blob: 949987e6b24f162cc122c2c95e714f0db04458e0 [file] [log] [blame]
/*
* Copyright 2010, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "bcc"
#include <cutils/log.h>
#include "CacheReader.h"
#include "ContextManager.h"
#include "FileHandle.h"
#include "ScriptCached.h"
#include <bcc/bcc_cache.h>
#include <llvm/ADT/OwningPtr.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <utility>
#include <vector>
#include <new>
#include <string.h>
using namespace std;
namespace bcc {
ScriptCached *CacheReader::readCacheFile(FileHandle *file) {
// Check file handle
if (!file || file->getFD() < 0) {
return NULL;
}
// Allocate ScriptCached object
mResult.reset(new (nothrow) ScriptCached(mpOwner));
if (!mResult) {
LOGE("Unable to allocate ScriptCached object.\n");
return NULL;
}
bool result = checkFileSize()
&& readHeader()
&& checkHeader()
&& checkMachineIntType()
&& checkSectionOffsetAndSize()
&& readStringPool()
&& checkStringPool()
&& readDependencyTable()
&& checkDependency()
&& readExportVarList()
&& readExportFuncList()
&& readPragmaList()
&& readFuncTable()
&& readContext()
&& checkContext()
//&& readRelocationTable()
//&& relocate()
;
// TODO(logan): This is the hack for libRS. Should be turned on
// before caching is ready to go.
#if 0
// Check the cache file has __isThreadable or not. If it is set,
// then we have to call mpSymbolLookupFn for __clearThreadable.
if (mHeader->libRSThreadable && mpSymbolLookupFn) {
mpSymbolLookupFn(mpSymbolLookupContext, "__clearThreadable");
}
#endif
return result ? mResult.take() : NULL;
}
bool CacheReader::checkFileSize() {
struct stat stfile;
if (fstat(mFile->getFD(), &stfile) < 0) {
LOGE("Unable to stat cache file.\n");
return false;
}
mFileSize = stfile.st_size;
if (mFileSize < (off_t)sizeof(OBCC_Header) ||
mFileSize < (off_t)BCC_CONTEXT_SIZE) {
LOGE("Cache file is too small to be correct.\n");
return false;
}
return true;
}
bool CacheReader::readHeader() {
if (mFile->seek(0, SEEK_SET) != 0) {
LOGE("Unable to seek to 0. (reason: %s)\n", strerror(errno));
return false;
}
mHeader = (OBCC_Header *)malloc(sizeof(OBCC_Header));
if (!mHeader) {
LOGE("Unable to allocate for cache header.\n");
return false;
}
if (mFile->read(reinterpret_cast<char *>(mHeader), sizeof(OBCC_Header)) !=
(ssize_t)sizeof(OBCC_Header)) {
LOGE("Unable to read cache header.\n");
return false;
}
return true;
}
bool CacheReader::checkHeader() {
if (memcmp(mHeader->magic, OBCC_MAGIC, 4) != 0) {
LOGE("Bad magic word\n");
return false;
}
if (memcmp(mHeader->version, OBCC_VERSION, 4) != 0) {
LOGE("Bad oBCC version 0x%08x\n",
*reinterpret_cast<uint32_t *>(mHeader->version));
return false;
}
return true;
}
bool CacheReader::checkMachineIntType() {
uint32_t number = 0x00000001;
bool isLittleEndian = (*reinterpret_cast<char *>(&number) == 1);
if ((isLittleEndian && mHeader->endianness != 'e') ||
(!isLittleEndian && mHeader->endianness != 'E')) {
LOGE("Machine endianness mismatch.\n");
return false;
}
if ((unsigned int)mHeader->sizeof_off_t != sizeof(off_t) ||
(unsigned int)mHeader->sizeof_size_t != sizeof(size_t) ||
(unsigned int)mHeader->sizeof_ptr_t != sizeof(void *)) {
LOGE("Machine integer size mismatch.\n");
return false;
}
return true;
}
bool CacheReader::checkSectionOffsetAndSize() {
#define CHECK_SECTION_OFFSET(NAME) \
do { \
off_t offset = mHeader-> NAME##_offset; \
off_t size = (off_t)mHeader-> NAME##_size; \
\
if (mFileSize < offset || mFileSize < offset + size) { \
LOGE(#NAME " section overflow.\n"); \
return false; \
} \
\
if (offset % sizeof(int) != 0) { \
LOGE(#NAME " offset must aligned to %d.\n", sizeof(int)); \
return false; \
} \
\
if (size < static_cast<off_t>(sizeof(size_t))) { \
LOGE(#NAME " size is too small to be correct.\n"); \
return false; \
} \
} while (0)
CHECK_SECTION_OFFSET(str_pool);
CHECK_SECTION_OFFSET(depend_tab);
CHECK_SECTION_OFFSET(reloc_tab);
CHECK_SECTION_OFFSET(export_var_list);
CHECK_SECTION_OFFSET(export_func_list);
CHECK_SECTION_OFFSET(pragma_list);
#undef CHECK_SECTION_OFFSET
if (mFileSize < mHeader->context_offset ||
mFileSize < mHeader->context_offset + BCC_CONTEXT_SIZE) {
LOGE("context section overflow.\n");
return false;
}
long pagesize = sysconf(_SC_PAGESIZE);
if (mHeader->context_offset % pagesize != 0) {
LOGE("context offset must aligned to pagesize.\n");
return false;
}
// TODO(logan): Move this to some where else.
