or in a different group from the
220 * previous pass, initialize the array of graphic buffers.
221 *
222 * b. Create a HWC list with room to specify a prandomly
223 * selected number of layers.
224 *
225 * c. Select a subset of the rows from the graphic buffer array,
226 * such that there is a unique row to be used for each
227 * of the layers in the HWC list.
228 *
229 * d. Prandomly fill in the HWC list with handles
230 * selected from any of the columns of the selected row.
231 *
232 * e. Pass the populated list to the HWC prepare call.
233 *
234 * f. Pass the populated list to the HWC set call.
235 *
236 * g. If additional set calls are to be made, then for each
237 * additional set call, select a new set of handles and
238 * perform the set call.
239 */
240int
241main(int argc, char *argv[])
242{
243 int rv, opt;
244 char *chptr;
245 unsigned int pass;
246 char cmd[MAXCMD];
247 struct timeval startTime, currentTime, delta;
248
249 testSetLogCatTag(LOG_TAG);
250
251 // Parse command line arguments
252 while ((opt = getopt(argc, argv, "vp:d:D:n:s:e:t:?h")) != -1) {
253 switch (opt) {
254 case 'd': // Delay after each set operation
255 perSetDelay = strtod(optarg, &chptr);
256 if ((*chptr != '\0') || (perSetDelay < 0.0)) {
257 testPrintE("Invalid command-line specified per pass delay of: "
258 "%s", optarg);
259 exit(1);
260 }
261 break;
262
263 case 'D': // End of test delay
264 // Delay between completion of final pass and restart
265 // of framework
266 endDelay = strtod(optarg, &chptr);
267 if ((*chptr != '\0') || (endDelay < 0.0)) {
268 testPrintE("Invalid command-line specified end of test delay "
269 "of: %s", optarg);
270 exit(2);
271 }
272 break;
273
274 case 't': // Duration
275 duration = strtod(optarg, &chptr);
276 if ((*chptr != '\0') || (duration < 0.0)) {
277 testPrintE("Invalid command-line specified duration of: %s",
278 optarg);
279 exit(3);
280 }
281 break;
282
283 case 'n': // Num set operations per pass
284 numSet = strtoul(optarg, &chptr, 10);
285 if (*chptr != '\0') {
286 testPrintE("Invalid command-line specified num set per pass "
287 "of: %s", optarg);
288 exit(4);
289 }
290 break;
291
292 case 's': // Starting Pass
293 sFlag = true;
294 if (pFlag) {
295 testPrintE("Invalid combination of command-line options.");
296 testPrintE(" The -p option is mutually exclusive from the");
297 testPrintE(" -s and -e options.");
298 exit(5);
299 }
300 startPass = strtoul(optarg, &chptr, 10);
301 if (*chptr != '\0') {
302 testPrintE("Invalid command-line specified starting pass "
303 "of: %s", optarg);
304 exit(6);
305 }
306 break;
307
308 case 'e': // Ending Pass
309 eFlag = true;
310 if (pFlag) {
311 testPrintE("Invalid combination of command-line options.");
312 testPrintE(" The -p option is mutually exclusive from the");
313 testPrintE(" -s and -e options.");
314 exit(7);
315 }
316 endPass = strtoul(optarg, &chptr, 10);
317 if (*chptr != '\0') {
318 testPrintE("Invalid command-line specified ending pass "
319 "of: %s", optarg);
320 exit(8);
321 }
322 break;
323
324 case 'p': // Run a single specified pass
325 pFlag = true;
326 if (sFlag || eFlag) {
327 testPrintE("Invalid combination of command-line options.");
328 testPrintE(" The -p option is mutually exclusive from the");
