Logan | 28325bf | 2010-11-26 23:27:41 +0800 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2010, The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "bcc_code_emitter.h" |
| 18 | |
| 19 | #include "bcc_buff_mem_object.h" |
| 20 | #include "bcc_code_mem_manager.h" |
| 21 | #include "bcc_emitted_func_code.h" |
| 22 | |
| 23 | #include <bcc/bcc.h> |
| 24 | #include <bcc/bcc_cache.h> |
| 25 | |
| 26 | #include "llvm/ADT/APFloat.h" |
| 27 | #include "llvm/ADT/APInt.h" |
| 28 | #include "llvm/ADT/DenseMap.h" |
| 29 | #include "llvm/ADT/SmallVector.h" |
| 30 | #include "llvm/ADT/StringRef.h" |
| 31 | |
| 32 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 33 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 34 | #include "llvm/CodeGen/MachineFunction.h" |
| 35 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 36 | #include "llvm/CodeGen/MachineRelocation.h" |
| 37 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 38 | #include "llvm/CodeGen/JITCodeEmitter.h" |
| 39 | |
| 40 | #include "llvm/ExecutionEngine/GenericValue.h" |
| 41 | |
| 42 | #include "llvm/MC/MCAsmInfo.h" |
| 43 | #include "llvm/MC/MCDisassembler.h" |
| 44 | #include "llvm/MC/MCInst.h" |
| 45 | #include "llvm/MC/MCInstPrinter.h" |
| 46 | |
| 47 | #include "llvm/Support/ErrorHandling.h" |
| 48 | #include "llvm/Support/raw_ostream.h" |
| 49 | |
| 50 | #include "llvm/System/Host.h" |
| 51 | |
| 52 | #include "llvm/Target/TargetData.h" |
| 53 | #include "llvm/Target/TargetMachine.h" |
| 54 | #include "llvm/Target/TargetRegistry.h" |
| 55 | #include "llvm/Target/TargetJITInfo.h" |
| 56 | |
| 57 | #include "llvm/Constant.h" |
| 58 | #include "llvm/Constants.h" |
| 59 | #include "llvm/DerivedTypes.h" |
| 60 | #include "llvm/Function.h" |
| 61 | #include "llvm/GlobalAlias.h" |
| 62 | #include "llvm/GlobalValue.h" |
| 63 | #include "llvm/GlobalVariable.h" |
| 64 | #include "llvm/Instruction.h" |
| 65 | #include "llvm/Type.h" |
| 66 | |
| 67 | #include <algorithm> |
| 68 | #include <vector> |
| 69 | #include <set> |
| 70 | #include <string> |
| 71 | |
| 72 | #include <stddef.h> |
| 73 | |
| 74 | |
| 75 | namespace bcc { |
| 76 | |
| 77 | // Will take the ownership of @MemMgr |
| 78 | CodeEmitter::CodeEmitter(CodeMemoryManager *pMemMgr) |
| 79 | : mpMemMgr(pMemMgr), |
| 80 | mpTarget(NULL), |
| 81 | mpTJI(NULL), |
| 82 | mpTD(NULL), |
| 83 | mpCurEmitFunction(NULL), |
| 84 | mpConstantPool(NULL), |
| 85 | mpJumpTable(NULL), |
| 86 | mpMMI(NULL), |
| 87 | #if defined(USE_DISASSEMBLER) |
| 88 | mpAsmInfo(NULL), |
| 89 | mpDisassmbler(NULL), |
| 90 | mpIP(NULL), |
| 91 | #endif |
| 92 | mpSymbolLookupFn(NULL), |
| 93 | mpSymbolLookupContext(NULL) { |
| 94 | } |
| 95 | |
| 96 | |
| 97 | CodeEmitter::~CodeEmitter() { |
| 98 | delete mpMemMgr; |
| 99 | #if defined(USE_DISASSEMBLER) |
| 100 | delete mpAsmInfo; |
| 101 | delete mpDisassmbler; |
| 102 | delete mpIP; |
| 103 | #endif |
| 104 | } |
| 105 | |
| 106 | |
| 107 | // Once you finish the compilation on a translation unit, you can call this |
| 108 | // function to recycle the memory (which is used at compilation time and not |
| 109 | // needed for runtime). |
| 110 | // |
| 111 | // NOTE: You should not call this funtion until the code-gen passes for a |
| 112 | // given module is done. Otherwise, the results is undefined and may |
| 113 | // cause the system crash! |
| 114 | void CodeEmitter::releaseUnnecessary() { |
| 115 | mMBBLocations.clear(); |
| 116 | mLabelLocations.clear(); |
| 117 | mGlobalAddressMap.clear(); |
| 118 | mFunctionToLazyStubMap.clear(); |
| 119 | GlobalToIndirectSymMap.clear(); |
| 120 | ExternalFnToStubMap.clear(); |
| 121 | PendingFunctions.clear(); |
| 122 | } |
| 123 | |
| 124 | |
| 125 | void CodeEmitter::reset() { |
| 126 | releaseUnnecessary(); |
| 127 | |
| 128 | mpSymbolLookupFn = NULL; |
| 129 | mpSymbolLookupContext = NULL; |
| 130 | |
| 131 | mpTJI = NULL; |
| 132 | mpTD = NULL; |
| 133 | |
| 134 | for (EmittedFunctionsMapTy::iterator I = mEmittedFunctions.begin(), |
| 135 | E = mEmittedFunctions.end(); |
| 136 | I != E; |
| 137 | I++) |
| 138 | if (I->second != NULL) |
| 139 | delete I->second; |
| 140 | mEmittedFunctions.clear(); |
| 141 | |
| 142 | mpMemMgr->reset(); |
| 143 | } |
| 144 | |
| 145 | |
| 146 | void *CodeEmitter::UpdateGlobalMapping(const llvm::GlobalValue *GV, void *Addr) { |
| 147 | if (Addr == NULL) { |
| 148 | // Removing mapping |
| 149 | GlobalAddressMapTy::iterator I = mGlobalAddressMap.find(GV); |
| 150 | void *OldVal; |
| 151 | |
| 152 | if (I == mGlobalAddressMap.end()) { |
| 153 | OldVal = NULL; |
| 154 | } else { |
| 155 | OldVal = I->second; |
| 156 | mGlobalAddressMap.erase(I); |
| 157 | } |
| 158 | |
| 159 | return OldVal; |
| 160 | } |
| 161 | |
| 162 | void *&CurVal = mGlobalAddressMap[GV]; |
| 163 | void *OldVal = CurVal; |
| 164 | |
| 165 | CurVal = Addr; |
| 166 | |
| 167 | return OldVal; |
| 168 | } |
| 169 | |
| 170 | |
| 171 | unsigned int CodeEmitter::GetConstantPoolSizeInBytes( |
| 172 | llvm::MachineConstantPool *MCP) { |
| 173 | const std::vector<llvm::MachineConstantPoolEntry> &Constants = |
| 174 | MCP->getConstants(); |
| 175 | |
| 176 | if (Constants.empty()) |
| 177 | return 0; |
| 178 | |
| 179 | unsigned int Size = 0; |
| 180 | for (int i = 0, e = Constants.size(); i != e; i++) { |
| 181 | llvm::MachineConstantPoolEntry CPE = Constants[i]; |
| 182 | unsigned int AlignMask = CPE.getAlignment() - 1; |
| 183 | Size = (Size + AlignMask) & ~AlignMask; |
| 184 | const llvm::Type *Ty = CPE.getType(); |
| 185 | Size += mpTD->getTypeAllocSize(Ty); |
| 186 | } |
| 187 | |
| 188 | return Size; |
| 189 | } |
| 190 | |
| 191 | // This function converts a Constant* into a GenericValue. The interesting |
| 192 | // part is if C is a ConstantExpr. |
| 193 | void CodeEmitter::GetConstantValue(const llvm::Constant *C, |
| 194 | llvm::GenericValue &Result) { |
| 195 | if (C->getValueID() == llvm::Value::UndefValueVal) |
| 196 | return; |
| 197 | else if (C->getValueID() == llvm::Value::ConstantExprVal) { |
| 198 | const llvm::ConstantExpr *CE = (llvm::ConstantExpr*) C; |
| 199 | const llvm::Constant *Op0 = CE->getOperand(0); |
| 200 | |
| 201 | switch (CE->getOpcode()) { |
| 202 | case llvm::Instruction::GetElementPtr: { |
| 203 | // Compute the index |
| 204 | llvm::SmallVector<llvm::Value*, 8> Indices(CE->op_begin() + 1, |
| 205 | CE->op_end()); |
| 206 | uint64_t Offset = mpTD->getIndexedOffset(Op0->getType(), |
| 207 | &Indices[0], |
| 208 | Indices.size()); |
| 209 | |
| 210 | GetConstantValue(Op0, Result); |
| 211 | Result.PointerVal = |
| 212 | static_cast<uint8_t*>(Result.PointerVal) + Offset; |
| 213 | |
| 214 | return; |
| 215 | } |
| 216 | case llvm::Instruction::Trunc: { |
| 217 | uint32_t BitWidth = |
| 218 | llvm::cast<llvm::IntegerType>(CE->getType())->getBitWidth(); |
| 219 | |
| 220 | GetConstantValue(Op0, Result); |
| 221 | Result.IntVal = Result.IntVal.trunc(BitWidth); |
| 222 | |
| 223 | return; |