if ((uintptr_t)mHeader->context_cached_addr % pagesize != 0) {
LOGE("cached address is not aligned to pagesize.\n");
return false;
}
return true;
}
bool CacheReader::readStringPool() {
OBCC_StringPool *poolR = (OBCC_StringPool *)malloc(mHeader->str_pool_size);
if (!poolR) {
LOGE("Unable to allocate string pool.\n");
return false;
}
mResult->mpStringPoolRaw = poolR; // Managed by mResult from now on.
if (mFile->read(reinterpret_cast<char *>(poolR), mHeader->str_pool_size) !=
(ssize_t)mHeader->str_pool_size) {
LOGE("Unable to read string pool.\n");
return false;
}
vector<char const *> &pool = mResult->mStringPool;
for (size_t i = 0; i < poolR->count; ++i) {
char *str = reinterpret_cast<char *>(poolR) + poolR->list[i].offset;
pool.push_back(str);
}
return true;
}
bool CacheReader::checkStringPool() {
OBCC_StringPool *poolR = mResult->mpStringPoolRaw;
vector<char const *> &pool = mResult->mStringPool;
// Ensure that every c-style string is ended with '\0'
for (size_t i = 0; i < poolR->count; ++i) {
if (pool[i][poolR->list[i].length] != '\0') {
LOGE("The %lu-th string does not end with '\\0'.\n", (unsigned long)i);
return false;
}
}
return true;
}
bool CacheReader::readDependencyTable() {
// TODO(logan): Not finished.
return true;
}
bool CacheReader::checkDependency() {
// TODO(logan): Not finished.
return true;
}
bool CacheReader::readExportVarList() {
char *varList = (char *)malloc(mHeader->export_var_list_size);
if (!varList) {
LOGE("Unable to allocate exported variable list.\n");
return false;
}
mResult->mpExportVars = reinterpret_cast<OBCC_ExportVarList *>(varList);
if (mFile->seek(mHeader->export_var_list_offset, SEEK_SET) == -1) {
LOGE("Unable to seek to exported variable list section.\n");
return false;
}
if (mFile->read(varList, mHeader->export_var_list_size) !=
(ssize_t)mHeader->export_var_list_size) {
LOGE("Unable to read exported variable list.\n");
return false;
}
return true;
}
bool CacheReader::readExportFuncList() {
char *funcList = (char *)malloc(mHeader->export_func_list_size);
if (!funcList) {
LOGE("Unable to allocate exported function list.\n");
return false;
}
mResult->mpExportFuncs = reinterpret_cast<OBCC_ExportFuncList *>(funcList);
if (mFile->seek(mHeader->export_func_list_offset, SEEK_SET) == -1) {
LOGE("Unable to seek to exported function list section.\n");
return false;
}
if (mFile->read(funcList, mHeader->export_func_list_size) !=
(ssize_t)mHeader->export_func_list_size) {
LOGE("Unable to read exported function list.\n");
return false;
}
return true;
}
bool CacheReader::readPragmaList() {
OBCC_PragmaList *pragmaListRaw =
(OBCC_PragmaList *)malloc(mHeader->pragma_list_size);
if (!pragmaListRaw) {
LOGE("Unable to allocate pragma list.\n");
return false;
}
if (mFile->seek(mHeader->pragma_list_offset, SEEK_SET) == -1) {
LOGE("Unable to seek to pragma list section.\n");
return false;
}
if (mFile->read(reinterpret_cast<char *>(pragmaListRaw),
mHeader->pragma_list_size) !=
(ssize_t)mHeader->pragma_list_size) {
LOGE("Unable to read pragma list.\n");
return false;
}
vector<char const *> const &strPool = mResult->mStringPool;
ScriptCached::PragmaList &pragmas = mResult->mPragmas;
for (size_t i = 0; i < pragmaListRaw->count; ++i) {
OBCC_Pragma *pragma = &pragmaListRaw->list[i];
pragmas.push_back(make_pair(strPool[pragma->key_strp_index],
strPool[pragma->value_strp_index]));
}
return true;
}
bool CacheReader::readFuncTable() {
return false;
}
bool CacheReader::readContext() {
mResult->mContext = allocateContext(mHeader->context_cached_addr,
mFile->getFD(),
mHeader->context_offset);
if (!mResult->mContext) {
// Unable to allocate at cached address. Give up.
return false;
// TODO(logan): If relocation is fixed, we should try to allocate the
// code in different location, and relocate the context.
}
return true;
}
bool CacheReader::checkContext() {
uint32_t sum = mHeader->context_parity_checksum;
uint32_t *ptr = reinterpret_cast<uint32_t *>(mResult->mContext);
for (size_t i = 0; i < BCC_CONTEXT_SIZE / sizeof(uint32_t); ++i) {
sum ^= *ptr++;
}
if (sum != 0) {
LOGE("Checksum check failed\n");
return false;
}
LOGI("Passed checksum even parity verification.\n");
return true;
}
bool CacheReader::readRelocationTable() {
// TODO(logan): Not finished.
return true;
}
bool CacheReader::relocate() {
// TODO(logan): Not finished.
return true;
}
} // namespace bcc