329 testPrintE(" -s and -e options.");
330 exit(9);
331 }
332 startPass = endPass = strtoul(optarg, &chptr, 10);
333 if (*chptr != '\0') {
334 testPrintE("Invalid command-line specified pass of: %s",
335 optarg);
336 exit(10);
337 }
338 break;
339
340 case 'v': // Verbose
341 verbose = true;
342 break;
343
344 case 'h': // Help
345 case '?':
346 default:
347 testPrintE(" %s [options]", basename(argv[0]));
348 testPrintE(" options:");
349 testPrintE(" -p Execute specified pass");
350 testPrintE(" -s Starting pass");
351 testPrintE(" -e Ending pass");
352 testPrintE(" -t Duration");
353 testPrintE(" -d Delay after each set operation");
354 testPrintE(" -D End of test delay");
355 testPrintE(" -n Num set operations per pass");
356 testPrintE(" -v Verbose");
357 exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
358 }
359 }
360 if (endPass < startPass) {
361 testPrintE("Unexpected ending pass before starting pass");
362 testPrintE(" startPass: %u endPass: %u", startPass, endPass);
363 exit(12);
364 }
365 if (argc != optind) {
366 testPrintE("Unexpected command-line postional argument");
367 testPrintE(" %s [-s start_pass] [-e end_pass] [-t duration]",
368 basename(argv[0]));
369 exit(13);
370 }
371 testPrintI("duration: %g", duration);
372 testPrintI("startPass: %u", startPass);
373 testPrintI("endPass: %u", endPass);
374 testPrintI("numSet: %u", numSet);
375
376 // Stop framework
377 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
378 if (rv >= (signed) sizeof(cmd) - 1) {
379 testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
380 exit(14);
381 }
382 testExecCmd(cmd);
383 testDelay(1.0); // TODO - need means to query whether asyncronous stop
384 // framework operation has completed. For now, just wait
385 // a long time.
386
387 init();
388
389 // For each pass
390 gettimeofday(&startTime, NULL);
391 for (pass = startPass; pass <= endPass; pass++) {
392 // Stop if duration of work has already been performed
393 gettimeofday(&currentTime, NULL);
394 delta = tvDelta(&startTime, &currentTime);
395 if (tv2double(&delta) > duration) { break; }
396
397 // Regenerate a new set of test frames when this pass is
398 // either the first pass or is in a different group then
399 // the previous pass. A group of passes are passes that
400 // all have the same quotient when their pass number is
401 // divided by passesPerGroup.
402 if ((pass == startPass)
403 || ((pass / passesPerGroup) != ((pass - 1) / passesPerGroup))) {
404 initFrames(pass / passesPerGroup);
405 }
406
407 testPrintI("==== Starting pass: %u", pass);
408
409 // Cause deterministic sequence of prandom numbers to be
410 // generated for this pass.
411 srand48(pass);
412
413 hwc_layer_list_t *list;
414 list = hwcTestCreateLayerList(testRandMod(frames.size()) + 1);
415 if (list == NULL) {
416 testPrintE("hwcTestCreateLayerList failed");
417 exit(20);
418 }
419
420 // Prandomly select a subset of frames to be used by this pass.
421 vector <vector <sp<GraphicBuffer> > > selectedFrames;
422 selectedFrames = vectorRandSelect(frames, list->numHwLayers);
423
424 // Any transform tends to create a layer that the hardware
425 // composer is unable to support and thus has to leave for
426 // SurfaceFlinger. Place heavy bias on specifying no transforms.