| 224 | } |
| 225 | case llvm::Instruction::ZExt: { |
| 226 | uint32_t BitWidth = |
| 227 | llvm::cast<llvm::IntegerType>(CE->getType())->getBitWidth(); |
| 228 | |
| 229 | GetConstantValue(Op0, Result); |
| 230 | Result.IntVal = Result.IntVal.zext(BitWidth); |
| 231 | |
| 232 | return; |
| 233 | } |
| 234 | case llvm::Instruction::SExt: { |
| 235 | uint32_t BitWidth = |
| 236 | llvm::cast<llvm::IntegerType>(CE->getType())->getBitWidth(); |
| 237 | |
| 238 | GetConstantValue(Op0, Result); |
| 239 | Result.IntVal = Result.IntVal.sext(BitWidth); |
| 240 | |
| 241 | return; |
| 242 | } |
| 243 | case llvm::Instruction::FPTrunc: { |
| 244 | // TODO(all): fixme: long double |
| 245 | GetConstantValue(Op0, Result); |
| 246 | Result.FloatVal = static_cast<float>(Result.DoubleVal); |
| 247 | return; |
| 248 | } |
| 249 | case llvm::Instruction::FPExt: { |
| 250 | // TODO(all): fixme: long double |
| 251 | GetConstantValue(Op0, Result); |
| 252 | Result.DoubleVal = static_cast<double>(Result.FloatVal); |
| 253 | return; |
| 254 | } |
| 255 | case llvm::Instruction::UIToFP: { |
| 256 | GetConstantValue(Op0, Result); |
| 257 | if (CE->getType()->isFloatTy()) |
| 258 | Result.FloatVal = |
| 259 | static_cast<float>(Result.IntVal.roundToDouble()); |
| 260 | else if (CE->getType()->isDoubleTy()) |
| 261 | Result.DoubleVal = Result.IntVal.roundToDouble(); |
| 262 | else if (CE->getType()->isX86_FP80Ty()) { |
| 263 | const uint64_t zero[] = { 0, 0 }; |
| 264 | llvm::APFloat apf(llvm::APInt(80, 2, zero)); |
| 265 | apf.convertFromAPInt(Result.IntVal, |
| 266 | false, |
| 267 | llvm::APFloat::rmNearestTiesToEven); |
| 268 | Result.IntVal = apf.bitcastToAPInt(); |
| 269 | } |
| 270 | return; |
| 271 | } |
| 272 | case llvm::Instruction::SIToFP: { |
| 273 | GetConstantValue(Op0, Result); |
| 274 | if (CE->getType()->isFloatTy()) |
| 275 | Result.FloatVal = |
| 276 | static_cast<float>(Result.IntVal.signedRoundToDouble()); |
| 277 | else if (CE->getType()->isDoubleTy()) |
| 278 | Result.DoubleVal = Result.IntVal.signedRoundToDouble(); |
| 279 | else if (CE->getType()->isX86_FP80Ty()) { |
| 280 | const uint64_t zero[] = { 0, 0 }; |
| 281 | llvm::APFloat apf = llvm::APFloat(llvm::APInt(80, 2, zero)); |
| 282 | apf.convertFromAPInt(Result.IntVal, |
| 283 | true, |
| 284 | llvm::APFloat::rmNearestTiesToEven); |
| 285 | Result.IntVal = apf.bitcastToAPInt(); |
| 286 | } |
| 287 | return; |
| 288 | } |
| 289 | // double->APInt conversion handles sign |
| 290 | case llvm::Instruction::FPToUI: |
| 291 | case llvm::Instruction::FPToSI: { |
| 292 | uint32_t BitWidth = |
| 293 | llvm::cast<llvm::IntegerType>(CE->getType())->getBitWidth(); |
| 294 | |
| 295 | GetConstantValue(Op0, Result); |
| 296 | if (Op0->getType()->isFloatTy()) |
| 297 | Result.IntVal = |
| 298 | llvm::APIntOps::RoundFloatToAPInt(Result.FloatVal, BitWidth); |
| 299 | else if (Op0->getType()->isDoubleTy()) |
| 300 | Result.IntVal = |
| 301 | llvm::APIntOps::RoundDoubleToAPInt(Result.DoubleVal, |
| 302 | BitWidth); |
| 303 | else if (Op0->getType()->isX86_FP80Ty()) { |
| 304 | llvm::APFloat apf = llvm::APFloat(Result.IntVal); |
| 305 | uint64_t V; |
| 306 | bool Ignored; |
| 307 | apf.convertToInteger(&V, |
| 308 | BitWidth, |
| 309 | CE->getOpcode() == llvm::Instruction::FPToSI, |
| 310 | llvm::APFloat::rmTowardZero, |
| 311 | &Ignored); |
| 312 | Result.IntVal = V; // endian? |
| 313 | } |
| 314 | return; |
| 315 | } |
| 316 | case llvm::Instruction::PtrToInt: { |
| 317 | uint32_t PtrWidth = mpTD->getPointerSizeInBits(); |
| 318 | |
| 319 | GetConstantValue(Op0, Result); |
| 320 | Result.IntVal = llvm::APInt(PtrWidth, uintptr_t |
| 321 | (Result.PointerVal)); |
| 322 | |
| 323 | return; |
| 324 | } |
| 325 | case llvm::Instruction::IntToPtr: { |
| 326 | uint32_t PtrWidth = mpTD->getPointerSizeInBits(); |
| 327 | |
| 328 | GetConstantValue(Op0, Result); |
| 329 | if (PtrWidth != Result.IntVal.getBitWidth()) |
| 330 | Result.IntVal = Result.IntVal.zextOrTrunc(PtrWidth); |
| 331 | assert(Result.IntVal.getBitWidth() <= 64 && "Bad pointer width"); |
| 332 | |
| 333 | Result.PointerVal = |
| 334 | llvm::PointerTy( |
| 335 | static_cast<uintptr_t>(Result.IntVal.getZExtValue())); |
| 336 | |
| 337 | return; |
| 338 | } |
| 339 | case llvm::Instruction::BitCast: { |
| 340 | GetConstantValue(Op0, Result); |
| 341 | const llvm::Type *DestTy = CE->getType(); |
| 342 | |
| 343 | switch (Op0->getType()->getTypeID()) { |
| 344 | case llvm::Type::IntegerTyID: { |
| 345 | assert(DestTy->isFloatingPointTy() && "invalid bitcast"); |
| 346 | if (DestTy->isFloatTy()) |
| 347 | Result.FloatVal = Result.IntVal.bitsToFloat(); |
| 348 | else if (DestTy->isDoubleTy()) |
| 349 | Result.DoubleVal = Result.IntVal.bitsToDouble(); |
| 350 | break; |
| 351 | } |
| 352 | case llvm::Type::FloatTyID: { |
| 353 | assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); |
| 354 | Result.IntVal.floatToBits(Result.FloatVal); |
| 355 | break; |
| 356 | } |
| 357 | case llvm::Type::DoubleTyID: { |
| 358 | assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); |
| 359 | Result.IntVal.doubleToBits(Result.DoubleVal); |
| 360 | break; |
| 361 | } |
| 362 | case llvm::Type::PointerTyID: { |
| 363 | assert(DestTy->isPointerTy() && "Invalid bitcast"); |
| 364 | break; // getConstantValue(Op0) above already converted it |
| 365 | } |
| 366 | default: { |
| 367 | llvm_unreachable("Invalid bitcast operand"); |
| 368 | } |
| 369 | } |
| 370 | return; |
| 371 | } |
| 372 | case llvm::Instruction::Add: |
| 373 | case llvm::Instruction::FAdd: |
| 374 | case llvm::Instruction::Sub: |
| 375 | case llvm::Instruction::FSub: |
| 376 | case llvm::Instruction::Mul: |
| 377 | case llvm::Instruction::FMul: |
| 378 | case llvm::Instruction::UDiv: |
| 379 | case llvm::Instruction::SDiv: |
| 380 | case llvm::Instruction::URem: |
| 381 | case llvm::Instruction::SRem: |
| 382 | case llvm::Instruction::And: |
| 383 | case llvm::Instruction::Or: |
| 384 | case llvm::Instruction::Xor: { |
| 385 | llvm::GenericValue LHS, RHS; |
| 386 | GetConstantValue(Op0, LHS); |
| 387 | GetConstantValue(CE->getOperand(1), RHS); |
| 388 | |
| 389 | switch (Op0->getType()->getTypeID()) { |
| 390 | case llvm::Type::IntegerTyID: { |
| 391 | switch (CE->getOpcode()) { |
| 392 | case llvm::Instruction::Add: { |
| 393 | Result.IntVal = LHS.IntVal + RHS.IntVal; |
| 394 | break; |
| 395 | } |
| 396 | case llvm::Instruction::Sub: { |
| 397 | Result.IntVal = LHS.IntVal - RHS.IntVal; |
| 398 | break; |
| 399 | } |
| 400 | case llvm::Instruction::Mul: { |
| 401 | Result.IntVal = LHS.IntVal * RHS.IntVal; |
| 402 | break; |
| 403 | } |
| 404 | case llvm::Instruction::UDiv: { |
| 405 | Result.IntVal = LHS.IntVal.udiv(RHS.IntVal); |
| 406 | break; |
| 407 | } |
| 408 | case llvm::Instruction::SDiv: { |
| 409 | Result.IntVal = LHS.IntVal.sdiv(RHS.IntVal); |
| 410 | break; |
| 411 | } |
| 412 | case llvm::Instruction::URem: { |
| 413 | Result.IntVal = LHS.IntVal.urem(RHS.IntVal); |
| 414 | break; |
| 415 | } |
| 416 | case llvm::Instruction::SRem: { |
| 417 | Result.IntVal = LHS.IntVal.srem(RHS.IntVal); |
| 418 | break; |
| 419 | } |
| 420 | case llvm::Instruction::And: { |
| 421 | Result.IntVal = LHS.IntVal & RHS.IntVal; |
| 422 | break; |
| 423 | } |
| 424 | case llvm::Instruction::Or: { |
| 425 | Result.IntVal = LHS.IntVal | RHS.IntVal; |
| 426 | break; |
| 427 | } |
| 428 | case llvm::Instruction::Xor: { |
| 429 | Result.IntVal = LHS.IntVal ^ RHS.IntVal; |
| 430 | break; |
| 431 | } |
| 432 | default: { |
| 433 | llvm_unreachable("Invalid integer opcode"); |
| 434 | } |
| 435 | } |
| 436 | break; |
| 437 | } |
| 438 | case llvm::Type::FloatTyID: { |
| 439 | switch (CE->getOpcode()) { |
| 440 | case llvm::Instruction::FAdd: { |
| 441 | Result.FloatVal = LHS.FloatVal + RHS.FloatVal; |
| 442 | break; |
| 443 | } |
| 444 | case llvm::Instruction::FSub: { |
| 445 | Result.FloatVal = LHS.FloatVal - RHS.FloatVal; |
| 446 | break; |
| 447 | } |
| 448 | case llvm::Instruction::FMul: { |
| 449 | Result.FloatVal = LHS.FloatVal * RHS.FloatVal; |
| 450 | break; |
| 451 | } |
| 452 | case llvm::Instruction::FDiv: { |
| 453 | Result.FloatVal = LHS.FloatVal / RHS.FloatVal; |
| 454 | break; |
| 455 | } |
| 456 | case llvm::Instruction::FRem: { |
| 457 | Result.FloatVal = ::fmodf(LHS.FloatVal, RHS.FloatVal); |
| 458 | break; |
| 459 | } |
| 460 | default: { |
| 461 | llvm_unreachable("Invalid float opcode"); |
| 462 | } |
| 463 | } |
| 464 | break; |
| 465 | } |
| 466 | case llvm::Type::DoubleTyID: { |
| 467 | switch (CE->getOpcode()) { |
| 468 | case llvm::Instruction::FAdd: { |
| 469 | Result.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; |
| 470 | break; |
| 471 | } |
| 472 | case llvm::Instruction::FSub: { |
| 473 | Result.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; |
| 474 | break; |
| 475 | } |
| 476 | case llvm::Instruction::FMul: { |
| 477 | Result.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; |
| 478 | break; |
| 479 | } |
| 480 | case llvm::Instruction::FDiv: { |
| 481 | Result.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; |
| 482 | break; |
| 483 | } |
| 484 | case llvm::Instruction::FRem: { |
| 485 | Result.DoubleVal = ::fmod(LHS.DoubleVal, RHS.DoubleVal); |
| 486 | break; |
| 487 | } |
| 488 | default: { |
| 489 | llvm_unreachable("Invalid double opcode"); |
| 490 | } |
| 491 | } |
| 492 | break; |
| 493 | } |
| 494 | case llvm::Type::X86_FP80TyID: |
| 495 | case llvm::Type::PPC_FP128TyID: |
| 496 | case llvm::Type::FP128TyID: { |
| 497 | llvm::APFloat apfLHS = llvm::APFloat(LHS.IntVal); |
| 498 | switch (CE->getOpcode()) { |
| 499 | case llvm::Instruction::FAdd: { |
| 500 | apfLHS.add(llvm::APFloat(RHS.IntVal), |
| 501 | llvm::APFloat::rmNearestTiesToEven); |
| 502 | break; |
| 503 | } |
| 504 | case llvm::Instruction::FSub: { |
| 505 | apfLHS.subtract(llvm::APFloat(RHS.IntVal), |
| 506 | llvm::APFloat::rmNearestTiesToEven); |
| 507 | break; |
| 508 | } |
| 509 | case llvm::Instruction::FMul: { |
| 510 | apfLHS.multiply(llvm::APFloat(RHS.IntVal), |
| 511 | llvm::APFloat::rmNearestTiesToEven); |
| 512 | break; |
| 513 | } |
| 514 | case llvm::Instruction::FDiv: { |
| 515 | apfLHS.divide(llvm::APFloat(RHS.IntVal), |
| 516 | llvm::APFloat::rmNearestTiesToEven); |
| 517 | break; |
| 518 | } |
| 519 | case llvm::Instruction::FRem: { |
| 520 | apfLHS.mod(llvm::APFloat(RHS.IntVal), |
| 521 | llvm::APFloat::rmNearestTiesToEven); |
| 522 | break; |
| 523 | } |
| 524 | default: { |
| 525 | llvm_unreachable("Invalid long double opcode"); |
| 526 | } |
| 527 | } |
| 528 | Result.IntVal = apfLHS.bitcastToAPInt(); |
| 529 | break; |
| 530 | } |
| 531 | default: { |
| 532 | llvm_unreachable("Bad add type!"); |
| 533 | } |
| 534 | } // End switch (Op0->getType()->getTypeID()) |
| 535 | return; |
| 536 | } |
| 537 | default: { |
| 538 | break; |
| 539 | } |
| 540 | } // End switch (CE->getOpcode()) |
| 541 | |
| 542 | std::string msg; |
| 543 | llvm::raw_string_ostream Msg(msg); |
| 544 | Msg << "ConstantExpr not handled: " << *CE; |
| 545 | llvm::report_fatal_error(Msg.str()); |
| 546 | } // C->getValueID() == llvm::Value::ConstantExprVal |
| 547 | |
| 548 | switch (C->getType()->getTypeID()) { |
| 549 | case llvm::Type::FloatTyID: { |
| 550 | Result.FloatVal = |
| 551 | llvm::cast<llvm::ConstantFP>(C)->getValueAPF().convertToFloat(); |
| 552 | break; |
| 553 | } |
| 554 | case llvm::Type::DoubleTyID: { |
| 555 | Result.DoubleVal = |
| 556 | llvm::cast<llvm::ConstantFP>(C)->getValueAPF().convertToDouble(); |
| 557 | break; |
| 558 | } |
| 559 | case llvm::Type::X86_FP80TyID: |
| 560 | case llvm::Type::FP128TyID: |
| 561 | case llvm::Type::PPC_FP128TyID: { |
| 562 | Result.IntVal = |
| 563 | llvm::cast<llvm::ConstantFP>(C)->getValueAPF().bitcastToAPInt(); |
| 564 | break; |
| 565 | } |
| 566 | case llvm::Type::IntegerTyID: { |
| 567 | Result.IntVal = |
| 568 | llvm::cast<llvm::ConstantInt>(C)->getValue(); |
| 569 | break; |
| 570 | } |
| 571 | case llvm::Type::PointerTyID: { |
| 572 | switch (C->getValueID()) { |
| 573 | case llvm::Value::ConstantPointerNullVal: { |
| 574 | Result.PointerVal = NULL; |
| 575 | break; |
| 576 | } |
| 577 | case llvm::Value::FunctionVal: { |
| 578 | const llvm::Function *F = static_cast<const llvm::Function*>(C); |
| 579 | Result.PointerVal = |
| 580 | GetPointerToFunctionOrStub(const_cast<llvm::Function*>(F)); |
| 581 | break; |
| 582 | } |
| 583 | case llvm::Value::GlobalVariableVal: { |
| 584 | const llvm::GlobalVariable *GV = |
| 585 | static_cast<const llvm::GlobalVariable*>(C); |
| 586 | Result.PointerVal = |
| 587 | GetOrEmitGlobalVariable(const_cast<llvm::GlobalVariable*>(GV)); |
| 588 | break; |
| 589 | } |
| 590 | case llvm::Value::BlockAddressVal: { |
| 591 | assert(false && "JIT does not support address-of-label yet!"); |
| 592 | } |
| 593 | default: { |
| 594 | llvm_unreachable("Unknown constant pointer type!"); |
| 595 | } |
| 596 | } |
| 597 | break; |
| 598 | } |
| 599 | default: { |
| 600 | std::string msg; |
| 601 | llvm::raw_string_ostream Msg(msg); |
| 602 | Msg << "ERROR: Constant unimplemented for type: " << *C->getType(); |
| 603 | llvm::report_fatal_error(Msg.str()); |
| 604 | break; |
| 605 | } |
| 606 | } |
| 607 | return; |
| 608 | } |
| 609 | |
| 610 | |
| 611 | // Stores the data in @Val of type @Ty at address @Addr. |
| 612 | void CodeEmitter::StoreValueToMemory(const llvm::GenericValue &Val, |
| 613 | void *Addr, |
| 614 | const llvm::Type *Ty) { |
| 615 | const unsigned int StoreBytes = mpTD->getTypeStoreSize(Ty); |
| 616 | |
| 617 | switch (Ty->getTypeID()) { |
| 618 | case llvm::Type::IntegerTyID: { |
| 619 | const llvm::APInt &IntVal = Val.IntVal; |
| 620 | assert(((IntVal.getBitWidth() + 7) / 8 >= StoreBytes) && |
| 621 | "Integer too small!"); |
| 622 | |
| 623 | const uint8_t *Src = |
| 624 | reinterpret_cast<const uint8_t*>(IntVal.getRawData()); |
| 625 | |
| 626 | if (llvm::sys::isLittleEndianHost()) { |