427 bool noTransform = testRandFract() > rareRatio;
428
429 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
430 unsigned int idx = testRandMod(selectedFrames[n1].size());
431 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
432 hwc_layer_t *layer = &list->hwLayers[n1];
433 layer->handle = gBuf->handle;
434
435 layer->blending = blendingOps[testRandMod(NUMA(blendingOps))];
436 layer->flags = (testRandFract() > rareRatio) ? 0
437 : vectorOr(vectorRandSelect(vecLayerFlags,
438 testRandMod(vecLayerFlags.size() + 1)));
439 layer->transform = (noTransform || testRandFract() > rareRatio) ? 0
440 : vectorOr(vectorRandSelect(vecTransformFlags,
441 testRandMod(vecTransformFlags.size() + 1)));
442 layer->sourceCrop.left = testRandMod(gBuf->getWidth());
443 layer->sourceCrop.top = testRandMod(gBuf->getHeight());
444 layer->sourceCrop.right = layer->sourceCrop.left
445 + testRandMod(gBuf->getWidth() - layer->sourceCrop.left) + 1;
446 layer->sourceCrop.bottom = layer->sourceCrop.top
447 + testRandMod(gBuf->getHeight() - layer->sourceCrop.top) + 1;
448 layer->displayFrame.left = testRandMod(width);
449 layer->displayFrame.top = testRandMod(height);
450 layer->displayFrame.right = layer->displayFrame.left
451 + testRandMod(width - layer->displayFrame.left) + 1;
452 layer->displayFrame.bottom = layer->displayFrame.top
453 + testRandMod(height - layer->displayFrame.top) + 1;
454
455 // Increase the frequency that a scale factor of 1.0 from
456 // the sourceCrop to displayFrame occurs. This is the
457 // most common scale factor used by applications and would
458 // be rarely produced by this stress test without this
459 // logic.
460 if (testRandFract() <= freqRatio) {
461 // Only change to scale factor to 1.0 if both the
462 // width and height will fit.
463 int sourceWidth = layer->sourceCrop.right
464 - layer->sourceCrop.left;
465 int sourceHeight = layer->sourceCrop.bottom
466 - layer->sourceCrop.top;
467 if (((layer->displayFrame.left + sourceWidth) <= width)
468 && ((layer->displayFrame.top + sourceHeight) <= height)) {
469 layer->displayFrame.right = layer->displayFrame.left
470 + sourceWidth;
471 layer->displayFrame.bottom = layer->displayFrame.top
472 + sourceHeight;
473 }
474 }
475
476 layer->visibleRegionScreen.numRects = 1;
477 layer->visibleRegionScreen.rects = &layer->displayFrame;
478 }
479
480 // Perform prepare operation
481 if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(list); }
482 hwcDevice->prepare(hwcDevice, list);
483 if (verbose) {
484 testPrintI("Post Prepare:");
485 hwcTestDisplayListPrepareModifiable(list);
486 }
487
488 // Turn off the geometry changed flag
489 list->flags &= ~HWC_GEOMETRY_CHANGED;
490
491 // Perform the set operation(s)
492 if (verbose) {testPrintI("Set:"); }
493 for (unsigned int n1 = 0; n1 < numSet; n1++) {
494 if (verbose) { hwcTestDisplayListHandles(list); }
495 hwcDevice->set(hwcDevice, dpy, surface, list);
496
497 // Prandomly select a new set of handles
498 for (unsigned int n1 = 0; n1 < list->numHwLayers; n1++) {
499 unsigned int idx = testRandMod(selectedFrames[n1].size());
500 sp<GraphicBuffer> gBuf = selectedFrames[n1][idx];
501 hwc_layer_t *layer = &list->hwLayers[n1];
502 layer->handle = (native_handle_t *) gBuf->handle;
503 }
504
505 testDelay(perSetDelay);
506 }
507
508 hwcTestFreeLayerList(list);
509 testPrintI("==== Completed pass: %u", pass);
510 }
511
512 testDelay(endDelay);
513
514 // Start framework
515 rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
516 if (rv >= (signed) sizeof(cmd) - 1) {
517 testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
518 exit(21);
519 }
520 testExecCmd(cmd);
521
522 testPrintI("Successfully completed %u passes", pass - startPass);
523
524 return 0;
525}
526
527void init(void)
528{
529 srand48(0); // Defensively set pseudo random number generator.
530 // Should not need to set this, because a stress test
531 // sets the seed on each pass. Defensively set it here
532 // so that future code that uses pseudo random numbers
533 // before the first pass will be deterministic.