| 627 | // Little-endian host - the source is ordered from LSB to MSB. |
| 628 | // Order the destination from LSB to MSB: Do a straight copy. |
| 629 | memcpy(Addr, Src, StoreBytes); |
| 630 | } else { |
| 631 | // Big-endian host - the source is an array of 64 bit words |
| 632 | // ordered from LSW to MSW. |
| 633 | // |
| 634 | // Each word is ordered from MSB to LSB. |
| 635 | // |
| 636 | // Order the destination from MSB to LSB: |
| 637 | // Reverse the word order, but not the bytes in a word. |
| 638 | unsigned int i = StoreBytes; |
| 639 | while (i > sizeof(uint64_t)) { |
| 640 | i -= sizeof(uint64_t); |
| 641 | ::memcpy(reinterpret_cast<uint8_t*>(Addr) + i, |
| 642 | Src, |
| 643 | sizeof(uint64_t)); |
| 644 | Src += sizeof(uint64_t); |
| 645 | } |
| 646 | ::memcpy(Addr, Src + sizeof(uint64_t) - i, i); |
| 647 | } |
| 648 | break; |
| 649 | } |
| 650 | case llvm::Type::FloatTyID: { |
| 651 | *reinterpret_cast<float*>(Addr) = Val.FloatVal; |
| 652 | break; |
| 653 | } |
| 654 | case llvm::Type::DoubleTyID: { |
| 655 | *reinterpret_cast<double*>(Addr) = Val.DoubleVal; |
| 656 | break; |
| 657 | } |
| 658 | case llvm::Type::X86_FP80TyID: { |
| 659 | memcpy(Addr, Val.IntVal.getRawData(), 10); |
| 660 | break; |
| 661 | } |
| 662 | case llvm::Type::PointerTyID: { |
| 663 | // Ensure 64 bit target pointers are fully initialized on 32 bit |
| 664 | // hosts. |
| 665 | if (StoreBytes != sizeof(llvm::PointerTy)) |
| 666 | memset(Addr, 0, StoreBytes); |
| 667 | *((llvm::PointerTy*) Addr) = Val.PointerVal; |
| 668 | break; |
| 669 | } |
| 670 | default: { |
| 671 | break; |
| 672 | } |
| 673 | } |
| 674 | |
| 675 | if (llvm::sys::isLittleEndianHost() != mpTD->isLittleEndian()) |
| 676 | std::reverse(reinterpret_cast<uint8_t*>(Addr), |
| 677 | reinterpret_cast<uint8_t*>(Addr) + StoreBytes); |
| 678 | |
| 679 | return; |
| 680 | } |
| 681 | |
| 682 | |
| 683 | // Recursive function to apply a @Constant value into the specified memory |
| 684 | // location @Addr. |
| 685 | void CodeEmitter::InitializeConstantToMemory(const llvm::Constant *C, void *Addr) { |
| 686 | switch (C->getValueID()) { |
| 687 | case llvm::Value::UndefValueVal: { |
| 688 | // Nothing to do |
| 689 | break; |
| 690 | } |
| 691 | case llvm::Value::ConstantVectorVal: { |
| 692 | // dynamic cast may hurt performance |
| 693 | const llvm::ConstantVector *CP = (llvm::ConstantVector*) C; |
| 694 | |
| 695 | unsigned int ElementSize = mpTD->getTypeAllocSize |
| 696 | (CP->getType()->getElementType()); |
| 697 | |
| 698 | for (int i = 0, e = CP->getNumOperands(); i != e;i++) |
| 699 | InitializeConstantToMemory( |
| 700 | CP->getOperand(i), |
| 701 | reinterpret_cast<uint8_t*>(Addr) + i * ElementSize); |
| 702 | break; |
| 703 | } |
| 704 | case llvm::Value::ConstantAggregateZeroVal: { |
| 705 | memset(Addr, 0, (size_t) mpTD->getTypeAllocSize(C->getType())); |
| 706 | break; |
| 707 | } |
| 708 | case llvm::Value::ConstantArrayVal: { |
| 709 | const llvm::ConstantArray *CPA = (llvm::ConstantArray*) C; |
| 710 | unsigned int ElementSize = mpTD->getTypeAllocSize |
| 711 | (CPA->getType()->getElementType()); |
| 712 | |
| 713 | for (int i = 0, e = CPA->getNumOperands(); i != e; i++) |
| 714 | InitializeConstantToMemory( |
| 715 | CPA->getOperand(i), |
| 716 | reinterpret_cast<uint8_t*>(Addr) + i * ElementSize); |
| 717 | break; |
| 718 | } |
| 719 | case llvm::Value::ConstantStructVal: { |
| 720 | const llvm::ConstantStruct *CPS = |
| 721 | static_cast<const llvm::ConstantStruct*>(C); |
| 722 | const llvm::StructLayout *SL = mpTD->getStructLayout |
| 723 | (llvm::cast<llvm::StructType>(CPS->getType())); |
| 724 | |
| 725 | for (int i = 0, e = CPS->getNumOperands(); i != e; i++) |
| 726 | InitializeConstantToMemory( |
| 727 | CPS->getOperand(i), |
| 728 | reinterpret_cast<uint8_t*>(Addr) + SL->getElementOffset(i)); |
| 729 | break; |
| 730 | } |
| 731 | default: { |
| 732 | if (C->getType()->isFirstClassType()) { |
| 733 | llvm::GenericValue Val; |
| 734 | GetConstantValue(C, Val); |
| 735 | StoreValueToMemory(Val, Addr, C->getType()); |
| 736 | } else { |
| 737 | llvm_unreachable("Unknown constant type to initialize memory " |
| 738 | "with!"); |
| 739 | } |
| 740 | break; |
| 741 | } |
| 742 | } |
| 743 | return; |
| 744 | } |
| 745 | |
| 746 | |
| 747 | void CodeEmitter::emitConstantPool(llvm::MachineConstantPool *MCP) { |
| 748 | if (mpTJI->hasCustomConstantPool()) |
| 749 | return; |
| 750 | |
| 751 | // Constant pool address resolution is handled by the target itself in ARM |
| 752 | // (TargetJITInfo::hasCustomConstantPool() returns true). |
| 753 | #if !defined(PROVIDE_ARM_CODEGEN) |
| 754 | const std::vector<llvm::MachineConstantPoolEntry> &Constants = |
| 755 | MCP->getConstants(); |
| 756 | |
| 757 | if (Constants.empty()) |
| 758 | return; |
| 759 | |
| 760 | unsigned Size = GetConstantPoolSizeInBytes(MCP); |
| 761 | unsigned Align = MCP->getConstantPoolAlignment(); |
| 762 | |
| 763 | mpConstantPoolBase = allocateSpace(Size, Align); |
| 764 | mpConstantPool = MCP; |
| 765 | |
| 766 | if (mpConstantPoolBase == NULL) |
| 767 | return; // out of memory |
| 768 | |
| 769 | unsigned Offset = 0; |
| 770 | for (int i = 0, e = Constants.size(); i != e; i++) { |
| 771 | llvm::MachineConstantPoolEntry CPE = Constants[i]; |
| 772 | unsigned AlignMask = CPE.getAlignment() - 1; |
| 773 | Offset = (Offset + AlignMask) & ~AlignMask; |
| 774 | |
| 775 | uintptr_t CAddr = (uintptr_t) mpConstantPoolBase + Offset; |
| 776 | mConstPoolAddresses.push_back(CAddr); |
| 777 | |
| 778 | if (CPE.isMachineConstantPoolEntry()) |
| 779 | llvm::report_fatal_error |
| 780 | ("Initialize memory with machine specific constant pool" |
| 781 | " entry has not been implemented!"); |
| 782 | |
| 783 | InitializeConstantToMemory(CPE.Val.ConstVal, (void*) CAddr); |
| 784 | |
| 785 | const llvm::Type *Ty = CPE.Val.ConstVal->getType(); |
| 786 | Offset += mpTD->getTypeAllocSize(Ty); |
| 787 | } |
| 788 | #endif |
| 789 | return; |
| 790 | } |
| 791 | |
| 792 | |
| 793 | void CodeEmitter::initJumpTableInfo(llvm::MachineJumpTableInfo *MJTI) { |
| 794 | if (mpTJI->hasCustomJumpTables()) |
| 795 | return; |
| 796 | |
| 797 | const std::vector<llvm::MachineJumpTableEntry> &JT = |
| 798 | MJTI->getJumpTables(); |
| 799 | if (JT.empty()) |
| 800 | return; |
| 801 | |
| 802 | unsigned NumEntries = 0; |
| 803 | for (int i = 0, e = JT.size(); i != e; i++) |
| 804 | NumEntries += JT[i].MBBs.size(); |
| 805 | |
| 806 | unsigned EntrySize = MJTI->getEntrySize(*mpTD); |
| 807 | |
| 808 | mpJumpTable = MJTI; |
| 809 | mpJumpTableBase = allocateSpace(NumEntries * EntrySize, |
| 810 | MJTI->getEntryAlignment(*mpTD)); |
| 811 | |
| 812 | return; |
| 813 | } |
| 814 | |
| 815 | |
| 816 | void CodeEmitter::emitJumpTableInfo(llvm::MachineJumpTableInfo *MJTI) { |
| 817 | if (mpTJI->hasCustomJumpTables()) |
| 818 | return; |
| 819 | |
| 820 | const std::vector<llvm::MachineJumpTableEntry> &JT = |
| 821 | MJTI->getJumpTables(); |
| 822 | if (JT.empty() || mpJumpTableBase == 0) |
| 823 | return; |
| 824 | |
| 825 | assert(llvm::TargetMachine::getRelocationModel() == llvm::Reloc::Static && |
| 826 | (MJTI->getEntrySize(*mpTD) == sizeof(mpTD /* a pointer type */)) && |
| 827 | "Cross JIT'ing?"); |
| 828 | |
| 829 | // For each jump table, map each target in the jump table to the |
| 830 | // address of an emitted MachineBasicBlock. |
| 831 | intptr_t *SlotPtr = reinterpret_cast<intptr_t*>(mpJumpTableBase); |
| 832 | for (int i = 0, ie = JT.size(); i != ie; i++) { |
| 833 | const std::vector<llvm::MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| 834 | // Store the address of the basic block for this jump table slot in the |
| 835 | // memory we allocated for the jump table in 'initJumpTableInfo' |
| 836 | for (int j = 0, je = MBBs.size(); j != je; j++) |
| 837 | *SlotPtr++ = getMachineBasicBlockAddress(MBBs[j]); |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | |
| 842 | void *CodeEmitter::GetPointerToGlobal(llvm::GlobalValue *V, |
| 843 | void *Reference, |
| 844 | bool MayNeedFarStub) { |
| 845 | switch (V->getValueID()) { |
| 846 | case llvm::Value::FunctionVal: { |
| 847 | llvm::Function *F = (llvm::Function*) V; |
| 848 | |
| 849 | // If we have code, go ahead and return that. |
| 850 | if (void *ResultPtr = GetPointerToGlobalIfAvailable(F)) |
| 851 | return ResultPtr; |
| 852 | |
| 853 | if (void *FnStub = GetLazyFunctionStubIfAvailable(F)) |
| 854 | // Return the function stub if it's already created. |
| 855 | // We do this first so that: |
| 856 | // we're returning the same address for the function as any |
| 857 | // previous call. |
| 858 | // |
| 859 | // TODO(llvm.org): Yes, this is wrong. The lazy stub isn't |
| 860 | // guaranteed to be close enough to call. |
| 861 | return FnStub; |
| 862 | |
| 863 | // If we know the target can handle arbitrary-distance calls, try to |
| 864 | // return a direct pointer. |
| 865 | if (!MayNeedFarStub) { |
| 866 | // |
| 867 | // x86_64 architecture may encounter the bug: |
| 868 | // http://llvm.org/bugs/show_bug.cgi?id=5201 |
| 869 | // which generate instruction "call" instead of "callq". |
| 870 | // |
| 871 | // And once the real address of stub is greater than 64-bit |
| 872 | // long, the replacement will truncate to 32-bit resulting a |
| 873 | // serious problem. |
| 874 | #if !defined(__x86_64__) |
| 875 | // If this is an external function pointer, we can force the JIT |
| 876 | // to 'compile' it, which really just adds it to the map. |
| 877 | if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { |
| 878 | return GetPointerToFunction(F, /* AbortOnFailure = */false); |
| 879 | // Changing to false because wanting to allow later calls to |
| 880 | // mpTJI->relocate() without aborting. For caching purpose |
| 881 | } |
| 882 | #endif |
| 883 | } |
| 884 | |
| 885 | // Otherwise, we may need a to emit a stub, and, conservatively, we |
| 886 | // always do so. |
| 887 | return GetLazyFunctionStub(F); |
| 888 | break; |
| 889 | } |
| 890 | case llvm::Value::GlobalVariableVal: { |
| 891 | return GetOrEmitGlobalVariable((llvm::GlobalVariable*) V); |
| 892 | break; |
| 893 | } |
| 894 | case llvm::Value::GlobalAliasVal: { |
| 895 | llvm::GlobalAlias *GA = (llvm::GlobalAlias*) V; |
| 896 | const llvm::GlobalValue *GV = GA->resolveAliasedGlobal(false); |
| 897 | |
| 898 | switch (GV->getValueID()) { |
| 899 | case llvm::Value::FunctionVal: { |
| 900 | // TODO(all): is there's any possibility that the function is not |
| 901 | // code-gen'd? |
| 902 | return GetPointerToFunction( |
| 903 | static_cast<const llvm::Function*>(GV), |
| 904 | /* AbortOnFailure = */false); |
| 905 | // Changing to false because wanting to allow later calls to |
| 906 | // mpTJI->relocate() without aborting. For caching purpose |
| 907 | break; |
| 908 | } |
| 909 | case llvm::Value::GlobalVariableVal: { |
| 910 | if (void *P = mGlobalAddressMap[GV]) |
| 911 | return P; |
| 912 | |
| 913 | llvm::GlobalVariable *GVar = (llvm::GlobalVariable*) GV; |
| 914 | EmitGlobalVariable(GVar); |
| 915 | |
| 916 | return mGlobalAddressMap[GV]; |
| 917 | break; |
| 918 | } |
| 919 | case llvm::Value::GlobalAliasVal: { |
| 920 | assert(false && "Alias should be resolved ultimately!"); |
| 921 | } |
| 922 | } |
| 923 | break; |
| 924 | } |
| 925 | default: { |
| 926 | break; |
| 927 | } |
| 928 | } |
| 929 | llvm_unreachable("Unknown type of global value!"); |
| 930 | } |
| 931 | |
| 932 | |
| 933 | // If the specified function has been code-gen'd, return a pointer to the |
| 934 | // function. If not, compile it, or use a stub to implement lazy compilation |
| 935 | // if available. |
| 936 | void *CodeEmitter::GetPointerToFunctionOrStub(llvm::Function *F) { |
| 937 | // If we have already code generated the function, just return the |
| 938 | // address. |
| 939 | if (void *Addr = GetPointerToGlobalIfAvailable(F)) |
| 940 | return Addr; |
| 941 | |
| 942 | // Get a stub if the target supports it. |
| 943 | return GetLazyFunctionStub(F); |
| 944 | } |
| 945 | |
| 946 | |
| 947 | void *CodeEmitter::GetLazyFunctionStub(llvm::Function *F) { |
| 948 | // If we already have a lazy stub for this function, recycle it. |
| 949 | void *&Stub = mFunctionToLazyStubMap[F]; |
| 950 | if (Stub) |
| 951 | return Stub; |
| 952 | |
| 953 | // In any cases, we should NOT resolve function at runtime (though we are |
| 954 | // able to). We resolve this right now. |
| 955 | void *Actual = NULL; |
| 956 | if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) { |
| 957 | Actual = GetPointerToFunction(F, /* AbortOnFailure = */false); |
| 958 | // Changing to false because wanting to allow later calls to |
| 959 | // mpTJI->relocate() without aborting. For caching purpose |
| 960 | } |
| 961 | |
| 962 | // Codegen a new stub, calling the actual address of the external |
| 963 | // function, if it was resolved. |
| 964 | llvm::TargetJITInfo::StubLayout SL = mpTJI->getStubLayout(); |
| 965 | startGVStub(F, SL.Size, SL.Alignment); |
| 966 | Stub = mpTJI->emitFunctionStub(F, Actual, *this); |
| 967 | finishGVStub(); |
| 968 | |
| 969 | // We really want the address of the stub in the GlobalAddressMap for the |
| 970 | // JIT, not the address of the external function. |
| 971 | UpdateGlobalMapping(F, Stub); |
| 972 | |
| 973 | if (!Actual) |
| 974 | PendingFunctions.insert(F); |
| 975 | else |
| 976 | Disassemble(F->getName(), reinterpret_cast<uint8_t*>(Stub), |
| 977 | SL.Size, true); |
| 978 | |
| 979 | return Stub; |
| 980 | } |
| 981 | |
| 982 | |
| 983 | void *CodeEmitter::GetPointerToFunction(const llvm::Function *F, |
| 984 | bool AbortOnFailure) { |
| 985 | void *Addr = GetPointerToGlobalIfAvailable(F); |
| 986 | if (Addr) |
| 987 | return Addr; |
| 988 | |
| 989 | assert((F->isDeclaration() || F->hasAvailableExternallyLinkage()) && |
| 990 | "Internal error: only external defined function routes here!"); |