534
535 hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
536
537 hwcTestOpenHwc(&hwcDevice);
538}
539
540/*
541 * Initialize Frames
542 *
543 * Creates an array of graphic buffers, within the global variable
544 * named frames. The graphic buffers are contained within a vector of
545 * vectors. All the graphic buffers in a particular row are of the same
546 * format and dimension. Each graphic buffer is uniformly filled with a
547 * prandomly selected color. It is likely that each buffer, even
548 * in the same row, will be filled with a unique color.
549 */
550void initFrames(unsigned int seed)
551{
552 int rv;
553 const size_t maxRows = 5;
554 const size_t minCols = 2; // Need at least double buffering
555 const size_t maxCols = 4; // One more than triple buffering
556
557 if (verbose) { testPrintI("initFrames seed: %u", seed); }
558 srand48(seed);
559 size_t rows = testRandMod(maxRows) + 1;
560
561 frames.clear();
562 frames.resize(rows);
563
564 for (unsigned int row = 0; row < rows; row++) {
565 // All frames within a row have to have the same format and
566 // dimensions. Width and height need to be >= 1.
567 unsigned int formatIdx = testRandMod(NUMA(hwcTestGraphicFormat));
568 const struct hwcTestGraphicFormat *formatPtr
569 = &hwcTestGraphicFormat[formatIdx];
570 int format = formatPtr->format;
571
572 // Pick width and height, which must be >= 1 and the size
573 // mod the wMod/hMod value must be equal to 0.
574 size_t w = (width * maxSizeRatio) * testRandFract();
575 size_t h = (height * maxSizeRatio) * testRandFract();
576 w = max(1u, w);
577 h = max(1u, h);
578 if ((w % formatPtr->wMod) != 0) {
579 w += formatPtr->wMod - (w % formatPtr->wMod);
580 }
581 if ((h % formatPtr->hMod) != 0) {
582 h += formatPtr->hMod - (h % formatPtr->hMod);
583 }
584 if (verbose) {
585 testPrintI(" frame %u width: %u height: %u format: %u %s",
586 row, w, h, format, hwcTestGraphicFormat2str(format));
587 }
588
589 size_t cols = testRandMod((maxCols + 1) - minCols) + minCols;
590 frames[row].resize(cols);
591 for (unsigned int col = 0; col < cols; col++) {
592 ColorFract color(testRandFract(), testRandFract(), testRandFract());
593 float alpha = testRandFract();
594
595 frames[row][col] = new GraphicBuffer(w, h, format, texUsage);
596 if ((rv = frames[row][col]->initCheck()) != NO_ERROR) {
597 testPrintE("GraphicBuffer initCheck failed, rv: %i", rv);
598 testPrintE(" frame %u width: %u height: %u format: %u %s",
599 row, w, h, format, hwcTestGraphicFormat2str(format));
600 exit(80);
601 }
602
603 hwcTestFillColor(frames[row][col].get(), color, alpha);
604 if (verbose) {
605 testPrintI(" buf: %p handle: %p color: %s alpha: %f",
606 frames[row][col].get(), frames[row][col]->handle,
607 string(color).c_str(), alpha);
608 }
609 }
610 }
611}
612
613/*
614 * Vector Random Select
615 *
616 * Prandomly selects and returns num elements from vec.
617 */
618template <class T>
619vector<T> vectorRandSelect(const vector<T>& vec, size_t num)
620{
621 vector<T> rv = vec;
622
623 while (rv.size() > num) {
624 rv.erase(rv.begin() + testRandMod(rv.size()));
625 }
626
627 return rv;
628}
629
630/*
631 * Vector Or
632 *
633 * Or's togethen the values of each element of vec and returns the result.
634 */
635template <class T>
636T vectorOr(const vector<T>& vec)
637{
638 T rv = 0;
639
640 for (size_t n1 = 0; n1 < vec.size(); n1++) {
641 rv |= vec[n1];
642 }
643
644 return rv;
645}