| 991 | |
| 992 | // Handle the failure resolution by ourselves. |
| 993 | Addr = GetPointerToNamedSymbol(F->getName().str().c_str(), |
| 994 | /* AbortOnFailure = */ false); |
| 995 | |
| 996 | // If we resolved the symbol to a null address (eg. a weak external) |
| 997 | // return a null pointer let the application handle it. |
| 998 | if (Addr == NULL) { |
| 999 | if (AbortOnFailure) |
| 1000 | llvm::report_fatal_error("Could not resolve external function " |
| 1001 | "address: " + F->getName()); |
| 1002 | else |
| 1003 | return NULL; |
| 1004 | } |
| 1005 | |
| 1006 | AddGlobalMapping(F, Addr); |
| 1007 | |
| 1008 | return Addr; |
| 1009 | } |
| 1010 | |
| 1011 | |
| 1012 | void *CodeEmitter::GetPointerToNamedSymbol(const std::string &Name, |
| 1013 | bool AbortOnFailure) { |
| 1014 | if (void *Addr = FindRuntimeFunction(Name.c_str())) |
| 1015 | return Addr; |
| 1016 | |
| 1017 | if (mpSymbolLookupFn) |
| 1018 | if (void *Addr = mpSymbolLookupFn(mpSymbolLookupContext, Name.c_str())) |
| 1019 | return Addr; |
| 1020 | |
| 1021 | if (AbortOnFailure) |
| 1022 | llvm::report_fatal_error("Program used external symbol '" + Name + |
| 1023 | "' which could not be resolved!"); |
| 1024 | |
| 1025 | return NULL; |
| 1026 | } |
| 1027 | |
| 1028 | |
| 1029 | // Return the address of the specified global variable, possibly emitting it |
| 1030 | // to memory if needed. This is used by the Emitter. |
| 1031 | void *CodeEmitter::GetOrEmitGlobalVariable(const llvm::GlobalVariable *GV) { |
| 1032 | void *Ptr = GetPointerToGlobalIfAvailable(GV); |
| 1033 | if (Ptr) |
| 1034 | return Ptr; |
| 1035 | |
| 1036 | if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) { |
| 1037 | // If the global is external, just remember the address. |
| 1038 | Ptr = GetPointerToNamedSymbol(GV->getName().str(), true); |
| 1039 | AddGlobalMapping(GV, Ptr); |
| 1040 | } else { |
| 1041 | // If the global hasn't been emitted to memory yet, allocate space and |
| 1042 | // emit it into memory. |
| 1043 | Ptr = GetMemoryForGV(GV); |
| 1044 | AddGlobalMapping(GV, Ptr); |
| 1045 | EmitGlobalVariable(GV); |
| 1046 | } |
| 1047 | |
| 1048 | return Ptr; |
| 1049 | } |
| 1050 | |
| 1051 | |
| 1052 | // This method abstracts memory allocation of global variable so that the |
| 1053 | // JIT can allocate thread local variables depending on the target. |
| 1054 | void *CodeEmitter::GetMemoryForGV(const llvm::GlobalVariable *GV) { |
| 1055 | void *Ptr; |
| 1056 | |
| 1057 | const llvm::Type *GlobalType = GV->getType()->getElementType(); |
| 1058 | size_t S = mpTD->getTypeAllocSize(GlobalType); |
| 1059 | size_t A = mpTD->getPreferredAlignment(GV); |
| 1060 | |
| 1061 | if (GV->isThreadLocal()) { |
| 1062 | // We can support TLS by |
| 1063 | // |
| 1064 | // Ptr = TJI.allocateThreadLocalMemory(S); |
| 1065 | // |
| 1066 | // But I tend not to. |
| 1067 | // (should we disable this in the front-end (i.e., slang)?). |
| 1068 | llvm::report_fatal_error |
| 1069 | ("Compilation of Thread Local Storage (TLS) is disabled!"); |
| 1070 | |
| 1071 | } else if (mpTJI->allocateSeparateGVMemory()) { |
| 1072 | if (A <= 8) { |
| 1073 | Ptr = malloc(S); |
| 1074 | } else { |
| 1075 | // Allocate (S + A) bytes of memory, then use an aligned pointer |
| 1076 | // within that space. |
| 1077 | Ptr = malloc(S + A); |
| 1078 | unsigned int MisAligned = ((intptr_t) Ptr & (A - 1)); |
| 1079 | Ptr = reinterpret_cast<uint8_t*>(Ptr) + |
| 1080 | (MisAligned ? (A - MisAligned) : 0); |
| 1081 | } |
| 1082 | } else { |
| 1083 | Ptr = allocateGlobal(S, A); |
| 1084 | } |
| 1085 | |
| 1086 | return Ptr; |
| 1087 | } |
| 1088 | |
| 1089 | |
| 1090 | void CodeEmitter::EmitGlobalVariable(const llvm::GlobalVariable *GV) { |
| 1091 | void *GA = GetPointerToGlobalIfAvailable(GV); |
| 1092 | |
| 1093 | if (GV->isThreadLocal()) |
| 1094 | llvm::report_fatal_error |
| 1095 | ("We don't support Thread Local Storage (TLS)!"); |
| 1096 | |
| 1097 | if (GA == NULL) { |
| 1098 | // If it's not already specified, allocate memory for the global. |
| 1099 | GA = GetMemoryForGV(GV); |
| 1100 | AddGlobalMapping(GV, GA); |
| 1101 | } |
| 1102 | |
| 1103 | InitializeConstantToMemory(GV->getInitializer(), GA); |
| 1104 | |
| 1105 | // You can do some statistics on global variable here. |
| 1106 | return; |
| 1107 | } |
| 1108 | |
| 1109 | |
| 1110 | void *CodeEmitter::GetPointerToGVIndirectSym(llvm::GlobalValue *V, void *Reference) { |
| 1111 | // Make sure GV is emitted first, and create a stub containing the fully |
| 1112 | // resolved address. |
| 1113 | void *GVAddress = GetPointerToGlobal(V, Reference, false); |
| 1114 | |
| 1115 | // If we already have a stub for this global variable, recycle it. |
| 1116 | void *&IndirectSym = GlobalToIndirectSymMap[V]; |
| 1117 | // Otherwise, codegen a new indirect symbol. |
| 1118 | if (!IndirectSym) |
| 1119 | IndirectSym = mpTJI->emitGlobalValueIndirectSym(V, GVAddress, *this); |
| 1120 | |
| 1121 | return IndirectSym; |
| 1122 | } |
| 1123 | |
| 1124 | |
| 1125 | // Return a stub for the function at the specified address. |
| 1126 | void *CodeEmitter::GetExternalFunctionStub(void *FnAddr) { |
| 1127 | void *&Stub = ExternalFnToStubMap[FnAddr]; |
| 1128 | if (Stub) |
| 1129 | return Stub; |
| 1130 | |
| 1131 | llvm::TargetJITInfo::StubLayout SL = mpTJI->getStubLayout(); |
| 1132 | startGVStub(0, SL.Size, SL.Alignment); |
| 1133 | Stub = mpTJI->emitFunctionStub(0, FnAddr, *this); |
| 1134 | finishGVStub(); |
| 1135 | |
| 1136 | return Stub; |
| 1137 | } |
| 1138 | |
| 1139 | |
| 1140 | #if defined(USE_DISASSEMBLER) |
| 1141 | void CodeEmitter::Disassemble(const llvm::StringRef &Name, |
| 1142 | uint8_t *Start, size_t Length, bool IsStub) { |
| 1143 | llvm::raw_ostream *OS; |
| 1144 | |
| 1145 | #if defined(USE_DISASSEMBLER_FILE) |
| 1146 | std::string ErrorInfo; |
| 1147 | OS = new llvm::raw_fd_ostream("/data/local/tmp/out.S", |
| 1148 | ErrorInfo, |
| 1149 | llvm::raw_fd_ostream::F_Append); |
| 1150 | if (!ErrorInfo.empty()) { // some errors occurred |
| 1151 | // LOGE("Error in creating disassembly file"); |
| 1152 | delete OS; |
| 1153 | return; |
| 1154 | } |
| 1155 | #else |
| 1156 | OS = &llvm::outs(); |
| 1157 | #endif |
| 1158 | |
| 1159 | *OS << "JIT: Disassembled code: " << Name << ((IsStub) ? " (stub)" : "") |
| 1160 | << "\n"; |
| 1161 | |
| 1162 | if (mpAsmInfo == NULL) |
| 1163 | mpAsmInfo = mpTarget->createAsmInfo(Triple); |
| 1164 | if (mpDisassmbler == NULL) |
| 1165 | mpDisassmbler = mpTarget->createMCDisassembler(); |
| 1166 | if (mpIP == NULL) |
| 1167 | mpIP = mpTarget->createMCInstPrinter(mpAsmInfo->getAssemblerDialect(), |
| 1168 | *mpAsmInfo); |
| 1169 | |
| 1170 | const BufferMemoryObject *BufferMObj = new BufferMemoryObject(Start, |
| 1171 | Length); |
| 1172 | uint64_t Size; |
| 1173 | uint64_t Index; |
| 1174 | |
| 1175 | for (Index = 0; Index < Length; Index += Size) { |
| 1176 | llvm::MCInst Inst; |
| 1177 | |
| 1178 | if (mpDisassmbler->getInstruction(Inst, Size, *BufferMObj, Index, |
| 1179 | /* REMOVED */ llvm::nulls())) { |
| 1180 | (*OS).indent(4) |
| 1181 | .write("0x", 2) |
| 1182 | .write_hex((uint32_t) Start + Index) |
| 1183 | .write(':'); |
| 1184 | mpIP->printInst(&Inst, *OS); |
| 1185 | *OS << "\n"; |
| 1186 | } else { |
| 1187 | if (Size == 0) |
| 1188 | Size = 1; // skip illegible bytes |
| 1189 | } |
| 1190 | } |
| 1191 | |
| 1192 | *OS << "\n"; |
| 1193 | delete BufferMObj; |
| 1194 | |
| 1195 | #if defined(USE_DISASSEMBLER_FILE) |
| 1196 | // If you want the disassemble results write to file, uncomment this. |
| 1197 | OS->close(); |
| 1198 | delete OS; |
| 1199 | #endif |
| 1200 | |
| 1201 | return; |
| 1202 | } |
| 1203 | #endif // defined(USE_DISASSEMBLER) |
| 1204 | |
| 1205 | |
| 1206 | void CodeEmitter::setTargetMachine(llvm::TargetMachine &TM) { |
| 1207 | // Set Target |
| 1208 | mpTarget = &TM.getTarget(); |
| 1209 | // Set TargetJITInfo |
| 1210 | mpTJI = TM.getJITInfo(); |
| 1211 | // set TargetData |
| 1212 | mpTD = TM.getTargetData(); |
| 1213 | |
| 1214 | assert(!mpTJI->needsGOT() && "We don't support GOT needed target!"); |
| 1215 | |
| 1216 | return; |
| 1217 | } |
| 1218 | |
| 1219 | |
| 1220 | // This callback is invoked when the specified function is about to be code |
| 1221 | // generated. This initializes the BufferBegin/End/Ptr fields. |
| 1222 | void CodeEmitter::startFunction(llvm::MachineFunction &F) { |
| 1223 | uintptr_t ActualSize = 0; |
| 1224 | |
| 1225 | mpMemMgr->setMemoryWritable(); |
| 1226 | |
| 1227 | // BufferBegin, BufferEnd and CurBufferPtr are all inherited from class |
| 1228 | // MachineCodeEmitter, which is the super class of the class |
| 1229 | // JITCodeEmitter. |
| 1230 | // |
| 1231 | // BufferBegin/BufferEnd - Pointers to the start and end of the memory |
| 1232 | // allocated for this code buffer. |
| 1233 | // |
| 1234 | // CurBufferPtr - Pointer to the next byte of memory to fill when emitting |
| 1235 | // code. This is guranteed to be in the range |
| 1236 | // [BufferBegin, BufferEnd]. If this pointer is at |
| 1237 | // BufferEnd, it will never move due to code emission, and |
| 1238 | // all code emission requests will be ignored (this is the |
| 1239 | // buffer overflow condition). |
| 1240 | BufferBegin = CurBufferPtr = |
| 1241 | mpMemMgr->startFunctionBody(F.getFunction(), ActualSize); |
| 1242 | BufferEnd = BufferBegin + ActualSize; |
| 1243 | |
| 1244 | if (mpCurEmitFunction == NULL) |
| 1245 | mpCurEmitFunction = new EmittedFunctionCode(); |
| 1246 | mpCurEmitFunction->FunctionBody = BufferBegin; |
| 1247 | |
| 1248 | // Ensure the constant pool/jump table info is at least 4-byte aligned. |
| 1249 | emitAlignment(16); |
| 1250 | |
| 1251 | emitConstantPool(F.getConstantPool()); |
| 1252 | if (llvm::MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) |
| 1253 | initJumpTableInfo(MJTI); |
| 1254 | |
| 1255 | // About to start emitting the machine code for the function. |
| 1256 | emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| 1257 | |
| 1258 | UpdateGlobalMapping(F.getFunction(), CurBufferPtr); |
| 1259 | |
| 1260 | mpCurEmitFunction->Code = CurBufferPtr; |
| 1261 | |
| 1262 | mMBBLocations.clear(); |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | // This callback is invoked when the specified function has finished code |
| 1267 | // generation. If a buffer overflow has occurred, this method returns true |
| 1268 | // (the callee is required to try again). |
| 1269 | bool CodeEmitter::finishFunction(llvm::MachineFunction &F) { |
| 1270 | if (CurBufferPtr == BufferEnd) { |
| 1271 | // No enough memory |
| 1272 | mpMemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| 1273 | return false; |
| 1274 | } |
| 1275 | |
| 1276 | if (llvm::MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) |
| 1277 | emitJumpTableInfo(MJTI); |
| 1278 | |
| 1279 | // FnStart is the start of the text, not the start of the constant pool |
| 1280 | // and other per-function data. |
| 1281 | uint8_t *FnStart = |
| 1282 | reinterpret_cast<uint8_t*>( |
| 1283 | GetPointerToGlobalIfAvailable(F.getFunction())); |
| 1284 | |
| 1285 | // FnEnd is the end of the function's machine code. |
| 1286 | uint8_t *FnEnd = CurBufferPtr; |
| 1287 | |
| 1288 | if (!mRelocations.empty()) { |
| 1289 | ptrdiff_t BufferOffset = BufferBegin - mpMemMgr->getCodeMemBase(); |
| 1290 | |
| 1291 | // Resolve the relocations to concrete pointers. |
| 1292 | for (int i = 0, e = mRelocations.size(); i != e; i++) { |
| 1293 | llvm::MachineRelocation &MR = mRelocations[i]; |
| 1294 | void *ResultPtr = NULL; |
| 1295 | |
| 1296 | if (!MR.letTargetResolve()) { |
| 1297 | if (MR.isExternalSymbol()) { |
| 1298 | ResultPtr = GetPointerToNamedSymbol(MR.getExternalSymbol(), true); |
| 1299 | |
| 1300 | if (MR.mayNeedFarStub()) { |
| 1301 | ResultPtr = GetExternalFunctionStub(ResultPtr); |
| 1302 | } |
| 1303 | |
| 1304 | } else if (MR.isGlobalValue()) { |
| 1305 | ResultPtr = GetPointerToGlobal(MR.getGlobalValue(), |
| 1306 | BufferBegin |
| 1307 | + MR.getMachineCodeOffset(), |
| 1308 | MR.mayNeedFarStub()); |
| 1309 | } else if (MR.isIndirectSymbol()) { |
| 1310 | ResultPtr = |
| 1311 | GetPointerToGVIndirectSym( |
| 1312 | MR.getGlobalValue(), |
| 1313 | BufferBegin + MR.getMachineCodeOffset()); |
| 1314 | } else if (MR.isBasicBlock()) { |
| 1315 | ResultPtr = |
| 1316 | (void*) getMachineBasicBlockAddress(MR.getBasicBlock()); |
| 1317 | } else if (MR.isConstantPoolIndex()) { |
| 1318 | ResultPtr = |
| 1319 | (void*) getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| 1320 | } else { |
| 1321 | assert(MR.isJumpTableIndex() && "Unknown type of relocation"); |
| 1322 | ResultPtr = |
| 1323 | (void*) getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| 1324 | } |
| 1325 | |
| 1326 | if (!MR.isExternalSymbol() || MR.mayNeedFarStub()) { |
| 1327 | // TODO(logan): Cache external symbol relocation entry. |
| 1328 | // Currently, we are not caching them. But since Android |
| 1329 | // system is using prelink, it is not a problem. |
| 1330 | |
| 1331 | // Cache the relocation result address |
| 1332 | mCachingRelocations.push_back( |
| 1333 | oBCCRelocEntry(MR.getRelocationType(), |
| 1334 | MR.getMachineCodeOffset() + BufferOffset, |
| 1335 | ResultPtr)); |
| 1336 | } |
| 1337 | |
| 1338 | MR.setResultPointer(ResultPtr); |
| 1339 | } |
| 1340 | } |
| 1341 | |
| 1342 | mpTJI->relocate(BufferBegin, &mRelocations[0], mRelocations.size(), |
| 1343 | mpMemMgr->getGOTBase()); |
| 1344 | } |
| 1345 | |
| 1346 | mpMemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); |
| 1347 | // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for |
| 1348 | // global variables that were referenced in the relocations. |
| 1349 | if (CurBufferPtr == BufferEnd) |
| 1350 | return false; |
| 1351 | |
| 1352 | // Now that we've succeeded in emitting the function. |
| 1353 | mpCurEmitFunction->Size = CurBufferPtr - BufferBegin; |
| 1354 | BufferBegin = CurBufferPtr = 0; |
| 1355 | |
| 1356 | if (F.getFunction()->hasName()) |
| 1357 | mEmittedFunctions[F.getFunction()->getNameStr()] = mpCurEmitFunction; |
| 1358 | mpCurEmitFunction = NULL; |
| 1359 | |
| 1360 | mRelocations.clear(); |
| 1361 | mConstPoolAddresses.clear(); |
| 1362 | |
| 1363 | if (mpMMI) |
| 1364 | mpMMI->EndFunction(); |
| 1365 | |
| 1366 | updateFunctionStub(F.getFunction()); |
| 1367 | |
| 1368 | // Mark code region readable and executable if it's not so already. |
| 1369 | mpMemMgr->setMemoryExecutable(); |
| 1370 | |
| 1371 | Disassemble(F.getFunction()->getName(), FnStart, FnEnd - FnStart, false); |
| 1372 | |
| 1373 | return false; |
| 1374 | } |
| 1375 | |
| 1376 | |
| 1377 | void CodeEmitter::startGVStub(const llvm::GlobalValue *GV, unsigned StubSize, |
| 1378 | unsigned Alignment) { |
| 1379 | mpSavedBufferBegin = BufferBegin; |
| 1380 | mpSavedBufferEnd = BufferEnd; |
| 1381 | mpSavedCurBufferPtr = CurBufferPtr; |
| 1382 | |
| 1383 | BufferBegin = CurBufferPtr = mpMemMgr->allocateStub(GV, StubSize, |
| 1384 | Alignment); |
| 1385 | BufferEnd = BufferBegin + StubSize + 1; |
| 1386 | |
| 1387 | return; |
| 1388 | } |
| 1389 | |
| 1390 | |
| 1391 | void CodeEmitter::startGVStub(void *Buffer, unsigned StubSize) { |
| 1392 | mpSavedBufferBegin = BufferBegin; |
| 1393 | mpSavedBufferEnd = BufferEnd; |
| 1394 | mpSavedCurBufferPtr = CurBufferPtr; |
| 1395 | |
| 1396 | BufferBegin = CurBufferPtr = reinterpret_cast<uint8_t *>(Buffer); |
| 1397 | BufferEnd = BufferBegin + StubSize + 1; |
| 1398 | |
| 1399 | return; |
| 1400 | } |
| 1401 | |
| 1402 | |
| 1403 | void CodeEmitter::finishGVStub() { |
| 1404 | assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); |
| 1405 | |
| 1406 | // restore |
| 1407 | BufferBegin = mpSavedBufferBegin; |
| 1408 | BufferEnd = mpSavedBufferEnd; |
| 1409 | CurBufferPtr = mpSavedCurBufferPtr; |
| 1410 | } |
| 1411 | |
| 1412 | |
| 1413 | // Allocates and fills storage for an indirect GlobalValue, and returns the |
| 1414 | // address. |
| 1415 | void *CodeEmitter::allocIndirectGV(const llvm::GlobalValue *GV, |
| 1416 | const uint8_t *Buffer, size_t Size, |
| 1417 | unsigned Alignment) { |
| 1418 | uint8_t *IndGV = mpMemMgr->allocateStub(GV, Size, Alignment); |
| 1419 | memcpy(IndGV, Buffer, Size); |
| 1420 | return IndGV; |
| 1421 | } |
| 1422 | |
| 1423 | |
| 1424 | // Allocate memory for a global. Unlike allocateSpace, this method does not |
| 1425 | // allocate memory in the current output buffer, because a global may live |
| 1426 | // longer than the current function. |
| 1427 | void *CodeEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { |
| 1428 | // Delegate this call through the memory manager. |
| 1429 | return mpMemMgr->allocateGlobal(Size, Alignment); |
| 1430 | } |
| 1431 | |
| 1432 | |
| 1433 | // This should be called by the target when a new basic block is about to be |
| 1434 | // emitted. This way the MCE knows where the start of the block is, and can |
| 1435 | // implement getMachineBasicBlockAddress. |
| 1436 | void CodeEmitter::StartMachineBasicBlock(llvm::MachineBasicBlock *MBB) { |
| 1437 | if (mMBBLocations.size() <= (unsigned) MBB->getNumber()) |
| 1438 | mMBBLocations.resize((MBB->getNumber() + 1) * 2); |
| 1439 | mMBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| 1440 | return; |
| 1441 | } |
| 1442 | |
| 1443 | |
| 1444 | // Return the address of the jump table with index @Index in the function |
| 1445 | // that last called initJumpTableInfo. |
| 1446 | uintptr_t CodeEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| 1447 | const std::vector<llvm::MachineJumpTableEntry> &JT = |
| 1448 | mpJumpTable->getJumpTables(); |
| 1449 | |
| 1450 | assert((Index < JT.size()) && "Invalid jump table index!"); |
| 1451 | |
| 1452 | unsigned int Offset = 0; |
| 1453 | unsigned int EntrySize = mpJumpTable->getEntrySize(*mpTD); |
| 1454 | |
| 1455 | for (unsigned i = 0; i < Index; i++) |
| 1456 | Offset += JT[i].MBBs.size(); |
| 1457 | Offset *= EntrySize; |
| 1458 | |
| 1459 | return (uintptr_t)(reinterpret_cast<uint8_t*>(mpJumpTableBase) + Offset); |
| 1460 | } |
| 1461 | |
| 1462 | |
| 1463 | // Return the address of the specified MachineBasicBlock, only usable after |
| 1464 | // the label for the MBB has been emitted. |
| 1465 | uintptr_t CodeEmitter::getMachineBasicBlockAddress( |
| 1466 | llvm::MachineBasicBlock *MBB) const { |
| 1467 | assert(mMBBLocations.size() > (unsigned) MBB->getNumber() && |
| 1468 | mMBBLocations[MBB->getNumber()] && |
| 1469 | "MBB not emitted!"); |
| 1470 | return mMBBLocations[MBB->getNumber()]; |
| 1471 | } |
| 1472 | |
| 1473 | |
| 1474 | void CodeEmitter::updateFunctionStub(const llvm::Function *F) { |
| 1475 | // Get the empty stub we generated earlier. |
| 1476 | void *Stub; |
| 1477 | std::set<const llvm::Function*>::iterator I = PendingFunctions.find(F); |
| 1478 | if (I != PendingFunctions.end()) |
| 1479 | Stub = mFunctionToLazyStubMap[F]; |
| 1480 | else |
| 1481 | return; |
| 1482 | |
| 1483 | void *Addr = GetPointerToGlobalIfAvailable(F); |
| 1484 | |
| 1485 | assert(Addr != Stub && |
| 1486 | "Function must have non-stub address to be updated."); |
| 1487 | |
| 1488 | // Tell the target jit info to rewrite the stub at the specified address, |
| 1489 | // rather than creating a new one. |
| 1490 | llvm::TargetJITInfo::StubLayout SL = mpTJI->getStubLayout(); |
| 1491 | startGVStub(Stub, SL.Size); |
| 1492 | mpTJI->emitFunctionStub(F, Addr, *this); |
| 1493 | finishGVStub(); |
| 1494 | |
| 1495 | Disassemble(F->getName(), reinterpret_cast<uint8_t*>(Stub), |
| 1496 | SL.Size, true); |
| 1497 | |
| 1498 | PendingFunctions.erase(I); |
| 1499 | } |
| 1500 | |
| 1501 | |
| 1502 | void CodeEmitter::getFunctionNames(BCCsizei *actualFunctionCount, |
| 1503 | BCCsizei maxFunctionCount, |
| 1504 | BCCchar **functions) { |
| 1505 | int functionCount = mEmittedFunctions.size(); |
| 1506 | |
| 1507 | if (actualFunctionCount) |
| 1508 | *actualFunctionCount = functionCount; |
| 1509 | if (functionCount > maxFunctionCount) |
| 1510 | functionCount = maxFunctionCount; |
| 1511 | if (functions) |
| 1512 | for (EmittedFunctionsMapTy::const_iterator |
| 1513 | I = mEmittedFunctions.begin(), E = mEmittedFunctions.end(); |
| 1514 | I != E && (functionCount > 0); I++, functionCount--) { |
| 1515 | *functions++ = const_cast<BCCchar*>(I->first.c_str()); |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | |
| 1520 | void CodeEmitter::getFunctionBinary(BCCchar *label, |
| 1521 | BCCvoid **base, |
| 1522 | BCCsizei *length) { |
| 1523 | EmittedFunctionsMapTy::const_iterator I = mEmittedFunctions.find(label); |
| 1524 | if (I == mEmittedFunctions.end()) { |
| 1525 | *base = NULL; |
| 1526 | *length = 0; |
| 1527 | } else { |
| 1528 | *base = I->second->Code; |
| 1529 | *length = I->second->Size; |
| 1530 | } |
| 1531 | } |
| 1532 | |
| 1533 | } // namespace bcc |